Schwedlerove i „Schwedlerove” „kupole”
|
Primjer 1. — Schwedlerova „kupola” tipa 1.
Tvorba rječnika čvorova, rječnika štapova i liste ležajnih čvorova:
schwedler_1 (r0, [h1, h2, ...], n)
joints: 0: (10.0000000000000, 0.000000000000000, 0.000000000000000) 1: (6.12323399573676e-16, 10.0000000000000, 0.000000000000000) 2: (-10.0000000000000, 1.22464679914735e-15, 0.000000000000000) 3: (-1.83697019872103e-15, -10.0000000000000, 0.000000000000000) 4: (6.61437827766148, 0.000000000000000, 7.50000000000000) 5: (4.05013859304395e-16, 6.61437827766148, 7.50000000000000) 6: (-6.61437827766148, 8.10027718608790e-16, 7.50000000000000) 7: (-1.21504157791318e-15, -6.61437827766148, 7.50000000000000) bars: 0: (0, 4) 1: (1, 5) 2: (2, 6) 3: (3, 7) 4: (4, 5) 5: (5, 6) 6: (6, 7) 7: (7, 4) 8: (0, 5) 9: (2, 7) 10: (0, 7) 11: (2, 5) supports: [0, 1, 2, 3] joints: 0: (10.0000000000000, 0.000000000000000, 0.000000000000000) 1: (6.12323399573676e-16, 10.0000000000000, 0.000000000000000) 2: (-10.0000000000000, 1.22464679914735e-15, 0.000000000000000) 3: (-1.83697019872103e-15, -10.0000000000000, 0.000000000000000) 4: (6.61437827766148, 0.000000000000000, 7.50000000000000) 5: (4.05013859304395e-16, 6.61437827766148, 7.50000000000000) 6: (-6.61437827766148, 8.10027718608790e-16, 7.50000000000000) 7: (-1.21504157791318e-15, -6.61437827766148, 7.50000000000000) bars: 0: (0, 4) 1: (1, 5) 2: (2, 6) 3: (3, 7) 4: (4, 5) 5: (5, 6) 6: (6, 7) 7: (7, 4) 8: (0, 5) 9: (2, 7) 10: (0, 7) 11: (2, 5) supports: [0, 1, 2, 3] |
![]() ![]() |
3 * 4 - 12 == 0 3 * 4 - 12 == 0 |
Tvorba rječnika opterećenja:
make_loads (generator)
4: (0.000000000000000, 0.000000000000000, -100.000000000000) 5: (0.000000000000000, 0.000000000000000, -100.000000000000) 6: (0.000000000000000, 0.000000000000000, -100.000000000000) 7: (0.000000000000000, 0.000000000000000, -100.000000000000) 4: (0.000000000000000, 0.000000000000000, -100.000000000000) 5: (0.000000000000000, 0.000000000000000, -100.000000000000) 6: (0.000000000000000, 0.000000000000000, -100.000000000000) 7: (0.000000000000000, 0.000000000000000, -100.000000000000) |
![]() ![]() |
Izračunavanje vrijednosti sila u štapovima:
0: -109.7167540709727 1: -109.7167540709727 2: -109.7167540709727 3: -109.7167540709727 4: -31.919947711973975 5: -31.919947711973975 6: -31.919947711973983 7: -31.91994771197398 8: -2.5121479338940403e-15 9: 5.02429586778808e-15 10: -1.6734266864842076e-30 11: -2.5121479338940403e-15 0: -109.7167540709727 1: -109.7167540709727 2: -109.7167540709727 3: -109.7167540709727 4: -31.919947711973975 5: -31.919947711973975 6: -31.919947711973983 7: -31.91994771197398 8: -2.5121479338940403e-15 9: 5.02429586778808e-15 10: -1.6734266864842076e-30 11: -2.5121479338940403e-15 |
0: -109.7167540709727 1: -109.7167540709727 2: -109.7167540709727 3: -109.7167540709727 4: -31.919947711973975 5: -31.919947711973975 6: -31.919947711973983 7: -31.91994771197398 8: 0.0 9: 0.0 10: 0.0 11: 0.0 0: -109.7167540709727 1: -109.7167540709727 2: -109.7167540709727 3: -109.7167540709727 4: -31.919947711973975 5: -31.919947711973975 6: -31.919947711973983 7: -31.91994771197398 8: 0.0 9: 0.0 10: 0.0 11: 0.0 |
Rješavanje u koracima:
[4, 5, 6, 7] [4, 5, 6, 7] |
(0.41140.00000.00000.0000−0.70710.00000.0000−0.70710.00000.00000.00000.0000−0.00000.00000.00000.00000.00000.70710.00000.0000−0.70710.00000.00000.00000.0000−0.0000−0.91140.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.0000100.00.00002.519×10−170.00000.00000.7071−0.70710.00000.00000.70710.00000.0000−0.7071−0.00000.00000.41140.00000.0000−0.7071−0.70710.00000.0000−0.46770.00000.0000−0.4677−0.00000.0000−0.91140.00000.00000.00000.00000.00000.0000−0.53030.00000.0000−0.5303100.00.00000.0000−0.41140.00000.00000.70710.70710.00000.00000.00000.00000.0000−0.00000.00000.00005.039×10−170.00000.00000.7071−0.70710.00000.00000.00000.00000.0000−0.00000.00000.0000−0.91140.00000.00000.00000.00000.00000.00000.00000.00000.0000100.00.00000.00000.0000−7.558×10−170.00000.0000−0.70710.70710.0000−0.70710.70710.0000−0.00000.00000.00000.0000−0.41140.00000.00000.70710.70710.00000.46770.46770.0000−0.00000.00000.00000.0000−0.91140.00000.00000.00000.00000.0000−0.5303−0.53030.0000100.0)
|
dict_equation_index (free_joints)
rezultat: rječnik parova oznakai: indeksj
4: 0 5: 3 6: 6 7: 9 4: 0 5: 3 6: 6 7: 9 |
dict_unknown_index (bars)
rezultat: rječnik parova oznakai: indeksj
0: 0 1: 1 2: 2 3: 3 4: 4 5: 5 6: 6 7: 7 8: 8 9: 9 10: 10 11: 11 0: 0 1: 1 2: 2 3: 3 4: 4 5: 5 6: 6 7: 7 8: 8 9: 9 10: 10 11: 11 |
|
(1.000−0.0000−0.0000−0.0000−0.0000−0.0000−0.0000−0.0000−0.0000−0.0000−0.0000−0.0000−109.70.00001.000−0.0000−0.0000−0.0000−0.0000−0.0000−0.00000.5819−0.0000−0.00000.5819−109.70.00000.00001.000−0.0000−0.0000−0.0000−0.0000−0.0000−0.0000−0.0000−0.0000−0.0000−109.70.00000.00000.00001.000−0.0000−0.0000−0.0000−0.0000−0.00000.58190.5819−0.0000−109.70.00000.00000.00000.00001.0001.000−0.0000−0.00001.000−0.0000−0.00001.000−63.840.00000.00000.00000.00000.00001.000−0.0000−0.0000−0.0000−0.0000−0.00001.000−31.920.00000.00000.00000.00000.00000.00001.000−0.0000−0.0000−0.0000−0.00001.000−31.920.00000.00000.00000.00000.00000.00000.00001.000−1.000−0.0000−0.0000−0.0000−31.920.00000.00000.00000.00000.00000.00000.00000.00001.000−0.0000−0.0000−0.0000−2.512×10−150.00000.00000.00000.00000.00000.00000.00000.00000.00001.0001.000−1.0007.536×10−150.00000.00000.00000.00000.00000.00000.00000.00000.00000.00001.0000.0000−1.673×10−300.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00001.000−2.512×10−15)
|
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11] [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11] |
0: -109.7167540709727 1: -109.7167540709727 2: -109.7167540709727 3: -109.7167540709727 4: -31.91994771197398 5: -31.919947711973975 6: -31.919947711973983 7: -31.91994771197398 8: -2.5121479338940403e-15 9: 5.02429586778808e-15 10: -1.6734266864842076e-30 11: -2.5121479338940403e-15 0: -109.7167540709727 1: -109.7167540709727 2: -109.7167540709727 3: -109.7167540709727 4: -31.91994771197398 5: -31.919947711973975 6: -31.919947711973983 7: -31.91994771197398 8: -2.5121479338940403e-15 9: 5.02429586778808e-15 10: -1.6734266864842076e-30 11: -2.5121479338940403e-15 |
0: -109.7167540709727 1: -109.7167540709727 2: -109.7167540709727 3: -109.7167540709727 4: -31.91994771197398 5: -31.919947711973975 6: -31.919947711973983 7: -31.91994771197398 8: 0.0 9: 0.0 10: 0.0 11: 0.0 0: -109.7167540709727 1: -109.7167540709727 2: -109.7167540709727 3: -109.7167540709727 4: -31.91994771197398 5: -31.919947711973975 6: -31.919947711973983 7: -31.91994771197398 8: 0.0 9: 0.0 10: 0.0 11: 0.0 |
|
Potprostori ravnotežne matrice:
(0.41140.00000.00000.0000−0.70710.00000.0000−0.70710.00000.00000.00000.00000.00000.00000.00000.00000.70710.00000.0000−0.70710.00000.00000.00000.0000−0.91140.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00002.519×10−170.00000.00000.7071−0.70710.00000.00000.70710.00000.0000−0.70710.00000.41140.00000.0000−0.7071−0.70710.00000.0000−0.46770.00000.0000−0.46770.0000−0.91140.00000.00000.00000.00000.00000.0000−0.53030.00000.0000−0.53030.00000.0000−0.41140.00000.00000.70710.70710.00000.00000.00000.00000.00000.00000.00005.039×10−170.00000.00000.7071−0.70710.00000.00000.00000.00000.00000.00000.0000−0.91140.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.0000−7.558×10−170.00000.0000−0.70710.70710.0000−0.70710.70710.00000.00000.00000.0000−0.41140.00000.00000.70710.70710.00000.46770.46770.00000.00000.00000.0000−0.91140.00000.00000.00000.00000.0000−0.5303−0.53030.0000)
|
|
Row space: Vector space of degree 12 and dimension 12 Basis: (1.0, -0.0, -0.0, -0.0, -0.0, -0.0, -0.0, -0.0, -0.0, -0.0, -0.0, -0.0) (0.0, 1.0, -0.0, -0.0, -0.0, -0.0, -0.0, -0.0, 0.5818609561002115, -0.0, -0.0, 0.5818609561002115) (0.0, 0.0, 1.0, -0.0, -0.0, -0.0, -0.0, -0.0, -0.0, -0.0, -0.0, -0.0) (0.0, 0.0, 0.0, 1.0, -0.0, -0.0, -0.0, -0.0, -0.0, 0.5818609561002116, 0.5818609561002115, -0.0) (0.0, 0.0, 0.0, 0.0, 1.0, 1.0, -0.0, -0.0, 1.0, -0.0, -0.0, 1.0) (0.0, 0.0, 0.0, 0.0, 0.0, 1.0, -0.0, -0.0, -0.0, -0.0, -0.0, 1.0) (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, -0.0, -0.0, -0.0, -0.0, 0.9999999999999998) (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, -0.9999999999999998, -0.0, -0.0, -0.0) (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, -0.0, -0.0, -0.0) (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.9999999999999997, -0.9999999999999997) (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0) (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0) Row space: Vector space of degree 12 and dimension 12 Basis: (1.0, -0.0, -0.0, -0.0, -0.0, -0.0, -0.0, -0.0, -0.0, -0.0, -0.0, -0.0) (0.0, 1.0, -0.0, -0.0, -0.0, -0.0, -0.0, -0.0, 0.5818609561002115, -0.0, -0.0, 0.5818609561002115) (0.0, 0.0, 1.0, -0.0, -0.0, -0.0, -0.0, -0.0, -0.0, -0.0, -0.0, -0.0) (0.0, 0.0, 0.0, 1.0, -0.0, -0.0, -0.0, -0.0, -0.0, 0.5818609561002116, 0.5818609561002115, -0.0) (0.0, 0.0, 0.0, 0.0, 1.0, 1.0, -0.0, -0.0, 1.0, -0.0, -0.0, 1.0) (0.0, 0.0, 0.0, 0.0, 0.0, 1.0, -0.0, -0.0, -0.0, -0.0, -0.0, 1.0) (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, -0.0, -0.0, -0.0, -0.0, 0.9999999999999998) (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, -0.9999999999999998, -0.0, -0.0, -0.0) (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, -0.0, -0.0, -0.0) (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.9999999999999997, -0.9999999999999997) (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0) (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0) |
Vector space of degree 12 and dimension 11 over Real Double Field Basis matrix: [ 0.9999999999999999 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0] [ 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0] [ 0.0 0.0 0.9999999999999999 -0.0 -0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0] [ 0.0 0.0 0.0 1.0 -0.0 -0.0 0.0 0.0 0.0 0.0 0.0 0.0] [ 0.0 0.0 0.0 0.0 1.0 0.0 -0.0 0.0 0.0 0.0 0.0 0.0] [-1.1102230246251565e-16 0.0 0.0 0.0 0.0 1.0 -0.0 0.0 0.0 0.0 0.0 0.0] [ 0.0 0.0 6.162975822039155e-33 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0] [ 0.0 0.0 -1.1102230246251565e-16 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0] [ 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 -0.0 -0.0 -1.0] [ 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0] [ 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 -0.0] Vector space of degree 12 and dimension 11 over Real Double Field Basis matrix: [ 0.9999999999999999 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0] [ 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0] [ 0.0 0.0 0.9999999999999999 -0.0 -0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0] [ 0.0 0.0 0.0 1.0 -0.0 -0.0 0.0 0.0 0.0 0.0 0.0 0.0] [ 0.0 0.0 0.0 0.0 1.0 0.0 -0.0 0.0 0.0 0.0 0.0 0.0] [-1.1102230246251565e-16 0.0 0.0 0.0 0.0 1.0 -0.0 0.0 0.0 0.0 0.0 0.0] [ 0.0 0.0 6.162975822039155e-33 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0] [ 0.0 0.0 -1.1102230246251565e-16 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0] [ 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 -0.0 -0.0 -1.0] [ 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0] [ 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 -0.0] |
Column space: Vector space of degree 12 and dimension 12 Basis: (0.4114378277661477, 0.0, -0.9114378277661477, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) (0.0, 0.0, 0.0, 2.5193300941097603e-17, 0.4114378277661477, -0.9114378277661477, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -0.4114378277661477, 5.0386601882195206e-17, -0.9114378277661477, 0.0, 0.0, 0.0) (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -7.557990282329279e-17, -0.4114378277661477, -0.9114378277661477) (-0.7071067811865475, 0.7071067811865475, 0.0, 0.7071067811865475, -0.7071067811865475, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) (0.0, 0.0, 0.0, -0.7071067811865476, -0.7071067811865475, 0.0, 0.7071067811865476, 0.7071067811865475, 0.0, 0.0, 0.0, 0.0) (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.7071067811865474, -0.7071067811865476, 0.0, -0.7071067811865474, 0.7071067811865476, 0.0) (-0.7071067811865476, -0.7071067811865475, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.7071067811865476, 0.7071067811865475, 0.0) (0.0, 0.0, 0.0, 0.7071067811865475, -0.46770717334674267, -0.5303300858899106, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -0.7071067811865475, 0.4677071733467428, -0.5303300858899107) (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.7071067811865476, 0.4677071733467426, -0.5303300858899106) (0.0, 0.0, 0.0, -0.7071067811865475, -0.4677071733467426, -0.5303300858899106, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) Column space: Vector space of degree 12 and dimension 12 Basis: (0.4114378277661477, 0.0, -0.9114378277661477, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) (0.0, 0.0, 0.0, 2.5193300941097603e-17, 0.4114378277661477, -0.9114378277661477, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -0.4114378277661477, 5.0386601882195206e-17, -0.9114378277661477, 0.0, 0.0, 0.0) (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -7.557990282329279e-17, -0.4114378277661477, -0.9114378277661477) (-0.7071067811865475, 0.7071067811865475, 0.0, 0.7071067811865475, -0.7071067811865475, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) (0.0, 0.0, 0.0, -0.7071067811865476, -0.7071067811865475, 0.0, 0.7071067811865476, 0.7071067811865475, 0.0, 0.0, 0.0, 0.0) (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.7071067811865474, -0.7071067811865476, 0.0, -0.7071067811865474, 0.7071067811865476, 0.0) (-0.7071067811865476, -0.7071067811865475, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.7071067811865476, 0.7071067811865475, 0.0) (0.0, 0.0, 0.0, 0.7071067811865475, -0.46770717334674267, -0.5303300858899106, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -0.7071067811865475, 0.4677071733467428, -0.5303300858899107) (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.7071067811865476, 0.4677071733467426, -0.5303300858899106) (0.0, 0.0, 0.0, -0.7071067811865475, -0.4677071733467426, -0.5303300858899106, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) |
Vector space of degree 12 and dimension 11 over Real Double Field Basis matrix: [ 0.9999999999999999 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.2152504370215294 0.0 0.0 0.0] [-1.1102230246251565e-16 1.0 0.0 0.0 0.0 0.0 0.0 0.0 -2.21525043702153 0.0 0.0 0.0] [-1.1102230246251565e-16 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.21679069697780667 0.0 0.0 0.0] [ 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 4.43050087404306 0.0 0.0 0.0] [ 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 -1.7350047507992417 0.0 0.0 0.0] [ 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 -0.7832093030221933 0.0 0.0 0.0] [ 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 2.2152504370215302 0.0 0.0 0.0] [ 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 2.21525043702153 0.0 0.0 0.0] [ 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0] [ 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0] [ 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0] Vector space of degree 12 and dimension 11 over Real Double Field Basis matrix: [ 0.9999999999999999 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.2152504370215294 0.0 0.0 0.0] [-1.1102230246251565e-16 1.0 0.0 0.0 0.0 0.0 0.0 0.0 -2.21525043702153 0.0 0.0 0.0] [-1.1102230246251565e-16 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.21679069697780667 0.0 0.0 0.0] [ 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 4.43050087404306 0.0 0.0 0.0] [ 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 -1.7350047507992417 0.0 0.0 0.0] [ 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 -0.7832093030221933 0.0 0.0 0.0] [ 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 2.2152504370215302 0.0 0.0 0.0] [ 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 2.21525043702153 0.0 0.0 0.0] [ 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0] [ 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0] [ 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0] |
Kernel: Vector space of degree 12 and dimension 0 Basis: [] Kernel: Vector space of degree 12 and dimension 0 Basis: [] |
Vector space of degree 12 and dimension 1 over Real Double Field Basis matrix: [ 1.0 -1.0000000000000002 0.09786283905186281 2.0000000000000004 -0.7832093030221936 -0.35355339059327384 1.0000000000000004 1.0000000000000002 -0.45141622964513667 0.0 0.0 0.0] Vector space of degree 12 and dimension 1 over Real Double Field Basis matrix: [ 1.0 -1.0000000000000002 0.09786283905186281 2.0000000000000004 -0.7832093030221936 -0.35355339059327384 1.0000000000000004 1.0000000000000002 -0.45141622964513667 0.0 0.0 0.0] |
Left kernel: Vector space of degree 12 and dimension 0 Basis: [] Left kernel: Vector space of degree 12 and dimension 0 Basis: [] |
Vector space of degree 12 and dimension 1 over Real Double Field Basis matrix: [ 1.0 -1.0000000000000002 0.09786283905186281 2.0000000000000004 -0.7832093030221936 -0.35355339059327384 1.0000000000000004 1.0000000000000002 -0.45141622964513667 0.0 0.0 0.0] Vector space of degree 12 and dimension 1 over Real Double Field Basis matrix: [ 1.0 -1.0000000000000002 0.09786283905186281 2.0000000000000004 -0.7832093030221936 -0.35355339059327384 1.0000000000000004 1.0000000000000002 -0.45141622964513667 0.0 0.0 0.0] |
[ 0.9999999999999999 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0] [ 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0] [ 0.0 0.0 0.9999999999999999 -0.0 -0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0] [ 0.0 0.0 0.0 1.0 -0.0 -0.0 0.0 0.0 0.0 0.0 0.0 0.0] [ 0.0 0.0 0.0 0.0 1.0 0.0 -0.0 0.0 0.0 0.0 0.0 0.0] [-1.1102230246251565e-16 0.0 0.0 0.0 0.0 1.0 -0.0 0.0 0.0 0.0 0.0 0.0] [ 0.0 0.0 6.162975822039155e-33 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0] [ 0.0 0.0 -1.1102230246251565e-16 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0] [ 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 -0.0 -0.0 -1.0] [ 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0] [ 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 -0.0] [ 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0] [ 0.9999999999999999 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0] [ 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0] [ 0.0 0.0 0.9999999999999999 -0.0 -0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0] [ 0.0 0.0 0.0 1.0 -0.0 -0.0 0.0 0.0 0.0 0.0 0.0 0.0] [ 0.0 0.0 0.0 0.0 1.0 0.0 -0.0 0.0 0.0 0.0 0.0 0.0] [-1.1102230246251565e-16 0.0 0.0 0.0 0.0 1.0 -0.0 0.0 0.0 0.0 0.0 0.0] [ 0.0 0.0 6.162975822039155e-33 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0] [ 0.0 0.0 -1.1102230246251565e-16 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0] [ 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 -0.0 -0.0 -1.0] [ 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0] [ 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 -0.0] [ 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0] |
(0.41143782776614770.00.00.0−0.70710678118654750.00.0−0.70710678118654760.00.00.00.00.00.00.00.00.70710678118654750.00.0−0.70710678118654750.00.00.00.0−0.91143782776614770.00.00.00.00.00.00.00.00.00.00.00.02.5193300941097603×10−170.00.00.7071067811865475−0.70710678118654760.00.00.70710678118654750.00.0−0.70710678118654750.00.41143782776614770.00.0−0.7071067811865475−0.70710678118654750.00.0−0.467707173346742670.00.0−0.46770717334674260.0−0.91143782776614770.00.00.00.00.00.0−0.53033008588991060.00.0−0.53033008588991060.00.0−0.41143782776614770.00.00.70710678118654760.70710678118654740.00.00.00.00.00.00.05.0386601882195206×10−170.00.00.7071067811865475−0.70710678118654760.00.00.00.00.00.00.0−0.91143782776614770.00.00.00.00.00.00.00.00.00.00.00.0−7.557990282329279×10−170.00.0−0.70710678118654740.70710678118654760.0−0.70710678118654750.70710678118654760.00.00.00.0−0.41143782776614770.00.00.70710678118654760.70710678118654750.00.46770717334674280.46770717334674260.00.00.00.0−0.91143782776614770.00.00.00.00.0−0.5303300858899107−0.53033008588991060.0)
|
(0.41143782776614770.00.00.0−0.70710678118654750.00.0−0.70710678118654760.00.00.00.00.00.00.00.00.70710678118654750.00.0−0.70710678118654750.00.00.00.0−0.91143782776614770.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.7071067811865475−0.70710678118654760.00.00.70710678118654750.00.0−0.70710678118654750.00.41143782776614770.00.0−0.7071067811865475−0.70710678118654750.00.0−0.467707173346742670.00.0−0.46770717334674260.0−0.91143782776614770.00.00.00.00.00.0−0.53033008588991060.00.0−0.53033008588991060.00.0−0.41143782776614770.00.00.70710678118654760.70710678118654740.00.00.00.00.00.00.00.00.00.00.7071067811865475−0.70710678118654760.00.00.00.00.00.00.0−0.91143782776614770.00.00.00.00.00.00.00.00.00.00.00.00.00.00.0−0.70710678118654740.70710678118654760.0−0.70710678118654750.70710678118654760.00.00.00.0−0.41143782776614770.00.00.70710678118654760.70710678118654750.00.46770717334674280.46770717334674260.00.00.00.0−0.91143782776614770.00.00.00.00.0−0.5303300858899107−0.53033008588991060.0)
|
Vector space of degree 12 and dimension 0 over Real Double Field Basis matrix: [] Vector space of degree 12 and dimension 0 over Real Double Field Basis matrix: [] |
(0.0,0.0,−100.0,0.0,0.0,−100.0,0.0,0.0,−100.0,0.0,0.0,−100.0)
|
0: -109.7167540709727 1: -109.7167540709727 2: -109.7167540709727 3: -109.7167540709727 4: -31.91994771197399 5: -31.919947711973983 6: -31.919947711973986 7: -31.919947711973986 8: -2.5121479338940403e-15 9: 5.0242958677880805e-15 10: -1.1156177909894717e-30 11: -2.5121479338940403e-15 0: -109.7167540709727 1: -109.7167540709727 2: -109.7167540709727 3: -109.7167540709727 4: -31.91994771197399 5: -31.919947711973983 6: -31.919947711973986 7: -31.919947711973986 8: -2.5121479338940403e-15 9: 5.0242958677880805e-15 10: -1.1156177909894717e-30 11: -2.5121479338940403e-15 |
0: -109.7167540709727 1: -109.7167540709727 2: -109.7167540709727 3: -109.7167540709727 4: -31.919947711973983 5: -31.91994771197399 6: -31.919947711973986 7: -31.919947711973986 8: -2.5121479338940403e-15 9: -5.024295867788079e-15 10: 5.0242958677880805e-15 11: 2.5121479338940403e-15 0: -109.7167540709727 1: -109.7167540709727 2: -109.7167540709727 3: -109.7167540709727 4: -31.919947711973983 5: -31.91994771197399 6: -31.919947711973986 7: -31.919947711973986 8: -2.5121479338940403e-15 9: -5.024295867788079e-15 10: 5.0242958677880805e-15 11: 2.5121479338940403e-15 |
(0.0, 0.0, 0.0, 0.0, -7.105427357601002e-15, 7.105427357601002e-15, 0.0, 0.0, 0.0, 1.004859173557616e-14, -5.024295867788081e-15, -5.0242958677880805e-15) (0.0, 0.0, 0.0, 0.0, -7.105427357601002e-15, 7.105427357601002e-15, 0.0, 0.0, 0.0, 1.004859173557616e-14, -5.024295867788081e-15, -5.0242958677880805e-15) |
Primjer 2. — Schwedlerova „kupola” tipa 1.
|
|
3 * 24 - 72 == 0 3 * 24 - 72 == 0 |
24 24 |
72 x 72 dense matrix over Real Double Field (use the '.str()' method to see the entries) 72 x 72 dense matrix over Real Double Field (use the '.str()' method to see the entries) |
|
Row space: Vector space of degree 72 and dimension 72 Row space: Vector space of degree 72 and dimension 72 |
Column space: Vector space of degree 72 and dimension 72 Column space: Vector space of degree 72 and dimension 72 |
Kernel: Vector space of degree 72 and dimension 0 Kernel: Vector space of degree 72 and dimension 0 |
Left kernel: Vector space of degree 72 and dimension 0 Left kernel: Vector space of degree 72 and dimension 0 |
|
|
72 x 73 dense matrix over Real Double Field (use the '.str()' method to see the entries) 72 x 73 dense matrix over Real Double Field (use the '.str()' method to see the entries) |
|
0: -204.91580904761287 1: -204.91580904761227 2: -204.91580904761298 3: -204.91580904761219 4: -204.9158090476129 5: -204.91580904761247 6: -204.91580904761287 7: -204.91580904761256 8: 74.3059609475446 9: 74.30596094754472 10: 74.30596094754472 11: 74.30596094754463 12: 74.3059609475446 13: 74.30596094754459 14: 74.30596094754459 15: 74.30596094754458 16: -2.606318687120518e-13 17: -4.2236974711845096e-13 18: -2.1947195061226836e-13 19: -1.693773836673669e-13 20: -1.8474111129762605e-13 21: -3.926064496917477e-13 22: -3.543558413594664e-13 23: -2.2581518513761258e-13 24: -164.9225629678831 25: -164.92256296788287 26: -164.92256296788315 27: -164.92256296788284 28: -164.92256296788312 29: -164.92256296788298 30: -164.9225629678831 31: -164.922562967883 32: -22.84939741307862 33: -22.849397413078577 34: -22.849397413078577 35: -22.849397413078616 36: -22.849397413078623 37: -22.849397413078627 38: -22.84939741307864 39: -22.84939741307867 40: -8.865316478186533e-14 41: -1.4920223943569423e-13 42: -6.311238576426562e-14 43: -4.60592233830089e-14 44: -2.7514912727717167e-14 45: -1.309216201802303e-13 46: -1.0667157776330011e-13 47: -7.495874938948224e-14 48: -97.7531136904162 49: -97.7531136904161 50: -97.7531136904162 51: -97.75311369041609 52: -97.7531136904162 53: -97.75311369041617 54: -97.7531136904162 55: -97.75311369041617 56: -109.74873217076869 57: -109.74873217076868 58: -109.74873217076868 59: -109.7487321707687 60: -109.74873217076868 61: -109.74873217076868 62: -109.74873217076869 63: -109.74873217076869 64: -7.675729386064e-14 65: -9.210875263276802e-14 66: -4.605437631638406e-14 67: -2.596296755947127e-14 68: 1.5351458772128003e-14 69: -9.210875263276803e-14 70: -6.140583508851202e-14 71: -5.0794326301168806e-14 0: -204.91580904761287 1: -204.91580904761227 2: -204.91580904761298 3: -204.91580904761219 4: -204.9158090476129 5: -204.91580904761247 6: -204.91580904761287 7: -204.91580904761256 8: 74.3059609475446 9: 74.30596094754472 10: 74.30596094754472 11: 74.30596094754463 12: 74.3059609475446 13: 74.30596094754459 14: 74.30596094754459 15: 74.30596094754458 16: -2.606318687120518e-13 17: -4.2236974711845096e-13 18: -2.1947195061226836e-13 19: -1.693773836673669e-13 20: -1.8474111129762605e-13 21: -3.926064496917477e-13 22: -3.543558413594664e-13 23: -2.2581518513761258e-13 24: -164.9225629678831 25: -164.92256296788287 26: -164.92256296788315 27: -164.92256296788284 28: -164.92256296788312 29: -164.92256296788298 30: -164.9225629678831 31: -164.922562967883 32: -22.84939741307862 33: -22.849397413078577 34: -22.849397413078577 35: -22.849397413078616 36: -22.849397413078623 37: -22.849397413078627 38: -22.84939741307864 39: -22.84939741307867 40: -8.865316478186533e-14 41: -1.4920223943569423e-13 42: -6.311238576426562e-14 43: -4.60592233830089e-14 44: -2.7514912727717167e-14 45: -1.309216201802303e-13 46: -1.0667157776330011e-13 47: -7.495874938948224e-14 48: -97.7531136904162 49: -97.7531136904161 50: -97.7531136904162 51: -97.75311369041609 52: -97.7531136904162 53: -97.75311369041617 54: -97.7531136904162 55: -97.75311369041617 56: -109.74873217076869 57: -109.74873217076868 58: -109.74873217076868 59: -109.7487321707687 60: -109.74873217076868 61: -109.74873217076868 62: -109.74873217076869 63: -109.74873217076869 64: -7.675729386064e-14 65: -9.210875263276802e-14 66: -4.605437631638406e-14 67: -2.596296755947127e-14 68: 1.5351458772128003e-14 69: -9.210875263276803e-14 70: -6.140583508851202e-14 71: -5.0794326301168806e-14 |
0: -204.91580904761287 1: -204.91580904761227 2: -204.91580904761298 3: -204.91580904761219 4: -204.9158090476129 5: -204.91580904761247 6: -204.91580904761287 7: -204.91580904761256 8: 74.3059609475446 9: 74.30596094754472 10: 74.30596094754472 11: 74.30596094754463 12: 74.3059609475446 13: 74.30596094754459 14: 74.30596094754459 15: 74.30596094754458 16: 0.0 17: 0.0 18: 0.0 19: 0.0 20: 0.0 21: 0.0 22: 0.0 23: 0.0 24: -164.9225629678831 25: -164.92256296788287 26: -164.92256296788315 27: -164.92256296788284 28: -164.92256296788312 29: -164.92256296788298 30: -164.9225629678831 31: -164.922562967883 32: -22.84939741307862 33: -22.849397413078577 34: -22.849397413078577 35: -22.849397413078616 36: -22.849397413078623 37: -22.849397413078627 38: -22.84939741307864 39: -22.84939741307867 40: 0.0 41: 0.0 42: 0.0 43: 0.0 44: 0.0 45: 0.0 46: 0.0 47: 0.0 48: -97.7531136904162 49: -97.7531136904161 50: -97.7531136904162 51: -97.75311369041609 52: -97.7531136904162 53: -97.75311369041617 54: -97.7531136904162 55: -97.75311369041617 56: -109.74873217076869 57: -109.74873217076868 58: -109.74873217076868 59: -109.7487321707687 60: -109.74873217076868 61: -109.74873217076868 62: -109.74873217076869 63: -109.74873217076869 64: 0.0 65: 0.0 66: 0.0 67: 0.0 68: 0.0 69: 0.0 70: 0.0 71: 0.0 0: -204.91580904761287 1: -204.91580904761227 2: -204.91580904761298 3: -204.91580904761219 4: -204.9158090476129 5: -204.91580904761247 6: -204.91580904761287 7: -204.91580904761256 8: 74.3059609475446 9: 74.30596094754472 10: 74.30596094754472 11: 74.30596094754463 12: 74.3059609475446 13: 74.30596094754459 14: 74.30596094754459 15: 74.30596094754458 16: 0.0 17: 0.0 18: 0.0 19: 0.0 20: 0.0 21: 0.0 22: 0.0 23: 0.0 24: -164.9225629678831 25: -164.92256296788287 26: -164.92256296788315 27: -164.92256296788284 28: -164.92256296788312 29: -164.92256296788298 30: -164.9225629678831 31: -164.922562967883 32: -22.84939741307862 33: -22.849397413078577 34: -22.849397413078577 35: -22.849397413078616 36: -22.849397413078623 37: -22.849397413078627 38: -22.84939741307864 39: -22.84939741307867 40: 0.0 41: 0.0 42: 0.0 43: 0.0 44: 0.0 45: 0.0 46: 0.0 47: 0.0 48: -97.7531136904162 49: -97.7531136904161 50: -97.7531136904162 51: -97.75311369041609 52: -97.7531136904162 53: -97.75311369041617 54: -97.7531136904162 55: -97.75311369041617 56: -109.74873217076869 57: -109.74873217076868 58: -109.74873217076868 59: -109.7487321707687 60: -109.74873217076868 61: -109.74873217076868 62: -109.74873217076869 63: -109.74873217076869 64: 0.0 65: 0.0 66: 0.0 67: 0.0 68: 0.0 69: 0.0 70: 0.0 71: 0.0 |
|
|
|
72 x 73 dense matrix over Real Double Field (use the '.str()' method to see the entries) 72 x 73 dense matrix over Real Double Field (use the '.str()' method to see the entries) |
|
0: -239.76073595130134 1: 206.38152515989935 2: 0.0 3: 203.4562777650432 4: -242.95691841585648 5: 1018.4544193946058 6: -367.20323158218105 7: 937.4651852340141 8: 227.7468448883277 9: 0.0 10: 0.0 11: 227.81120809920117 12: 352.6443504111476 13: 444.9532349580253 14: 432.5055156591877 15: 340.1322679014364 16: -285.9345533121276 17: -32.17523884092094 18: -636.9556256561544 19: -696.3853840875885 20: -593.9850036654537 21: -33.46574743376433 22: -284.71539456827855 23: -739.2846562292947 24: -88.56185966037236 25: 52.5699511497478 26: 0.0 27: 50.542744860141596 28: -85.14673077027103 29: 386.48091665746597 30: -128.5408044108116 31: 340.76838576704404 32: 82.02454252345987 33: 0.0 34: 0.0 35: 78.86150613348937 36: 208.98498047770465 37: 214.66256055058608 38: 219.8816503793227 39: 217.36710669641175 40: -86.37577499920883 41: 0.0 42: -271.3356849643785 43: -258.53906427400557 44: -255.8911292450637 45: 0.0 46: -83.04494606521916 47: -277.31444892730985 48: 0.0 49: 0.0 50: 0.0 51: 0.0 52: 0.0 53: 81.00190372159868 54: 0.0 55: 42.6512887402572 56: 0.0 57: 0.0 58: 0.0 59: 0.0 60: 0.0 61: 0.0 62: 0.0 63: 0.0 64: 0.0 65: 0.0 66: -213.02473265248045 67: -165.06727362896063 68: -221.56888827896535 69: 0.0 70: 0.0 71: -156.52311800247568 0: -239.76073595130134 1: 206.38152515989935 2: 0.0 3: 203.4562777650432 4: -242.95691841585648 5: 1018.4544193946058 6: -367.20323158218105 7: 937.4651852340141 8: 227.7468448883277 9: 0.0 10: 0.0 11: 227.81120809920117 12: 352.6443504111476 13: 444.9532349580253 14: 432.5055156591877 15: 340.1322679014364 16: -285.9345533121276 17: -32.17523884092094 18: -636.9556256561544 19: -696.3853840875885 20: -593.9850036654537 21: -33.46574743376433 22: -284.71539456827855 23: -739.2846562292947 24: -88.56185966037236 25: 52.5699511497478 26: 0.0 27: 50.542744860141596 28: -85.14673077027103 29: 386.48091665746597 30: -128.5408044108116 31: 340.76838576704404 32: 82.02454252345987 33: 0.0 34: 0.0 35: 78.86150613348937 36: 208.98498047770465 37: 214.66256055058608 38: 219.8816503793227 39: 217.36710669641175 40: -86.37577499920883 41: 0.0 42: -271.3356849643785 43: -258.53906427400557 44: -255.8911292450637 45: 0.0 46: -83.04494606521916 47: -277.31444892730985 48: 0.0 49: 0.0 50: 0.0 51: 0.0 52: 0.0 53: 81.00190372159868 54: 0.0 55: 42.6512887402572 56: 0.0 57: 0.0 58: 0.0 59: 0.0 60: 0.0 61: 0.0 62: 0.0 63: 0.0 64: 0.0 65: 0.0 66: -213.02473265248045 67: -165.06727362896063 68: -221.56888827896535 69: 0.0 70: 0.0 71: -156.52311800247568 |
|
Primjer 3. — Schwedlerova „kupola” tipa 2.
|
|
3 * 27 - 81 == 0 3 * 27 - 81 == 0 |
27 27 |
81 x 81 dense matrix over Real Double Field (use the '.str()' method to see the entries) 81 x 81 dense matrix over Real Double Field (use the '.str()' method to see the entries) |
|
Row space: Vector space of degree 81 and dimension 81 Row space: Vector space of degree 81 and dimension 81 |
Column space: Vector space of degree 81 and dimension 81 Column space: Vector space of degree 81 and dimension 81 |
Kernel: Vector space of degree 81 and dimension 0 Kernel: Vector space of degree 81 and dimension 0 |
Left kernel: Vector space of degree 81 and dimension 0 Left kernel: Vector space of degree 81 and dimension 0 |
|
|
81 x 82 dense matrix over Real Double Field (use the '.str()' method to see the entries) 81 x 82 dense matrix over Real Double Field (use the '.str()' method to see the entries) |
|
0: -242.7966913395939 1: -242.7966913395941 2: -242.7966913395934 3: -242.79669133959428 4: -242.7966913395939 5: -242.79669133959408 6: -242.79669133959348 7: -242.7966913395943 8: -242.79669133959374 9: 37.64244088604003 10: 37.64244088603975 11: 37.642440886040156 12: 37.642440886039765 13: 37.642440886039836 14: 37.6424408860397 15: 37.64244088604021 16: 37.64244088603968 17: 37.64244088604005 18: 0.0 19: 0.0 20: 0.0 21: 0.0 22: 0.0 23: 0.0 24: 0.0 25: 0.0 26: 0.0 27: -208.81195719729712 28: -208.8119571972972 29: -208.81195719729678 30: -208.81195719729715 31: -208.81195719729703 32: -208.81195719729712 33: -208.81195719729686 34: -208.81195719729718 35: -208.8119571972971 36: -72.1393138577007 37: -72.1393138577008 38: -72.13931385770046 39: -72.13931385770066 40: -72.13931385770067 41: -72.1393138577008 42: -72.13931385770046 43: -72.13931385770073 44: -72.1393138577007 45: 0.0 46: 0.0 47: 0.0 48: 0.0 49: 0.0 50: 0.0 51: 0.0 52: 0.0 53: 0.0 54: -124.5402573858325 55: -124.54025738583255 56: -124.54025738583238 57: -124.5402573858325 58: -124.54025738583249 59: -124.54025738583249 60: -124.54025738583243 61: -124.54025738583248 62: -124.54025738583246 63: -166.74835942081708 64: -166.74835942081717 65: -166.74835942081702 66: -166.74835942081708 67: -166.7483594208171 68: -166.74835942081708 69: -166.74835942081702 70: -166.74835942081705 71: -166.74835942081702 72: 0.0 73: 0.0 74: 0.0 75: 0.0 76: 0.0 77: 0.0 78: 0.0 79: 0.0 80: 0.0 0: -242.7966913395939 1: -242.7966913395941 2: -242.7966913395934 3: -242.79669133959428 4: -242.7966913395939 5: -242.79669133959408 6: -242.79669133959348 7: -242.7966913395943 8: -242.79669133959374 9: 37.64244088604003 10: 37.64244088603975 11: 37.642440886040156 12: 37.642440886039765 13: 37.642440886039836 14: 37.6424408860397 15: 37.64244088604021 16: 37.64244088603968 17: 37.64244088604005 18: 0.0 19: 0.0 20: 0.0 21: 0.0 22: 0.0 23: 0.0 24: 0.0 25: 0.0 26: 0.0 27: -208.81195719729712 28: -208.8119571972972 29: -208.81195719729678 30: -208.81195719729715 31: -208.81195719729703 32: -208.81195719729712 33: -208.81195719729686 34: -208.81195719729718 35: -208.8119571972971 36: -72.1393138577007 37: -72.1393138577008 38: -72.13931385770046 39: -72.13931385770066 40: -72.13931385770067 41: -72.1393138577008 42: -72.13931385770046 43: -72.13931385770073 44: -72.1393138577007 45: 0.0 46: 0.0 47: 0.0 48: 0.0 49: 0.0 50: 0.0 51: 0.0 52: 0.0 53: 0.0 54: -124.5402573858325 55: -124.54025738583255 56: -124.54025738583238 57: -124.5402573858325 58: -124.54025738583249 59: -124.54025738583249 60: -124.54025738583243 61: -124.54025738583248 62: -124.54025738583246 63: -166.74835942081708 64: -166.74835942081717 65: -166.74835942081702 66: -166.74835942081708 67: -166.7483594208171 68: -166.74835942081708 69: -166.74835942081702 70: -166.74835942081705 71: -166.74835942081702 72: 0.0 73: 0.0 74: 0.0 75: 0.0 76: 0.0 77: 0.0 78: 0.0 79: 0.0 80: 0.0 |
|
Primjer 4. — Pseudo-Schwedlerova „kupola” bez dijagonalnih štapova
joints: 0: (10.0000000000000, 0.000000000000000, 0.000000000000000) 1: (6.12323399573676e-16, 10.0000000000000, 0.000000000000000) 2: (-10.0000000000000, 1.22464679914735e-15, 0.000000000000000) 3: (-1.83697019872103e-15, -10.0000000000000, 0.000000000000000) 4: (6.61437827766148, 0.000000000000000, 7.50000000000000) 5: (4.05013859304395e-16, 6.61437827766148, 7.50000000000000) 6: (-6.61437827766148, 8.10027718608790e-16, 7.50000000000000) 7: (-1.21504157791318e-15, -6.61437827766148, 7.50000000000000) bars: 0: (0, 4) 1: (1, 5) 2: (2, 6) 3: (3, 7) 4: (4, 5) 5: (5, 6) 6: (6, 7) 7: (7, 4) supports: [0, 1, 2, 3] joints: 0: (10.0000000000000, 0.000000000000000, 0.000000000000000) 1: (6.12323399573676e-16, 10.0000000000000, 0.000000000000000) 2: (-10.0000000000000, 1.22464679914735e-15, 0.000000000000000) 3: (-1.83697019872103e-15, -10.0000000000000, 0.000000000000000) 4: (6.61437827766148, 0.000000000000000, 7.50000000000000) 5: (4.05013859304395e-16, 6.61437827766148, 7.50000000000000) 6: (-6.61437827766148, 8.10027718608790e-16, 7.50000000000000) 7: (-1.21504157791318e-15, -6.61437827766148, 7.50000000000000) bars: 0: (0, 4) 1: (1, 5) 2: (2, 6) 3: (3, 7) 4: (4, 5) 5: (5, 6) 6: (6, 7) 7: (7, 4) supports: [0, 1, 2, 3] |
|
3 * 4 - 8 == 4 != 0 3 * 4 - 8 == 4 != 0 |
[4, 5, 6, 7] [4, 5, 6, 7] |
(0.41140.00000.00000.0000−0.70710.00000.0000−0.70710.00000.00000.00000.00000.70710.00000.0000−0.7071−0.91140.00000.00000.00000.00000.00000.00000.00000.00002.519×10−170.00000.00000.7071−0.70710.00000.00000.00000.41140.00000.0000−0.7071−0.70710.00000.00000.0000−0.91140.00000.00000.00000.00000.00000.00000.00000.0000−0.41140.00000.00000.70710.70710.00000.00000.00005.039×10−170.00000.00000.7071−0.70710.00000.00000.0000−0.91140.00000.00000.00000.00000.00000.00000.00000.0000−7.558×10−170.00000.0000−0.70710.70710.00000.00000.0000−0.41140.00000.00000.70710.70710.00000.00000.0000−0.91140.00000.00000.00000.0000)
|
4: 0 5: 3 6: 6 7: 9 4: 0 5: 3 6: 6 7: 9 |
0: 0 1: 1 2: 2 3: 3 4: 4 5: 5 6: 6 7: 7 0: 0 1: 1 2: 2 3: 3 4: 4 5: 5 6: 6 7: 7 |
|
Row space: Vector space of degree 8 and dimension 8 Basis: (1.0, -0.0, -0.0, -0.0, -0.0, -0.0, -0.0, -0.0) (0.0, 1.0, -0.0, -0.0, -0.0, -0.0, -0.0, -0.0) (0.0, 0.0, 1.0, -0.0, -0.0, -0.0, -0.0, -0.0) (0.0, 0.0, 0.0, 1.0, -0.0, -0.0, -0.0, -0.0) (0.0, 0.0, 0.0, 0.0, 1.0, 1.0, -0.0, -0.0) (0.0, 0.0, 0.0, 0.0, 0.0, 1.0, -0.0, -0.0) (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, -0.0) (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0) Row space: Vector space of degree 8 and dimension 8 Basis: (1.0, -0.0, -0.0, -0.0, -0.0, -0.0, -0.0, -0.0) (0.0, 1.0, -0.0, -0.0, -0.0, -0.0, -0.0, -0.0) (0.0, 0.0, 1.0, -0.0, -0.0, -0.0, -0.0, -0.0) (0.0, 0.0, 0.0, 1.0, -0.0, -0.0, -0.0, -0.0) (0.0, 0.0, 0.0, 0.0, 1.0, 1.0, -0.0, -0.0) (0.0, 0.0, 0.0, 0.0, 0.0, 1.0, -0.0, -0.0) (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, -0.0) (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0) |
Column space: Vector space of degree 12 and dimension 8 Basis: (0.4114378277661477, 0.0, -0.9114378277661477, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) (0.0, 0.0, 0.0, 2.5193300941097603e-17, 0.4114378277661477, -0.9114378277661477, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -0.4114378277661477, 5.0386601882195206e-17, -0.9114378277661477, 0.0, 0.0, 0.0) (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -7.557990282329279e-17, -0.4114378277661477, -0.9114378277661477) (-0.7071067811865475, 0.7071067811865475, 0.0, 0.7071067811865475, -0.7071067811865475, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) (0.0, 0.0, 0.0, -0.7071067811865476, -0.7071067811865475, 0.0, 0.7071067811865476, 0.7071067811865475, 0.0, 0.0, 0.0, 0.0) (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.7071067811865474, -0.7071067811865476, 0.0, -0.7071067811865474, 0.7071067811865476, 0.0) (-0.7071067811865476, -0.7071067811865475, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.7071067811865476, 0.7071067811865475, 0.0) Column space: Vector space of degree 12 and dimension 8 Basis: (0.4114378277661477, 0.0, -0.9114378277661477, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) (0.0, 0.0, 0.0, 2.5193300941097603e-17, 0.4114378277661477, -0.9114378277661477, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -0.4114378277661477, 5.0386601882195206e-17, -0.9114378277661477, 0.0, 0.0, 0.0) (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -7.557990282329279e-17, -0.4114378277661477, -0.9114378277661477) (-0.7071067811865475, 0.7071067811865475, 0.0, 0.7071067811865475, -0.7071067811865475, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) (0.0, 0.0, 0.0, -0.7071067811865476, -0.7071067811865475, 0.0, 0.7071067811865476, 0.7071067811865475, 0.0, 0.0, 0.0, 0.0) (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.7071067811865474, -0.7071067811865476, 0.0, -0.7071067811865474, 0.7071067811865476, 0.0) (-0.7071067811865476, -0.7071067811865475, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.7071067811865476, 0.7071067811865475, 0.0) |
Kernel: Vector space of degree 8 and dimension 0 Basis: [] Kernel: Vector space of degree 8 and dimension 0 Basis: [] |
Left kernel: Vector space of degree 12 and dimension 4 Basis: (0.0, 0.0, 0.0, 1.0, 1.0, 0.45141622964513645, 1.0, 0.9999999999999997, -0.45141622964513645, 0.0, 0.0, 0.0) (1.0, 0.0, 0.4514162296451365, 1.6653345369377348e-16, -0.9999999999999998, -0.4514162296451364, 0.0, -0.9999999999999997, -5.5282544071808195e-17, 1.0, 0.0, -8.292381610771231e-17) (0.9999999999999998, 0.0, 0.4514162296451364, 0.9999999999999999, 1.1102230246251565e-16, 5.551115123125783e-17, 0.0, 1.0, 5.5282544071808213e-17, 0.0, 1.0, -0.4514162296451365) (-0.9999999999999998, 1.0, -0.4514162296451364, -0.9999999999999999, 0.9999999999999999, 0.45141622964513645, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) Left kernel: Vector space of degree 12 and dimension 4 Basis: (0.0, 0.0, 0.0, 1.0, 1.0, 0.45141622964513645, 1.0, 0.9999999999999997, -0.45141622964513645, 0.0, 0.0, 0.0) (1.0, 0.0, 0.4514162296451365, 1.6653345369377348e-16, -0.9999999999999998, -0.4514162296451364, 0.0, -0.9999999999999997, -5.5282544071808195e-17, 1.0, 0.0, -8.292381610771231e-17) (0.9999999999999998, 0.0, 0.4514162296451364, 0.9999999999999999, 1.1102230246251565e-16, 5.551115123125783e-17, 0.0, 1.0, 5.5282544071808213e-17, 0.0, 1.0, -0.4514162296451365) (-0.9999999999999998, 1.0, -0.4514162296451364, -0.9999999999999999, 0.9999999999999999, 0.45141622964513645, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) |
(0.0, 0.0, 0.0, 1.0, 1.0, 0.45141622964513645, 1.0, 0.9999999999999997, -0.45141622964513645, 0.0, 0.0, 0.0) (1.0, 0.0, 0.4514162296451365, 0.0, -0.9999999999999998, -0.4514162296451364, 0.0, -0.9999999999999997, 0.0, 1.0, 0.0, 0.0) (0.9999999999999998, 0.0, 0.4514162296451364, 0.9999999999999999, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, -0.4514162296451365) (-0.9999999999999998, 1.0, -0.4514162296451364, -0.9999999999999999, 0.9999999999999999, 0.45141622964513645, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) (0.0, 0.0, 0.0, 1.0, 1.0, 0.45141622964513645, 1.0, 0.9999999999999997, -0.45141622964513645, 0.0, 0.0, 0.0) (1.0, 0.0, 0.4514162296451365, 0.0, -0.9999999999999998, -0.4514162296451364, 0.0, -0.9999999999999997, 0.0, 1.0, 0.0, 0.0) (0.9999999999999998, 0.0, 0.4514162296451364, 0.9999999999999999, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, -0.4514162296451365) (-0.9999999999999998, 1.0, -0.4514162296451364, -0.9999999999999999, 0.9999999999999999, 0.45141622964513645, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) |
|
|
|
|
|
|
|
|
4: (0.000000000000000, 0.000000000000000, -100.000000000000) 5: (0.000000000000000, 0.000000000000000, -100.000000000000) 6: (0.000000000000000, 0.000000000000000, -100.000000000000) 7: (0.000000000000000, 0.000000000000000, -100.000000000000) 4: (0.000000000000000, 0.000000000000000, -100.000000000000) 5: (0.000000000000000, 0.000000000000000, -100.000000000000) 6: (0.000000000000000, 0.000000000000000, -100.000000000000) 7: (0.000000000000000, 0.000000000000000, -100.000000000000) |
|
(0.0, 0.0, -100.0, 0.0, 0.0, -100.0, 0.0, 0.0, -100.0, 0.0, 0.0, -100.0) (0.0, 0.0, -100.0, 0.0, 0.0, -100.0, 0.0, 0.0, -100.0, 0.0, 0.0, -100.0) |
True True |
False False |
(0.41140.00000.00000.0000−0.70710.00000.0000−0.7071−0.00000.00000.00000.00000.00000.70710.00000.0000−0.7071−0.0000−0.91140.00000.00000.00000.00000.00000.00000.0000100.00.00002.519×10−170.00000.00000.7071−0.70710.00000.0000−0.00000.00000.41140.00000.0000−0.7071−0.70710.00000.0000−0.00000.0000−0.91140.00000.00000.00000.00000.00000.0000100.00.00000.0000−0.41140.00000.00000.70710.70710.0000−0.00000.00000.00005.039×10−170.00000.00000.7071−0.70710.0000−0.00000.00000.0000−0.91140.00000.00000.00000.00000.0000100.00.00000.00000.0000−7.558×10−170.00000.0000−0.70710.7071−0.00000.00000.00000.0000−0.41140.00000.00000.70710.7071−0.00000.00000.00000.0000−0.91140.00000.00000.00000.0000100.0)
|
(1.000−0.0000−0.0000−0.0000−0.0000−0.0000−0.0000−0.0000−109.70.00001.000−0.0000−0.0000−0.0000−0.0000−0.0000−0.0000−109.70.00000.00001.000−0.0000−0.0000−0.0000−0.0000−0.0000−109.70.00000.00000.00001.000−0.0000−0.0000−0.0000−0.0000−109.70.00000.00000.00000.00001.0001.000−0.0000−0.0000−63.840.00000.00000.00000.00000.00001.000−0.0000−0.0000−31.920.00000.00000.00000.00000.00000.00001.000−0.0000−31.920.00000.00000.00000.00000.00000.00000.00001.000−31.920.00000.00000.00000.00000.00000.00000.00000.0000−7.105×10−150.00000.00000.00000.00000.00000.00000.00000.00003.553×10−150.00000.00000.00000.00000.00000.00000.00000.00003.553×10−150.00000.00000.00000.00000.00000.00000.00000.00003.553×10−15)
|
(1.0000.00000.00000.00000.00000.00000.00000.0000−109.70.00001.0000.00000.00000.00000.00000.00000.0000−109.70.00000.00001.0000.00000.00000.00000.00000.0000−109.70.00000.00000.00001.0000.00000.00000.00000.0000−109.70.00000.00000.00000.00001.0001.0000.00000.0000−63.840.00000.00000.00000.00000.00001.0000.00000.0000−31.920.00000.00000.00000.00000.00000.00001.0000.0000−31.920.00000.00000.00000.00000.00000.00000.00001.000−31.920.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.0000)
|
0: -109.7167540709727 1: -109.7167540709727 2: -109.7167540709727 3: -109.7167540709727 4: -31.91994771197398 5: -31.91994771197398 6: -31.919947711973986 7: -31.919947711973975 0: -109.7167540709727 1: -109.7167540709727 2: -109.7167540709727 3: -109.7167540709727 4: -31.91994771197398 5: -31.91994771197398 6: -31.919947711973986 7: -31.919947711973975 |
|
4: (100.000000000000, 0.000000000000000, 0.000000000000000) 5: (0.000000000000000, 100.000000000000, 0.000000000000000) 6: (-100.000000000000, 0.000000000000000, 0.000000000000000) 7: (0.000000000000000, -100.000000000000, 0.000000000000000) 4: (100.000000000000, 0.000000000000000, 0.000000000000000) 5: (0.000000000000000, 100.000000000000, 0.000000000000000) 6: (-100.000000000000, 0.000000000000000, 0.000000000000000) 7: (0.000000000000000, -100.000000000000, 0.000000000000000) |
|
(100.0, 0.0, 0.0, 0.0, 100.0, 0.0, -100.0, 0.0, 0.0, 0.0, -100.0, 0.0) (100.0, 0.0, 0.0, 0.0, 100.0, 0.0, -100.0, 0.0, 0.0, 0.0, -100.0, 0.0) |
True True |
(0.41140.00000.00000.0000−0.70710.00000.0000−0.7071−100.00.00000.00000.00000.00000.70710.00000.0000−0.7071−0.0000−0.91140.00000.00000.00000.00000.00000.00000.0000−0.00000.00002.519×10−170.00000.00000.7071−0.70710.00000.0000−0.00000.00000.41140.00000.0000−0.7071−0.70710.00000.0000−100.00.0000−0.91140.00000.00000.00000.00000.00000.0000−0.00000.00000.0000−0.41140.00000.00000.70710.70710.0000100.00.00000.00005.039×10−170.00000.00000.7071−0.70710.0000−0.00000.00000.0000−0.91140.00000.00000.00000.00000.0000−0.00000.00000.00000.0000−7.558×10−170.00000.0000−0.70710.7071−0.00000.00000.00000.0000−0.41140.00000.00000.70710.7071100.00.00000.00000.0000−0.91140.00000.00000.00000.0000−0.0000)
|
(1.0000.00000.00000.00000.00000.00000.00000.00000.00000.00001.0000.00000.00000.00000.00000.00000.00000.00000.00000.00001.0000.00000.00000.00000.00000.00000.00000.00000.00000.00001.0000.00000.00000.00000.00000.00000.00000.00000.00000.00001.0001.0000.00000.0000141.40.00000.00000.00000.00000.00001.0000.00000.000070.710.00000.00000.00000.00000.00000.00001.0000.000070.710.00000.00000.00000.00000.00000.00000.00001.00070.710.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.0000)
|
0: 0.0 1: 0.0 2: 0.0 3: 0.0 4: 70.71067811865476 5: 70.71067811865476 6: 70.71067811865474 7: 70.71067811865474 0: 0.0 1: 0.0 2: 0.0 3: 0.0 4: 70.71067811865476 5: 70.71067811865476 6: 70.71067811865474 7: 70.71067811865474 |
|
4: (100.000000000000, 0.000000000000000, 0.000000000000000) 5: (-100.000000000000, 0.000000000000000, 0.000000000000000) 6: (100.000000000000, 0.000000000000000, 0.000000000000000) 7: (-100.000000000000, 0.000000000000000, 0.000000000000000) 4: (100.000000000000, 0.000000000000000, 0.000000000000000) 5: (-100.000000000000, 0.000000000000000, 0.000000000000000) 6: (100.000000000000, 0.000000000000000, 0.000000000000000) 7: (-100.000000000000, 0.000000000000000, 0.000000000000000) |
|
(100.0, 0.0, 0.0, -100.0, 0.0, 0.0, 100.0, 0.0, 0.0, -100.0, 0.0, 0.0) (100.0, 0.0, 0.0, -100.0, 0.0, 0.0, 100.0, 0.0, 0.0, -100.0, 0.0, 0.0) |
True True |
(0.41140.00000.00000.0000−0.70710.00000.0000−0.7071−100.00.00000.00000.00000.00000.70710.00000.0000−0.7071−0.0000−0.91140.00000.00000.00000.00000.00000.00000.0000−0.00000.00002.519×10−170.00000.00000.7071−0.70710.00000.0000100.00.00000.41140.00000.0000−0.7071−0.70710.00000.0000−0.00000.0000−0.91140.00000.00000.00000.00000.00000.0000−0.00000.00000.0000−0.41140.00000.00000.70710.70710.0000−100.00.00000.00005.039×10−170.00000.00000.7071−0.70710.0000−0.00000.00000.0000−0.91140.00000.00000.00000.00000.0000−0.00000.00000.00000.0000−7.558×10−170.00000.0000−0.70710.7071100.00.00000.00000.0000−0.41140.00000.00000.70710.7071−0.00000.00000.00000.0000−0.91140.00000.00000.00000.0000−0.0000)
|
(1.0000.00000.00000.00000.00000.00000.00000.00000.00000.00001.0000.00000.00000.00000.00000.00000.00000.00000.00000.00001.0000.00000.00000.00000.00000.00000.00000.00000.00000.00001.0000.00000.00000.00000.00000.00000.00000.00000.00000.00001.0001.0000.00000.00000.00000.00000.00000.00000.00000.00001.0000.00000.0000−70.710.00000.00000.00000.00000.00000.00001.0000.0000−70.710.00000.00000.00000.00000.00000.00000.00001.00070.710.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.0000)
|
0: 0.0 1: 0.0 2: 0.0 3: 0.0 4: 70.71067811865476 5: -70.71067811865476 6: -70.71067811865474 7: 70.71067811865474 0: 0.0 1: 0.0 2: 0.0 3: 0.0 4: 70.71067811865476 5: -70.71067811865476 6: -70.71067811865474 7: 70.71067811865474 |
|
Primjer 5. — Pseudo-Schwedlerova „kupola” bez dijagonalnih štapova
|
|
3 * 27 - 54 == 27 != 0 3 * 27 - 54 == 27 != 0 |
27 27 |
81 x 54 dense matrix over Real Double Field (use the '.str()' method to see the entries) 81 x 54 dense matrix over Real Double Field (use the '.str()' method to see the entries) |
|
Row space: Vector space of degree 54 and dimension 54 Row space: Vector space of degree 54 and dimension 54 |
Column space: Vector space of degree 81 and dimension 54 Column space: Vector space of degree 81 and dimension 54 |
Kernel: Vector space of degree 54 and dimension 0 Kernel: Vector space of degree 54 and dimension 0 |
Left kernel: Vector space of degree 81 and dimension 27 Left kernel: Vector space of degree 81 and dimension 27 |
|
|
(0.0, 0.0, -70.0, 0.0, 0.0, -70.0, 0.0, 0.0, -70.0, 0.0, 0.0, -70.0, 0.0, 0.0, -70.0, 0.0, 0.0, -70.0, 0.0, 0.0, -70.0, 0.0, 0.0, -70.0, 0.0, 0.0, -70.0, 0.0, 0.0, -80.0, 0.0, 0.0, -80.0, 0.0, 0.0, -80.0, 0.0, 0.0, -80.0, 0.0, 0.0, -80.0, 0.0, 0.0, -80.0, 0.0, 0.0, -80.0, 0.0, 0.0, -80.0, 0.0, 0.0, -80.0, 0.0, 0.0, -50.0, 0.0, 0.0, -50.0, 0.0, 0.0, -50.0, 0.0, 0.0, -50.0, 0.0, 0.0, -50.0, 0.0, 0.0, -50.0, 0.0, 0.0, -50.0, 0.0, 0.0, -50.0, 0.0, 0.0, -50.0) (0.0, 0.0, -70.0, 0.0, 0.0, -70.0, 0.0, 0.0, -70.0, 0.0, 0.0, -70.0, 0.0, 0.0, -70.0, 0.0, 0.0, -70.0, 0.0, 0.0, -70.0, 0.0, 0.0, -70.0, 0.0, 0.0, -70.0, 0.0, 0.0, -80.0, 0.0, 0.0, -80.0, 0.0, 0.0, -80.0, 0.0, 0.0, -80.0, 0.0, 0.0, -80.0, 0.0, 0.0, -80.0, 0.0, 0.0, -80.0, 0.0, 0.0, -80.0, 0.0, 0.0, -80.0, 0.0, 0.0, -50.0, 0.0, 0.0, -50.0, 0.0, 0.0, -50.0, 0.0, 0.0, -50.0, 0.0, 0.0, -50.0, 0.0, 0.0, -50.0, 0.0, 0.0, -50.0, 0.0, 0.0, -50.0, 0.0, 0.0, -50.0) |
True True |
False False |
81 x 55 dense matrix over Real Double Field (use the '.str()' method to see the entries) 81 x 55 dense matrix over Real Double Field (use the '.str()' method to see the entries) |
|
0: -242.79669133959382 1: -242.79669133959385 2: -242.79669133959368 3: -242.79669133959402 4: -242.79669133959396 5: -242.79669133959396 6: -242.7966913395938 7: -242.79669133959396 8: -242.79669133959396 9: 37.64244088603994 10: 37.64244088603988 11: 37.6424408860399 12: 37.64244088603995 13: 37.642440886039964 14: 37.64244088603994 15: 37.64244088603993 16: 37.642440886039935 17: 37.64244088603995 18: -208.811957197297 19: -208.811957197297 20: -208.8119571972969 21: -208.8119571972971 22: -208.81195719729703 23: -208.81195719729703 24: -208.81195719729695 25: -208.8119571972971 26: -208.8119571972971 27: -72.13931385770061 28: -72.13931385770066 29: -72.13931385770066 30: -72.1393138577007 31: -72.1393138577007 32: -72.13931385770066 33: -72.13931385770063 34: -72.1393138577006 35: -72.13931385770063 36: -124.54025738583246 37: -124.5402573858324 38: -124.54025738583235 39: -124.54025738583246 40: -124.54025738583243 41: -124.54025738583243 42: -124.54025738583243 43: -124.54025738583248 44: -124.54025738583248 45: -166.74835942081702 46: -166.74835942081702 47: -166.748359420817 48: -166.74835942081702 49: -166.74835942081702 50: -166.748359420817 51: -166.74835942081702 52: -166.74835942081705 53: -166.74835942081705 0: -242.79669133959382 1: -242.79669133959385 2: -242.79669133959368 3: -242.79669133959402 4: -242.79669133959396 5: -242.79669133959396 6: -242.7966913395938 7: -242.79669133959396 8: -242.79669133959396 9: 37.64244088603994 10: 37.64244088603988 11: 37.6424408860399 12: 37.64244088603995 13: 37.642440886039964 14: 37.64244088603994 15: 37.64244088603993 16: 37.642440886039935 17: 37.64244088603995 18: -208.811957197297 19: -208.811957197297 20: -208.8119571972969 21: -208.8119571972971 22: -208.81195719729703 23: -208.81195719729703 24: -208.81195719729695 25: -208.8119571972971 26: -208.8119571972971 27: -72.13931385770061 28: -72.13931385770066 29: -72.13931385770066 30: -72.1393138577007 31: -72.1393138577007 32: -72.13931385770066 33: -72.13931385770063 34: -72.1393138577006 35: -72.13931385770063 36: -124.54025738583246 37: -124.5402573858324 38: -124.54025738583235 39: -124.54025738583246 40: -124.54025738583243 41: -124.54025738583243 42: -124.54025738583243 43: -124.54025738583248 44: -124.54025738583248 45: -166.74835942081702 46: -166.74835942081702 47: -166.748359420817 48: -166.74835942081702 49: -166.74835942081702 50: -166.748359420817 51: -166.74835942081702 52: -166.74835942081705 53: -166.74835942081705 |
Primjer 6. — Pseudo-Schwedlerova „kupola” s ukriženim dijagonalama
joints: 0: (10.0000000000000, 0.000000000000000, 0.000000000000000) 1: (6.12323399573676e-16, 10.0000000000000, 0.000000000000000) 2: (-10.0000000000000, 1.22464679914735e-15, 0.000000000000000) 3: (-1.83697019872103e-15, -10.0000000000000, 0.000000000000000) 4: (6.61437827766148, 0.000000000000000, 7.50000000000000) 5: (4.05013859304395e-16, 6.61437827766148, 7.50000000000000) 6: (-6.61437827766148, 8.10027718608790e-16, 7.50000000000000) 7: (-1.21504157791318e-15, -6.61437827766148, 7.50000000000000) bars: 0: (0, 4) 1: (1, 5) 2: (2, 6) 3: (3, 7) 4: (4, 5) 5: (5, 6) 6: (6, 7) 7: (7, 4) 8: (0, 5) 9: (1, 6) 10: (2, 7) 11: (3, 4) 12: (0, 7) 13: (1, 4) 14: (2, 5) 15: (3, 6) supports: [0, 1, 2, 3] joints: 0: (10.0000000000000, 0.000000000000000, 0.000000000000000) 1: (6.12323399573676e-16, 10.0000000000000, 0.000000000000000) 2: (-10.0000000000000, 1.22464679914735e-15, 0.000000000000000) 3: (-1.83697019872103e-15, -10.0000000000000, 0.000000000000000) 4: (6.61437827766148, 0.000000000000000, 7.50000000000000) 5: (4.05013859304395e-16, 6.61437827766148, 7.50000000000000) 6: (-6.61437827766148, 8.10027718608790e-16, 7.50000000000000) 7: (-1.21504157791318e-15, -6.61437827766148, 7.50000000000000) bars: 0: (0, 4) 1: (1, 5) 2: (2, 6) 3: (3, 7) 4: (4, 5) 5: (5, 6) 6: (6, 7) 7: (7, 4) 8: (0, 5) 9: (1, 6) 10: (2, 7) 11: (3, 4) 12: (0, 7) 13: (1, 4) 14: (2, 5) 15: (3, 6) supports: [0, 1, 2, 3] |
|
3 * 4 - 16 == -4 != 0 3 * 4 - 16 == -4 != 0 |
[4, 5, 6, 7] [4, 5, 6, 7] |
(0.41140.00000.00000.0000−0.70710.00000.0000−0.70710.00000.00000.0000−0.46770.0000−0.46770.00000.00000.00000.00000.00000.00000.70710.00000.0000−0.70710.00000.00000.0000−0.70710.00000.70710.00000.0000−0.91140.00000.00000.00000.00000.00000.00000.00000.00000.00000.0000−0.53030.0000−0.53030.00000.00000.00002.519×10−170.00000.00000.7071−0.70710.00000.00000.70710.00000.00000.00000.00000.0000−0.70710.00000.00000.41140.00000.0000−0.7071−0.70710.00000.0000−0.46770.00000.00000.00000.00000.0000−0.46770.00000.0000−0.91140.00000.00000.00000.00000.00000.0000−0.53030.00000.00000.00000.00000.0000−0.53030.00000.00000.0000−0.41140.00000.00000.70710.70710.00000.00000.46770.00000.00000.00000.00000.00000.46770.00000.00005.039×10−170.00000.00000.7071−0.70710.00000.00000.70710.00000.00000.00000.00000.0000−0.70710.00000.0000−0.91140.00000.00000.00000.00000.00000.0000−0.53030.00000.00000.00000.00000.0000−0.53030.00000.00000.0000−7.558×10−170.00000.0000−0.70710.70710.00000.0000−0.70710.00000.70710.00000.00000.00000.00000.00000.0000−0.41140.00000.00000.70710.70710.00000.00000.46770.00000.46770.00000.00000.00000.00000.00000.0000−0.91140.00000.00000.00000.00000.00000.0000−0.53030.0000−0.53030.00000.00000.0000)
|
4: 0 5: 3 6: 6 7: 9 4: 0 5: 3 6: 6 7: 9 |
(1.0−0.0−0.0−0.0−0.0−0.0−0.0−0.0−0.0−0.0−0.00.5818609561002115−0.00.5818609561002115−0.0−0.00.01.0−0.0−0.0−0.0−0.0−0.0−0.00.5818609561002115−0.0−0.0−0.0−0.0−0.00.5818609561002115−0.00.00.01.0−0.0−0.0−0.0−0.0−0.0−0.00.5818609561002115−0.0−0.0−0.0−0.0−0.00.58186095610021160.00.00.01.0−0.0−0.0−0.0−0.0−0.0−0.00.5818609561002116−0.00.5818609561002115−0.0−0.0−0.00.00.00.00.01.01.0−0.0−0.01.0−0.0−0.0−0.0−0.0−0.01.0−0.00.00.00.00.00.01.0−0.0−0.0−0.0−0.0−0.0−0.0−0.0−0.01.0−0.00.00.00.00.00.00.01.0−0.0−0.0−0.9999999999999998−0.0−0.0−0.0−0.00.99999999999999981.00.00.00.00.00.00.00.01.0−0.9999999999999998−0.0−0.01.0−0.00.9999999999999998−0.0−0.00.00.00.00.00.00.00.00.01.0−0.0−0.0−0.0−0.0−1.0−0.0−0.00.00.00.00.00.00.00.00.00.01.00.00.00.00.0−1.07.850462293418876×10−170.00.00.00.00.00.00.00.00.00.01.0−0.99999999999999970.99999999999999970.00.0−1.00.00.00.00.00.00.00.00.00.00.00.01.0−1.0−0.0−0.07.850462293418876×10−17)
|
|
[12, 13, 14, 15] [12, 13, 14, 15] |
Row space: Vector space of degree 16 and dimension 12 Basis: (1.0, -0.0, -0.0, -0.0, -0.0, -0.0, -0.0, -0.0, -0.0, -0.0, -0.0, 0.5818609561002115, -0.0, 0.5818609561002115, -0.0, -0.0) (0.0, 1.0, -0.0, -0.0, -0.0, -0.0, -0.0, -0.0, 0.5818609561002115, -0.0, -0.0, -0.0, -0.0, -0.0, 0.5818609561002115, -0.0) (0.0, 0.0, 1.0, -0.0, -0.0, -0.0, -0.0, -0.0, -0.0, 0.5818609561002115, -0.0, -0.0, -0.0, -0.0, -0.0, 0.5818609561002116) (0.0, 0.0, 0.0, 1.0, -0.0, -0.0, -0.0, -0.0, -0.0, -0.0, 0.5818609561002116, -0.0, 0.5818609561002115, -0.0, -0.0, -0.0) (0.0, 0.0, 0.0, 0.0, 1.0, 1.0, -0.0, -0.0, 1.0, -0.0, -0.0, -0.0, -0.0, -0.0, 1.0, -0.0) (0.0, 0.0, 0.0, 0.0, 0.0, 1.0, -0.0, -0.0, -0.0, -0.0, -0.0, -0.0, -0.0, -0.0, 1.0, -0.0) (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, -0.0, -0.0, -0.9999999999999998, -0.0, -0.0, -0.0, -0.0, 0.9999999999999998, 1.0) (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, -0.9999999999999998, -0.0, -0.0, 1.0, -0.0, 0.9999999999999998, -0.0, -0.0) (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, -0.0, -0.0, -0.0, -0.0, -1.0, -0.0, -0.0) (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, -1.0, 7.850462293418876e-17) (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, -0.9999999999999997, 0.9999999999999997, 0.0, 0.0, -1.0) (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, -1.0, -0.0, -0.0, 7.850462293418876e-17) Row space: Vector space of degree 16 and dimension 12 Basis: (1.0, -0.0, -0.0, -0.0, -0.0, -0.0, -0.0, -0.0, -0.0, -0.0, -0.0, 0.5818609561002115, -0.0, 0.5818609561002115, -0.0, -0.0) (0.0, 1.0, -0.0, -0.0, -0.0, -0.0, -0.0, -0.0, 0.5818609561002115, -0.0, -0.0, -0.0, -0.0, -0.0, 0.5818609561002115, -0.0) (0.0, 0.0, 1.0, -0.0, -0.0, -0.0, -0.0, -0.0, -0.0, 0.5818609561002115, -0.0, -0.0, -0.0, -0.0, -0.0, 0.5818609561002116) (0.0, 0.0, 0.0, 1.0, -0.0, -0.0, -0.0, -0.0, -0.0, -0.0, 0.5818609561002116, -0.0, 0.5818609561002115, -0.0, -0.0, -0.0) (0.0, 0.0, 0.0, 0.0, 1.0, 1.0, -0.0, -0.0, 1.0, -0.0, -0.0, -0.0, -0.0, -0.0, 1.0, -0.0) (0.0, 0.0, 0.0, 0.0, 0.0, 1.0, -0.0, -0.0, -0.0, -0.0, -0.0, -0.0, -0.0, -0.0, 1.0, -0.0) (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, -0.0, -0.0, -0.9999999999999998, -0.0, -0.0, -0.0, -0.0, 0.9999999999999998, 1.0) (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, -0.9999999999999998, -0.0, -0.0, 1.0, -0.0, 0.9999999999999998, -0.0, -0.0) (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, -0.0, -0.0, -0.0, -0.0, -1.0, -0.0, -0.0) (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, -1.0, 7.850462293418876e-17) (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, -0.9999999999999997, 0.9999999999999997, 0.0, 0.0, -1.0) (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, -1.0, -0.0, -0.0, 7.850462293418876e-17) |
Column space: Vector space of degree 12 and dimension 12 Basis: (0.4114378277661477, 0.0, -0.9114378277661477, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) (0.0, 0.0, 0.0, 2.5193300941097603e-17, 0.4114378277661477, -0.9114378277661477, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -0.4114378277661477, 5.0386601882195206e-17, -0.9114378277661477, 0.0, 0.0, 0.0) (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -7.557990282329279e-17, -0.4114378277661477, -0.9114378277661477) (-0.7071067811865475, 0.7071067811865475, 0.0, 0.7071067811865475, -0.7071067811865475, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) (0.0, 0.0, 0.0, -0.7071067811865476, -0.7071067811865475, 0.0, 0.7071067811865476, 0.7071067811865475, 0.0, 0.0, 0.0, 0.0) (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.7071067811865474, -0.7071067811865476, 0.0, -0.7071067811865474, 0.7071067811865476, 0.0) (-0.7071067811865476, -0.7071067811865475, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.7071067811865476, 0.7071067811865475, 0.0) (0.0, 0.0, 0.0, 0.7071067811865475, -0.46770717334674267, -0.5303300858899106, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.4677071733467427, 0.7071067811865475, -0.5303300858899106, 0.0, 0.0, 0.0) (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -0.7071067811865475, 0.4677071733467428, -0.5303300858899107) (-0.4677071733467428, -0.7071067811865475, -0.5303300858899106, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) Column space: Vector space of degree 12 and dimension 12 Basis: (0.4114378277661477, 0.0, -0.9114378277661477, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) (0.0, 0.0, 0.0, 2.5193300941097603e-17, 0.4114378277661477, -0.9114378277661477, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -0.4114378277661477, 5.0386601882195206e-17, -0.9114378277661477, 0.0, 0.0, 0.0) (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -7.557990282329279e-17, -0.4114378277661477, -0.9114378277661477) (-0.7071067811865475, 0.7071067811865475, 0.0, 0.7071067811865475, -0.7071067811865475, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) (0.0, 0.0, 0.0, -0.7071067811865476, -0.7071067811865475, 0.0, 0.7071067811865476, 0.7071067811865475, 0.0, 0.0, 0.0, 0.0) (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.7071067811865474, -0.7071067811865476, 0.0, -0.7071067811865474, 0.7071067811865476, 0.0) (-0.7071067811865476, -0.7071067811865475, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.7071067811865476, 0.7071067811865475, 0.0) (0.0, 0.0, 0.0, 0.7071067811865475, -0.46770717334674267, -0.5303300858899106, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.4677071733467427, 0.7071067811865475, -0.5303300858899106, 0.0, 0.0, 0.0) (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -0.7071067811865475, 0.4677071733467428, -0.5303300858899107) (-0.4677071733467428, -0.7071067811865475, -0.5303300858899106, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) |
Kernel: Vector space of degree 16 and dimension 4 Basis: (-0.5818609561002115, 0.0, 0.0, -0.5818609561002115, 0.0, 0.0, 0.0, -1.0, 0.0, -0.0, 0.0, 1.0, 1.0, 0.0, 0.0, 0.0) (-0.5818609561002115, -0.5818609561002115, 0.0, 0.0, -1.0, 0.0, 0.0, 0.0, 1.0, -0.0, -0.0, 0.0, 0.0, 1.0, 0.0, 0.0) (0.0, -0.5818609561002115, -0.5818609561002115, 0.0, 0.0, -1.0, 0.0, 0.0, 0.0, 1.0, -0.0, 0.0, 0.0, 0.0, 1.0, 0.0) (4.567877495877366e-17, 0.0, -0.5818609561002116, -0.5818609561002115, 0.0, 0.0, -1.0, 7.850462293418876e-17, 0.0, -7.850462293418876e-17, 0.9999999999999999, -7.850462293418876e-17, 0.0, 0.0, 0.0, 1.0) Kernel: Vector space of degree 16 and dimension 4 Basis: (-0.5818609561002115, 0.0, 0.0, -0.5818609561002115, 0.0, 0.0, 0.0, -1.0, 0.0, -0.0, 0.0, 1.0, 1.0, 0.0, 0.0, 0.0) (-0.5818609561002115, -0.5818609561002115, 0.0, 0.0, -1.0, 0.0, 0.0, 0.0, 1.0, -0.0, -0.0, 0.0, 0.0, 1.0, 0.0, 0.0) (0.0, -0.5818609561002115, -0.5818609561002115, 0.0, 0.0, -1.0, 0.0, 0.0, 0.0, 1.0, -0.0, 0.0, 0.0, 0.0, 1.0, 0.0) (4.567877495877366e-17, 0.0, -0.5818609561002116, -0.5818609561002115, 0.0, 0.0, -1.0, 7.850462293418876e-17, 0.0, -7.850462293418876e-17, 0.9999999999999999, -7.850462293418876e-17, 0.0, 0.0, 0.0, 1.0) |
Left kernel: Vector space of degree 12 and dimension 0 Basis: [] Left kernel: Vector space of degree 12 and dimension 0 Basis: [] |
0: -0.5818609561002115 3: -0.5818609561002115 7: -1.0 11: 1.0 12: 1.0 0: -0.5818609561002115 3: -0.5818609561002115 7: -1.0 11: 1.0 12: 1.0 |
|
0: -0.5818609561002115 1: -0.5818609561002115 4: -1.0 8: 1.0 13: 1.0 0: -0.5818609561002115 1: -0.5818609561002115 4: -1.0 8: 1.0 13: 1.0 |
|
1: -0.5818609561002115 2: -0.5818609561002115 5: -1.0 9: 1.0 14: 1.0 1: -0.5818609561002115 2: -0.5818609561002115 5: -1.0 9: 1.0 14: 1.0 |
|
2: -0.5818609561002116 3: -0.5818609561002115 6: -1.0 10: 0.9999999999999999 15: 1.0 2: -0.5818609561002116 3: -0.5818609561002115 6: -1.0 10: 0.9999999999999999 15: 1.0 |
|
Primjer 7. — Pseudo-Schwedlerova „kupola” s ukriženim dijagonalama
|
|
3 * 27 - 108 == -27 != 0 3 * 27 - 108 == -27 != 0 |
27 27 |
81 x 108 dense matrix over Real Double Field (use the '.str()' method to see the entries) 81 x 108 dense matrix over Real Double Field (use the '.str()' method to see the entries) |
|
[27, 28, 29, 30, 31, 32, 33, 34, 35, 63, 64, 65, 66, 67, 68, 69, 70, 71, 99, 100, 101, 102, 103, 104, 105, 106, 107] [27, 28, 29, 30, 31, 32, 33, 34, 35, 63, 64, 65, 66, 67, 68, 69, 70, 71, 99, 100, 101, 102, 103, 104, 105, 106, 107] |
Row space: Vector space of degree 108 and dimension 81 Row space: Vector space of degree 108 and dimension 81 |
Column space: Vector space of degree 81 and dimension 81 Column space: Vector space of degree 81 and dimension 81 |
Kernel: Vector space of degree 108 and dimension 27 Kernel: Vector space of degree 108 and dimension 27 |
0: -0.472786879768055 8: -0.47278687976805506 17: -0.9776149204186074 26: 1.0 27: 1.0 0: -0.472786879768055 8: -0.47278687976805506 17: -0.9776149204186074 26: 1.0 27: 1.0 |
|
0: -0.47278687976805517 1: -0.47278687976805517 9: -0.9776149204186072 18: 1.0 28: 1.0 0: -0.47278687976805517 1: -0.47278687976805517 9: -0.9776149204186072 18: 1.0 28: 1.0 |
|
17: -0.6768676394036834 36: -0.5769051689800252 44: -0.5769051689800252 53: -0.9856881717552798 62: 1.0 63: 1.0 17: -0.6768676394036834 36: -0.5769051689800252 44: -0.5769051689800252 53: -0.9856881717552798 62: 1.0 63: 1.0 |
|
16: -0.6768676394036828 43: -0.5769051689800252 44: -0.5769051689800249 52: -0.9856881717552793 61: 0.9999999999999993 71: 1.0 16: -0.6768676394036828 43: -0.5769051689800252 44: -0.5769051689800249 52: -0.9856881717552793 61: 0.9999999999999993 71: 1.0 |
|
53: -0.5861098319452697 72: -0.6471760666616739 80: -0.6471760666616739 89: -0.991560125875167 98: 1.0 99: 1.0 53: -0.5861098319452697 72: -0.6471760666616739 80: -0.6471760666616739 89: -0.991560125875167 98: 1.0 99: 1.0 |
|
Left kernel: Vector space of degree 81 and dimension 0 Left kernel: Vector space of degree 81 and dimension 0 |
|