GS_Truss_(v0.5.5)

1118 days ago by fresl

       

 

Primjer 1.

 

Opis rešetke:

  • čvorovi, štapovi, ležajevi, opterećenja u čvorovima

Zadavanje čvorova:

  • rječnik čvorova:

{ oznaka0: (x0, y0, z0), oznaka1: (x1, y1, z1), oznaka2: (x2, y2, z2), ... }

  • oznakaioznaka (indeks) čvora i
  • (xi, yi, zi) koordinate čvora (os z je orijentirana „prema gore”)
  • općenito:  rječnik (dictionary) — niz uređenih parova  ključ: vrijednost  navedenih unutar vitičastih zagrada {}

Zadavanje štapova:

  • rječnik štapova:

{ oznaka0: (čvor00, čvor10), oznaka1: (čvor01, čvor11), oznaka2: (čvor02, čvor12), ... }

  • oznakaioznaka (indeks) štapa i
  • (čvor0i, čvor1i) — početni i krajnji čvor štapa i

Zadavanje ležajeva:

  • lista oznaka ležajnih čvorova:

[ oznaka0, oznaka1, ... ]

Zadavanje opterećenja u čvorovima:

  • rječnik opterećenja:

{ oznaka0: (Fx0, Fy0, Fz0), oznaka1: (Fx1, Fy1, Fz1), oznaka2: (Fx2, Fy2, Fz2), ... }

  • oznakai — oznaka čvora u kojem djeluje opterećenje
  • (Fxi, Fyi, Fzi) — komponente čvornog opterećenja
       
joints:
   0:   (0.000000000000000, 0.000000000000000, 0.000000000000000)
   1:   (2.00000000000000, 0.000000000000000, 0.000000000000000)
   2:   (0.000000000000000, 2.00000000000000, 0.000000000000000)
   3:   (0.000000000000000, 0.000000000000000, 2.00000000000000)

bars:
   0:   (0, 3)
   1:   (1, 3)
   2:   (2, 3)

supports: [0, 1, 2]

loads:
   3:   (100.000000000000, 100.000000000000, 0.000000000000000)
joints:
   0:   (0.000000000000000, 0.000000000000000, 0.000000000000000)
   1:   (2.00000000000000, 0.000000000000000, 0.000000000000000)
   2:   (0.000000000000000, 2.00000000000000, 0.000000000000000)
   3:   (0.000000000000000, 0.000000000000000, 2.00000000000000)

bars:
   0:   (0, 3)
   1:   (1, 3)
   2:   (2, 3)

supports: [0, 1, 2]

loads:
   3:   (100.000000000000, 100.000000000000, 0.000000000000000)

Grafički prikaz rešetke:

  • crno — ležajni čvorovi
  • bijelo — slobodni čvorovi
       
       

Izračunavanje vrijednosti sila u štapovima:

truss3D (joints, bars, supports, loads) 

rezultat: rječnik s komponentama  oznakai: silai

    • oznakai — oznaka štapa i (iz rječnika bars)
    • silai — vrijednost sile u štapu i
       
{0: 200.0, 1: -141.4213562373095, 2: -141.4213562373095}
{0: 200.0, 1: -141.4213562373095, 2: -141.4213562373095}
       
0:   200.0
1:   -141.4213562373095
2:   -141.4213562373095
0:   200.0
1:   -141.4213562373095
2:   -141.4213562373095

Grafički prikaz rješenja:

  • plavo — štapovi s vlačnim silama
  • crveno — štapovi s tlačnim silama
  • žuto — štapovi bez sila
       

 

Rješavanje u koracima:

  •  slobodni čvorovi:

others (a1, a2) — rezultat: komponente liste ili rječnika a2 koje nisu u listi ili rječniku a1

       
[3]
[3]
  •  provjera zadovoljenja Maxwellova „pravila”

3nj=nb

nj — broj slobodnih čvorova

nb — broj štapova

       
3 * 1 - 3  ==  0
3 * 1 - 3  ==  0
  •  „ravnotežna” matrica:
       
(0.00.70710678118654750.00.00.00.70710678118654751.00.70710678118654750.7071067811865475)

                                
  •  vektor vanjskih sila:
       
(100.0,100.0,0.0)

                                
  •  rješavanje matričnog sustava:
       
(200.0,141.4213562373095,141.4213562373095)

                                
  •  pridruživanje rješenja štapovima:

dict_bar_force (bars, forces) — rezultat: rječnik s komponentama  oznakai: silai

  •  oznakai — oznaka štapa i u rječniku bars
  •  silai vrijednost uzdužne sile u štapu i u listi forces
       
0:   200.0
1:   -141.4213562373095
2:   -141.4213562373095
0:   200.0
1:   -141.4213562373095
2:   -141.4213562373095


Rješavanje u koracima (drugi način):

  • proširena „ravnotežna” matrica — posljednji stupac sadrži vektor vanjskih sila:
       
(0.00.70710678118654750.0100.00.00.00.7071067811865475100.01.00.70710678118654750.70710678118654750.0)

                                
  • matrica u stepeničastom obliku:

rezultat funkcije ref_wpp(): matrica u stepeničastom obliku i lista indeksa baznih/uporišnih stupaca

       
(1.00.70710678118654750.70710678118654750.00.01.00.0141.42135623730950.00.01.0141.4213562373095)

                                
       
[0, 1, 2]
[0, 1, 2]
  • iz posljednjega stupca proširene matrice u stepeničastomu obliku može se izračunati vektor rješenja:
       
(200.0, -141.4213562373095, -141.4213562373095)
(200.0, -141.4213562373095, -141.4213562373095)
       
0:   200.0
1:   -141.4213562373095
2:   -141.4213562373095
0:   200.0
1:   -141.4213562373095
2:   -141.4213562373095

 

Potprostori ravnotežne matrice:

  • rezultat funkcije subspaces(): rječnici s komponentama
    • 'basis' — lista vektorâ baze potprostora
    • 'degree' — broj skalarnih komponenata vektorâ baze
    • 'dimension' — dimenzija potprostora (broj vektorâ baze)
    • 'name' — naziv potprostora
       
  • (pot)prostor stupaca:
       
Column space:
   Vector space of degree 3 and dimension 3
   Basis:
     (0.0, 0.0, -1.0)
     (0.7071067811865475, 0.0, -0.7071067811865475)
     (0.0, 0.7071067811865475, -0.7071067811865475)
Column space:
   Vector space of degree 3 and dimension 3
   Basis:
     (0.0, 0.0, -1.0)
     (0.7071067811865475, 0.0, -0.7071067811865475)
     (0.0, 0.7071067811865475, -0.7071067811865475)
       
(0.00.70710678118654750.00.00.00.70710678118654751.00.70710678118654750.7071067811865475)

                                
  • (pot)prostor redaka:
       
Row space:
   Vector space of degree 3 and dimension 3
   Basis:
     (1.0, 0.7071067811865475, 0.7071067811865475)
     (0.0, 1.0, 0.0)
     (0.0, 0.0, 1.0)
Row space:
   Vector space of degree 3 and dimension 3
   Basis:
     (1.0, 0.7071067811865475, 0.7071067811865475)
     (0.0, 1.0, 0.0)
     (0.0, 0.0, 1.0)
       
[               1.0 0.7071067811865475 0.7071067811865475]
[               0.0                1.0                0.0]
[               0.0                0.0                1.0]
[               1.0 0.7071067811865475 0.7071067811865475]
[               0.0                1.0                0.0]
[               0.0                0.0                1.0]
  • jezgra:
       
Kernel:
   Vector space of degree 3 and dimension 0
Kernel:
   Vector space of degree 3 and dimension 0
  • lijeva jezgra:
       
Left kernel:
   Vector space of degree 3 and dimension 0
Left kernel:
   Vector space of degree 3 and dimension 0

 

Primjer 2.

 

       
joints:
   0:   (-2.00000000000000, -1.00000000000000, 0.000000000000000)
   1:   (0.000000000000000, 0.000000000000000, 0.000000000000000)
   2:   (2.00000000000000, 1.00000000000000, 0.000000000000000)
   3:   (0.000000000000000, 0.000000000000000, 2.00000000000000)

bars:
   0:   (0, 3)
   1:   (1, 3)
   2:   (2, 3)

supports: [0, 1, 2]

loads:
   3:   (100.000000000000, 50.0000000000000, 0.000000000000000)
joints:
   0:   (-2.00000000000000, -1.00000000000000, 0.000000000000000)
   1:   (0.000000000000000, 0.000000000000000, 0.000000000000000)
   2:   (2.00000000000000, 1.00000000000000, 0.000000000000000)
   3:   (0.000000000000000, 0.000000000000000, 2.00000000000000)

bars:
   0:   (0, 3)
   1:   (1, 3)
   2:   (2, 3)

supports: [0, 1, 2]

loads:
   3:   (100.000000000000, 50.0000000000000, 0.000000000000000)
       


Rješavanje sustava:

       
[3]
[3]
       
3 * 1 - 3  ==  0
3 * 1 - 3  ==  0
       
(0.66666666666666660.00.6666666666666666100.00.33333333333333330.00.333333333333333350.00.66666666666666661.00.66666666666666660.0)

                                
       
(1.00.01.0150.00.01.01.3333333333333333100.00.00.00.00.0)

                                
       
[0, 1]
[0, 1]
       
[0, 1]
[0, 1]
       
[2]
[2]
       
0:   150.0
1:   -100.0
2:   0.0
0:   150.0
1:   -100.0
2:   0.0
       


Potprostori ravnotežne matrice:

       
(0.66666666666666660.00.66666666666666660.33333333333333330.00.33333333333333330.66666666666666661.00.6666666666666666)

                                
       
       
Column space:
   Vector space of degree 3 and dimension 2
   Basis:
     (-0.6666666666666666, -0.3333333333333333, -0.6666666666666666)
     (0.0, 0.0, -1.0)
Column space:
   Vector space of degree 3 and dimension 2
   Basis:
     (-0.6666666666666666, -0.3333333333333333, -0.6666666666666666)
     (0.0, 0.0, -1.0)
       
Row space:
   Vector space of degree 3 and dimension 2
   Basis:
     (1.0, -0.0, -1.0)
     (0.0, 1.0, 1.3333333333333333)
Row space:
   Vector space of degree 3 and dimension 2
   Basis:
     (1.0, -0.0, -1.0)
     (0.0, 1.0, 1.3333333333333333)
       
[               1.0               -0.0               -1.0]
[               0.0                1.0 1.3333333333333333]
[               0.0                0.0                0.0]
[               1.0               -0.0               -1.0]
[               0.0                1.0 1.3333333333333333]
[               0.0                0.0                0.0]
       
Kernel:
   Vector space of degree 3 and dimension 1
   Basis:
     (1.0, -1.3333333333333333, 1.0)
Kernel:
   Vector space of degree 3 and dimension 1
   Basis:
     (1.0, -1.3333333333333333, 1.0)
       
0:   1.0
1:   -1.3333333333333333
2:   1.0
0:   1.0
1:   -1.3333333333333333
2:   1.0
       
       
Left kernel:
   Vector space of degree 3 and dimension 1
   Basis:
     (-0.5, 1.0, 0.0)
Left kernel:
   Vector space of degree 3 and dimension 1
   Basis:
     (-0.5, 1.0, 0.0)
       
       
       
(100.0, 50.0, 0.0)
(100.0, 50.0, 0.0)
       
True
True
       
(-50, 100, 0)
(-50, 100, 0)
       
False
False
       
True
True
       
(100, 0, 0)
(100, 0, 0)
       
False
False
       
False
False
       
True
True

 

„Zabranjena” opterećenja:

       
       
       
(0.66666666666666660.00.666666666666666650.00.33333333333333330.00.3333333333333333100.00.66666666666666661.00.66666666666666660.0)

                                
       
(1.00.01.075.00.01.01.333333333333333350.00.00.00.01.0)

                                
       
       
       
(0.66666666666666660.00.6666666666666666100.00.33333333333333330.00.33333333333333330.00.66666666666666661.00.66666666666666660.0)

                                
       
(1.00.01.0150.00.01.01.3333333333333333100.00.00.00.01.0)

                                

 

Varijacija — promjena redoslijeda štapova:

       
bars:
   0:   (0, 3)
   1:   (2, 3)
   2:   (1, 3)
bars:
   0:   (0, 3)
   1:   (2, 3)
   2:   (1, 3)
       
(0.66666666666666660.66666666666666660.0100.00.33333333333333330.33333333333333330.050.00.66666666666666660.66666666666666661.00.0)

                                
       
(0.66666666666666660.00.6666666666666666100.00.33333333333333330.00.333333333333333350.00.66666666666666661.00.66666666666666660.0)

                                
       
(1.01.00.0150.00.01.00.7575.00.00.00.00.0)

                                
       
0:   75.0
1:   -75.0
2:   0.0
0:   75.0
1:   -75.0
2:   0.0
       
       
(0.66666666666666660.66666666666666660.00.33333333333333330.33333333333333330.00.66666666666666660.66666666666666661.0)

                                
       
       
Column space:
   Vector space of degree 3 and dimension 2
   Basis:
     (-0.6666666666666666, -0.3333333333333333, -0.6666666666666666)
     (0.6666666666666666, 0.3333333333333333, -0.6666666666666666)
Column space:
   Vector space of degree 3 and dimension 2
   Basis:
     (-0.6666666666666666, -0.3333333333333333, -0.6666666666666666)
     (0.6666666666666666, 0.3333333333333333, -0.6666666666666666)
       
       
Row space:
   Vector space of degree 3 and dimension 2
   Basis:
     (1.0, -1.0, -0.0)
     (0.0, 1.0, 0.75)
Row space:
   Vector space of degree 3 and dimension 2
   Basis:
     (1.0, -1.0, -0.0)
     (0.0, 1.0, 0.75)
       
Kernel:
   Vector space of degree 3 and dimension 1
   Basis:
     (-0.75, -0.75, 1.0)
Kernel:
   Vector space of degree 3 and dimension 1
   Basis:
     (-0.75, -0.75, 1.0)
       
0:   -0.75
1:   -0.75
2:   1.0
0:   -0.75
1:   -0.75
2:   1.0
       
       
Left kernel:
   Vector space of degree 3 and dimension 1
   Basis:
     (-0.5, 1.0, 0.0)
Left kernel:
   Vector space of degree 3 and dimension 1
   Basis:
     (-0.5, 1.0, 0.0)
       
       

 

Primjer 3.

 

       
joints:
   0:   (0.000000000000000, 0.000000000000000, 0.000000000000000)
   1:   (2.00000000000000, 0.000000000000000, 0.000000000000000)
   2:   (0.000000000000000, 0.000000000000000, 2.00000000000000)

bars:
   0:   (0, 2)
   1:   (1, 2)

supports: [0, 1]

loads:
   2:   (100.000000000000, 0.000000000000000, 0.000000000000000)
joints:
   0:   (0.000000000000000, 0.000000000000000, 0.000000000000000)
   1:   (2.00000000000000, 0.000000000000000, 0.000000000000000)
   2:   (0.000000000000000, 0.000000000000000, 2.00000000000000)

bars:
   0:   (0, 2)
   1:   (1, 2)

supports: [0, 1]

loads:
   2:   (100.000000000000, 0.000000000000000, 0.000000000000000)
       


Rješavanje sustava:

       
[2]
[2]
       
3 * 1 - 2  ==  1  !=  0
3 * 1 - 2  ==  1  !=  0
       
(0.00.7071067811865475100.00.00.00.01.00.70710678118654750.0)

                                
       
(1.00.70710678118654750.00.01.0141.42135623730950.00.00.0)

                                
       
0:   100.0
1:   -141.4213562373095
0:   100.0
1:   -141.4213562373095
       
[0, 1]
[0, 1]
       


Potprostori ravnotežne matrice:

       
(0.00.70710678118654750.00.01.00.7071067811865475)

                                
       
       
Column space:
   Vector space of degree 3 and dimension 2
   Basis:
     (0.0, 0.0, -1.0)
     (0.7071067811865475, 0.0, -0.7071067811865475)
Column space:
   Vector space of degree 3 and dimension 2
   Basis:
     (0.0, 0.0, -1.0)
     (0.7071067811865475, 0.0, -0.7071067811865475)
       
(100.0,0.0,0.0)

                                
       
True
True
       
Row space:
   Vector space of degree 2 and dimension 2
   Basis:
     (1.0, 0.7071067811865475)
     (0.0, 1.0)
Row space:
   Vector space of degree 2 and dimension 2
   Basis:
     (1.0, 0.7071067811865475)
     (0.0, 1.0)
       
[               1.0 0.7071067811865475]
[               0.0                1.0]
[               0.0                0.0]
[               1.0 0.7071067811865475]
[               0.0                1.0]
[               0.0                0.0]
       
Kernel:
   Vector space of degree 2 and dimension 0
Kernel:
   Vector space of degree 2 and dimension 0
       
Left kernel:
   Vector space of degree 3 and dimension 1
   Basis:
     (0.0, 1.0, 0.0)
Left kernel:
   Vector space of degree 3 and dimension 1
   Basis:
     (0.0, 1.0, 0.0)
       
       


Primjer 4.


       
joints:
   0:   (-1.00000000000000, 0.000000000000000)
   1:   (0.000000000000000, 0.000000000000000)
   2:   (4.00000000000000, 0.000000000000000)
   3:   (0.000000000000000, 2.00000000000000)

bars:
   0:   (0, 3)
   1:   (1, 3)
   2:   (2, 3)

supports: [0, 1, 2]

loads:
   3:   (100.000000000000, 0.000000000000000)
joints:
   0:   (-1.00000000000000, 0.000000000000000)
   1:   (0.000000000000000, 0.000000000000000)
   2:   (4.00000000000000, 0.000000000000000)
   3:   (0.000000000000000, 2.00000000000000)

bars:
   0:   (0, 3)
   1:   (1, 3)
   2:   (2, 3)

supports: [0, 1, 2]

loads:
   3:   (100.000000000000, 0.000000000000000)
       

 

Rješavanje sustava:

       
[3]
[3]
       
2 * 1 - 3  ==  -1  !=  0
2 * 1 - 3  ==  -1  !=  0
       
(0.44721359549995790.00.8944271909999159100.00.89442719099991591.00.44721359549995790.0)

                                
       
(1.01.1180339887498950.50.00.01.02.23606797749979200.0)

                                
       
[0, 1]
[0, 1]
       
[2]
[2]
       
(223.60679774997897, -200.0)
(223.60679774997897, -200.0)
       
0:   223.60679774997897
1:   -200.0
2:   0.0
0:   223.60679774997897
1:   -200.0
2:   0.0
       

 

Potprostori ravnotežne matrice:

       
(0.44721359549995790.00.89442719099991590.89442719099991591.00.4472135954999579)

                                
       
       
Column space:
   Vector space of degree 2 and dimension 2
   Basis:
     (-0.4472135954999579, -0.8944271909999159)
     (0.0, -1.0)
Column space:
   Vector space of degree 2 and dimension 2
   Basis:
     (-0.4472135954999579, -0.8944271909999159)
     (0.0, -1.0)
       
Row space:
   Vector space of degree 3 and dimension 2
   Basis:
     (1.0, 1.118033988749895, 0.5)
     (0.0, 1.0, 2.23606797749979)
Row space:
   Vector space of degree 3 and dimension 2
   Basis:
     (1.0, 1.118033988749895, 0.5)
     (0.0, 1.0, 2.23606797749979)
       
Kernel:
   Vector space of degree 3 and dimension 1
   Basis:
     (2.0000000000000004, -2.23606797749979, 1.0)
Kernel:
   Vector space of degree 3 and dimension 1
   Basis:
     (2.0000000000000004, -2.23606797749979, 1.0)
       
0:   2.0000000000000004
1:   -2.23606797749979
2:   1.0
0:   2.0000000000000004
1:   -2.23606797749979
2:   1.0
       
       
Left kernel:
   Vector space of degree 2 and dimension 0
Left kernel:
   Vector space of degree 2 and dimension 0

 

Primjer 5.

 

       
joints:
   0:   (-2.00000000000000, 0.000000000000000, 0.000000000000000)
   1:   (0.000000000000000, 0.000000000000000, 0.000000000000000)
   2:   (2.00000000000000, 0.000000000000000, 0.000000000000000)
   3:   (0.000000000000000, -2.00000000000000, 0.000000000000000)
   4:   (0.000000000000000, 2.00000000000000, 0.000000000000000)
   5:   (0.000000000000000, 0.000000000000000, 2.00000000000000)

bars:
   0:   (0, 5)
   1:   (1, 5)
   2:   (2, 5)
   3:   (3, 5)
   4:   (4, 5)

supports: [0, 1, 2, 3, 4]

loads:
   5:   (100.000000000000, 100.000000000000, 0.000000000000000)
joints:
   0:   (-2.00000000000000, 0.000000000000000, 0.000000000000000)
   1:   (0.000000000000000, 0.000000000000000, 0.000000000000000)
   2:   (2.00000000000000, 0.000000000000000, 0.000000000000000)
   3:   (0.000000000000000, -2.00000000000000, 0.000000000000000)
   4:   (0.000000000000000, 2.00000000000000, 0.000000000000000)
   5:   (0.000000000000000, 0.000000000000000, 2.00000000000000)

bars:
   0:   (0, 5)
   1:   (1, 5)
   2:   (2, 5)
   3:   (3, 5)
   4:   (4, 5)

supports: [0, 1, 2, 3, 4]

loads:
   5:   (100.000000000000, 100.000000000000, 0.000000000000000)
       
       
[5]
[5]
       
3 * 1 - 5  ==  -2  !=  0
3 * 1 - 5  ==  -2  !=  0
       
(0.70710678118654750.00.70710678118654750.00.0100.00.00.00.00.70710678118654750.7071067811865475100.00.70710678118654751.00.70710678118654750.70710678118654750.70710678118654750.0)

                                
       
(1.00.01.00.00.0141.42135623730950.01.01.4142135623730950.01.414213562373095200.00.00.00.01.01.0141.4213562373095)

                                
       
[0, 1, 3]
[0, 1, 3]
       
[2, 4]
[2, 4]
       
0:   141.4213562373095
1:   -200.0
2:   0.0
3:   141.4213562373095
4:   0.0
0:   141.4213562373095
1:   -200.0
2:   0.0
3:   141.4213562373095
4:   0.0
       
       
(0.70710678118654750.00.70710678118654750.00.00.00.00.00.70710678118654750.70710678118654750.70710678118654751.00.70710678118654750.70710678118654750.7071067811865475)

                                
       
       
Column space:
   Vector space of degree 3 and dimension 3
   Basis:
     (-0.7071067811865475, 0.0, -0.7071067811865475)
     (0.0, 0.0, -1.0)
     (0.0, -0.7071067811865475, -0.7071067811865475)
Column space:
   Vector space of degree 3 and dimension 3
   Basis:
     (-0.7071067811865475, 0.0, -0.7071067811865475)
     (0.0, 0.0, -1.0)
     (0.0, -0.7071067811865475, -0.7071067811865475)
       
Row space:
   Vector space of degree 5 and dimension 3
   Basis:
     (1.0, -0.0, -1.0, -0.0, -0.0)
     (0.0, 1.0, 1.414213562373095, 0.7071067811865475, 0.7071067811865475)
     (0.0, 0.0, 0.0, 1.0, -1.0)
Row space:
   Vector space of degree 5 and dimension 3
   Basis:
     (1.0, -0.0, -1.0, -0.0, -0.0)
     (0.0, 1.0, 1.414213562373095, 0.7071067811865475, 0.7071067811865475)
     (0.0, 0.0, 0.0, 1.0, -1.0)
       
[              1.0               0.0              -1.0               0.0        
0.0]
[              0.0               1.0 1.414213562373095               0.0
1.414213562373095]
[              0.0               0.0               0.0               1.0        
-1.0]
[              1.0               0.0              -1.0               0.0               0.0]
[              0.0               1.0 1.414213562373095               0.0 1.414213562373095]
[              0.0               0.0               0.0               1.0              -1.0]
       
Kernel:
   Vector space of degree 5 and dimension 2
   Basis:
     (1.0, -1.414213562373095, 1.0, -0.0, 0.0)
     (0.0, -1.414213562373095, 0.0, 1.0, 1.0)
Kernel:
   Vector space of degree 5 and dimension 2
   Basis:
     (1.0, -1.414213562373095, 1.0, -0.0, 0.0)
     (0.0, -1.414213562373095, 0.0, 1.0, 1.0)
       
[2, 4]
[2, 4]
       
0:   1.0
1:   -1.414213562373095
2:   1.0
3:   -0.0
4:   0.0
0:   1.0
1:   -1.414213562373095
2:   1.0
3:   -0.0
4:   0.0
       
       
0:   0.0
1:   -1.414213562373095
2:   0.0
3:   1.0
4:   1.0
0:   0.0
1:   -1.414213562373095
2:   0.0
3:   1.0
4:   1.0
       
       
Left kernel:
   Vector space of degree 3 and dimension 0
Left kernel:
   Vector space of degree 3 and dimension 0

 

Primjer 6. — Schwedlerova „kupola” tipa 1.

 

Tvorba rječnika čvorova, rječnika štapova i liste ležajnih čvorova:

schwedler_1 (r0, [h1, h2, ...], n)

    • r0 — radijus ležajnog prstena
    • h1, h2, ... — visine na kojima su prsteni (0 < h1 < h2 < ...);  uzima se da je za ležajni prsten h0 = 0;  posljednji h je visina sferina odsječka na kojemu su čvorovi;  posljednji h mora biti r0
    • n — broj polja; n mora biti paran broj
    • rezultat: redom rječnik čvorova, rječnik štapova, lista oznaka ležajnih čvorova
       
joints:
   0:   (5.00000000000000, 0.000000000000000, 0.000000000000000)
   1:   (3.06161699786838e-16, 5.00000000000000, 0.000000000000000)
   2:   (-5.00000000000000, 6.12323399573676e-16, 0.000000000000000)
   3:   (-9.18485099360514e-16, -5.00000000000000, 0.000000000000000)
   4:   (3.33532232325453, 0.000000000000000, 3.72500000000000)
   5:   (2.04229590364918e-16, 3.33532232325453, 3.72500000000000)
   6:   (-3.33532232325453, 4.08459180729837e-16, 3.72500000000000)
   7:   (-6.12688771094755e-16, -3.33532232325453, 3.72500000000000)

bars:
   0:   (0, 4)
   1:   (1, 5)
   2:   (2, 6)
   3:   (3, 7)
   4:   (4, 5)
   5:   (5, 6)
   6:   (6, 7)
   7:   (7, 4)
   8:   (0, 5)
   9:   (2, 7)
   10:  (0, 7)
   11:  (2, 5)

supports: [0, 1, 2, 3]
joints:
   0:   (5.00000000000000, 0.000000000000000, 0.000000000000000)
   1:   (3.06161699786838e-16, 5.00000000000000, 0.000000000000000)
   2:   (-5.00000000000000, 6.12323399573676e-16, 0.000000000000000)
   3:   (-9.18485099360514e-16, -5.00000000000000, 0.000000000000000)
   4:   (3.33532232325453, 0.000000000000000, 3.72500000000000)
   5:   (2.04229590364918e-16, 3.33532232325453, 3.72500000000000)
   6:   (-3.33532232325453, 4.08459180729837e-16, 3.72500000000000)
   7:   (-6.12688771094755e-16, -3.33532232325453, 3.72500000000000)

bars:
   0:   (0, 4)
   1:   (1, 5)
   2:   (2, 6)
   3:   (3, 7)
   4:   (4, 5)
   5:   (5, 6)
   6:   (6, 7)
   7:   (7, 4)
   8:   (0, 5)
   9:   (2, 7)
   10:  (0, 7)
   11:  (2, 5)

supports: [0, 1, 2, 3]
       
       
3 * 4 - 12  ==  0
3 * 4 - 12  ==  0

Tvorba rječnika opterećenja:

make_loads (generator)

  • generator — lista uređenih trojki  (nl, j0, (Fx, Fy, Fz))  ili uređenih četvorki  (nl, j0, step, (Fx, Fy, Fz))
  • nl — broj čvorova opterećenih silom  (Fx, Fy, Fz)
  • j0 — oznaka prvoga u nizu opterećenih čvorova
  • step — opterećuju se čvorovi s oznakama  j0j0 + stepj0 + 2step, ... ,  j0 + (nl-1)steppodrazumijeva se vrijednost 1
       
4:   (0.000000000000000, 0.000000000000000, -100.000000000000)
5:   (0.000000000000000, 0.000000000000000, -100.000000000000)
6:   (0.000000000000000, 0.000000000000000, -100.000000000000)
7:   (0.000000000000000, 0.000000000000000, -100.000000000000)
4:   (0.000000000000000, 0.000000000000000, -100.000000000000)
5:   (0.000000000000000, 0.000000000000000, -100.000000000000)
6:   (0.000000000000000, 0.000000000000000, -100.000000000000)
7:   (0.000000000000000, 0.000000000000000, -100.000000000000)
       
  • plot_truss3d (joints, bars, supports, loads, load_scale)
  • load_scale — vrijednost kojom se množe vrijednosti sila za određivanje duljina strelica; podrazumijeva se vrijednost 0,01


Izračunavanje vrijednosti sila u štapovima:

       
0:   -109.53144086499151
1:   -109.53144086499151
2:   -109.53144086499151
3:   -109.53144086499151
4:   -31.60013083802923
5:   -31.60013083802923
6:   -31.600130838029237
7:   -31.600130838029237
8:   -2.5121479338940403e-15
9:   5.02429586778808e-15
10:  -2.5121479338940415e-15
11:  -5.0242958677880805e-15
0:   -109.53144086499151
1:   -109.53144086499151
2:   -109.53144086499151
3:   -109.53144086499151
4:   -31.60013083802923
5:   -31.60013083802923
6:   -31.600130838029237
7:   -31.600130838029237
8:   -2.5121479338940403e-15
9:   5.02429586778808e-15
10:  -2.5121479338940415e-15
11:  -5.0242958677880805e-15
       
0:   -109.53144086499151
1:   -109.53144086499151
2:   -109.53144086499151
3:   -109.53144086499151
4:   -31.60013083802923
5:   -31.60013083802923
6:   -31.600130838029237
7:   -31.600130838029237
8:   0.0
9:   0.0
10:  0.0
11:  0.0
0:   -109.53144086499151
1:   -109.53144086499151
2:   -109.53144086499151
3:   -109.53144086499151
4:   -31.60013083802923
5:   -31.60013083802923
6:   -31.600130838029237
7:   -31.600130838029237
8:   0.0
9:   0.0
10:  0.0
11:  0.0

 

Rješavanje u koracima:

       
[4, 5, 6, 7]
[4, 5, 6, 7]
       
(0.40800.00000.00000.00000.70710.00000.00000.70710.00000.00000.00000.00000.00000.00000.00000.00000.00000.70710.00000.00000.70710.00000.00000.00000.00000.00000.91300.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.0000100.00.00002.498×10170.00000.00000.70710.70710.00000.00000.70710.00000.00000.70710.00000.00000.40800.00000.00000.70710.70710.00000.00000.47170.00000.00000.47170.00000.00000.91300.00000.00000.00000.00000.00000.00000.52680.00000.00000.5268100.00.00000.00000.40800.00000.00000.70710.70710.00000.00000.00000.00000.00000.00000.00000.00004.997×10170.00000.00000.70710.70710.00000.00000.00000.00000.00000.00000.00000.00000.91300.00000.00000.00000.00000.00000.00000.00000.00000.0000100.00.00000.00000.00007.495×10170.00000.00000.70710.70710.00000.70710.70710.00000.00000.00000.00000.00000.40800.00000.00000.70710.70710.00000.47170.47170.00000.00000.00000.00000.00000.91300.00000.00000.00000.00000.00000.52680.52680.0000100.0)

                                
       
(0.40800.00000.00000.00000.70710.00000.00000.70710.00000.00000.00000.00000.00000.00000.00000.00000.00000.70710.00000.00000.70710.00000.00000.00000.00000.00000.91300.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.0000100.00.00000.00000.00000.00000.70710.70710.00000.00000.70710.00000.00000.70710.00000.00000.40800.00000.00000.70710.70710.00000.00000.47170.00000.00000.47170.00000.00000.91300.00000.00000.00000.00000.00000.00000.52680.00000.00000.5268100.00.00000.00000.40800.00000.00000.70710.70710.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.70710.70710.00000.00000.00000.00000.00000.00000.00000.00000.91300.00000.00000.00000.00000.00000.00000.00000.00000.0000100.00.00000.00000.00000.00000.00000.00000.70710.70710.00000.70710.70710.00000.00000.00000.00000.00000.40800.00000.00000.70710.70710.00000.47170.47170.00000.00000.00000.00000.00000.91300.00000.00000.00000.00000.00000.52680.52680.0000100.0)

                                
  •  indeksi jednadžbi ravnoteže: 

dict_equation_index (free_joints)

rezultat: rječnik parova  oznakai: indeksj

  •  oznakai — oznaka čvora i za koji su jednadžbe napisane
  •  indeksj — indeks retka matrice u kojem su koefijenti jednadžbe  Fx=0  za čvor oznakai; koeficijenti jednadžbi  Fy=0  i  Fz=0  u sljedeća su dva retka
       
4:   0
5:   3
6:   6
7:   9
4:   0
5:   3
6:   6
7:   9
  •  indeksi nepoznanica:

dict_unknown_index (bars)

rezultat: rječnik parova  oznakai: indeksj

  •  oznakai — oznaka štapa i s nepoznatom silom
  •  indeksj — indeks komponente vektora nepoznanica
       
0:   0
1:   1
2:   2
3:   3
4:   4
5:   5
6:   6
7:   7
8:   8
9:   9
10:  10
11:  11
0:   0
1:   1
2:   2
3:   3
4:   4
5:   5
6:   6
7:   7
8:   8
9:   9
10:  10
11:  11
       
       
(1.0000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.0000109.50.00001.0000.00000.00000.00000.00000.00000.00000.57700.00000.00000.5770109.50.00000.00001.0000.00000.00000.00000.00000.00000.00000.00000.00000.0000109.50.00000.00000.00001.0000.00000.00000.00000.00000.00000.57700.57700.0000109.50.00000.00000.00000.00001.0001.0000.00000.00001.0000.00000.00001.00063.200.00000.00000.00000.00000.00001.0000.00000.00000.00000.00000.00001.00031.600.00000.00000.00000.00000.00000.00001.0000.00000.00000.00000.00001.00031.600.00000.00000.00000.00000.00000.00000.00001.0001.0000.00000.00000.000031.600.00000.00000.00000.00000.00000.00000.00000.00001.0000.00000.00000.00002.512×10150.00000.00000.00000.00000.00000.00000.00000.00000.00001.0001.0001.0007.536×10150.00000.00000.00000.00000.00000.00000.00000.00000.00000.00001.0007.850×10172.512×10150.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00001.0005.024×1015)

                                
       
(1.0000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.0000109.50.00001.0000.00000.00000.00000.00000.00000.00000.57700.00000.00000.5770109.50.00000.00001.0000.00000.00000.00000.00000.00000.00000.00000.00000.0000109.50.00000.00000.00001.0000.00000.00000.00000.00000.00000.57700.57700.0000109.50.00000.00000.00000.00001.0001.0000.00000.00001.0000.00000.00001.00063.200.00000.00000.00000.00000.00001.0000.00000.00000.00000.00000.00001.00031.600.00000.00000.00000.00000.00000.00001.0000.00000.00000.00000.00001.00031.600.00000.00000.00000.00000.00000.00000.00001.0001.0000.00000.00000.000031.600.00000.00000.00000.00000.00000.00000.00000.00001.0000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00001.0001.0001.0000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00001.0000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00001.0000.0000)

                                
       
0:   -109.53144086499151
1:   -109.53144086499151
2:   -109.53144086499151
3:   -109.53144086499151
4:   -31.60013083802923
5:   -31.60013083802923
6:   -31.600130838029237
7:   -31.600130838029237
8:   -2.5121479338940403e-15
9:   5.02429586778808e-15
10:  -2.5121479338940415e-15
11:  -5.0242958677880805e-15
0:   -109.53144086499151
1:   -109.53144086499151
2:   -109.53144086499151
3:   -109.53144086499151
4:   -31.60013083802923
5:   -31.60013083802923
6:   -31.600130838029237
7:   -31.600130838029237
8:   -2.5121479338940403e-15
9:   5.02429586778808e-15
10:  -2.5121479338940415e-15
11:  -5.0242958677880805e-15
       
0:   -109.53144086499151
1:   -109.53144086499151
2:   -109.53144086499151
3:   -109.53144086499151
4:   -31.60013083802923
5:   -31.60013083802923
6:   -31.600130838029237
7:   -31.600130838029237
8:   0.0
9:   0.0
10:  0.0
11:  0.0
0:   -109.53144086499151
1:   -109.53144086499151
2:   -109.53144086499151
3:   -109.53144086499151
4:   -31.60013083802923
5:   -31.60013083802923
6:   -31.600130838029237
7:   -31.600130838029237
8:   0.0
9:   0.0
10:  0.0
11:  0.0
       

 

Potprostori ravnotežne matrice:

       
(0.40800.00000.00000.00000.70710.00000.00000.70710.00000.00000.00000.00000.00000.00000.00000.00000.70710.00000.00000.70710.00000.00000.00000.00000.91300.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00002.498×10170.00000.00000.70710.70710.00000.00000.70710.00000.00000.70710.00000.40800.00000.00000.70710.70710.00000.00000.47170.00000.00000.47170.00000.91300.00000.00000.00000.00000.00000.00000.52680.00000.00000.52680.00000.00000.40800.00000.00000.70710.70710.00000.00000.00000.00000.00000.00000.00004.997×10170.00000.00000.70710.70710.00000.00000.00000.00000.00000.00000.00000.91300.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00007.495×10170.00000.00000.70710.70710.00000.70710.70710.00000.00000.00000.00000.40800.00000.00000.70710.70710.00000.47170.47170.00000.00000.00000.00000.91300.00000.00000.00000.00000.00000.52680.52680.0000)

                                
       
       
Column space:
   Vector space of degree 12 and dimension 12
   Basis:
     (0.4080046172220934, 0.0, -0.9129798641401973, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0)
     (0.0, 0.0, 0.0, 2.4983077425918857e-17, 0.4080046172220934,
-0.9129798641401973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
     (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -0.4080046172220934, 4.9966154851837714e-17,
-0.9129798641401973, 0.0, 0.0, 0.0)
     (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -7.494923227775656e-17,
-0.4080046172220934, -0.9129798641401973)
     (-0.7071067811865476, 0.7071067811865476, 0.0, 0.7071067811865476,
-0.7071067811865476, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
     (0.0, 0.0, 0.0, -0.7071067811865476, -0.7071067811865475, 0.0,
0.7071067811865476, 0.7071067811865475, 0.0, 0.0, 0.0, 0.0)
     (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.7071067811865475, -0.7071067811865476,
0.0, -0.7071067811865475, 0.7071067811865476, 0.0)
     (-0.7071067811865475, -0.7071067811865474, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.7071067811865475, 0.7071067811865474, 0.0)
     (0.0, 0.0, 0.0, 0.7071067811865475, -0.4716858064432297,
-0.5267945519839778, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
     (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -0.7071067811865475,
0.4716858064432298, -0.526794551983978)
     (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.7071067811865476,
0.4716858064432297, -0.5267945519839778)
     (0.0, 0.0, 0.0, -0.7071067811865476, -0.47168580644322966,
-0.526794551983978, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
Column space:
   Vector space of degree 12 and dimension 12
   Basis:
     (0.4080046172220934, 0.0, -0.9129798641401973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
     (0.0, 0.0, 0.0, 2.4983077425918857e-17, 0.4080046172220934, -0.9129798641401973, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
     (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -0.4080046172220934, 4.9966154851837714e-17, -0.9129798641401973, 0.0, 0.0, 0.0)
     (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -7.494923227775656e-17, -0.4080046172220934, -0.9129798641401973)
     (-0.7071067811865476, 0.7071067811865476, 0.0, 0.7071067811865476, -0.7071067811865476, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
     (0.0, 0.0, 0.0, -0.7071067811865476, -0.7071067811865475, 0.0, 0.7071067811865476, 0.7071067811865475, 0.0, 0.0, 0.0, 0.0)
     (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.7071067811865475, -0.7071067811865476, 0.0, -0.7071067811865475, 0.7071067811865476, 0.0)
     (-0.7071067811865475, -0.7071067811865474, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.7071067811865475, 0.7071067811865474, 0.0)
     (0.0, 0.0, 0.0, 0.7071067811865475, -0.4716858064432297, -0.5267945519839778, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
     (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -0.7071067811865475, 0.4716858064432298, -0.526794551983978)
     (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.7071067811865476, 0.4716858064432297, -0.5267945519839778)
     (0.0, 0.0, 0.0, -0.7071067811865476, -0.47168580644322966, -0.526794551983978, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
       
Row space:
   Vector space of degree 12 and dimension 12
   Basis:
     (1.0, -0.0, -0.0, -0.0, -0.0, -0.0, -0.0, -0.0, -0.0, -0.0, -0.0, -0.0)
     (0.0, 1.0, -0.0, -0.0, -0.0, -0.0, -0.0, -0.0, 0.5770056631863276, -0.0,
-0.0, 0.5770056631863278)
     (0.0, 0.0, 1.0, -0.0, -0.0, -0.0, -0.0, -0.0, -0.0, -0.0, -0.0, -0.0)
     (0.0, 0.0, 0.0, 1.0, -0.0, -0.0, -0.0, -0.0, -0.0, 0.5770056631863278,
0.5770056631863276, -0.0)
     (0.0, 0.0, 0.0, 0.0, 1.0, 0.9999999999999998, -0.0, -0.0,
0.9999999999999998, -0.0, -0.0, 0.9999999999999998)
     (0.0, 0.0, 0.0, 0.0, 0.0, 1.0, -0.0, -0.0, -0.0, -0.0, -0.0, 1.0)
     (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, -0.0, -0.0, -0.0, -0.0,
0.9999999999999998)
     (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, -1.0, -0.0, -0.0, -0.0)
     (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, -0.0, -0.0, -0.0)
     (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.9999999999999997,
-0.9999999999999997)
     (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0,
7.850462293418876e-17)
     (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0)
Row space:
   Vector space of degree 12 and dimension 12
   Basis:
     (1.0, -0.0, -0.0, -0.0, -0.0, -0.0, -0.0, -0.0, -0.0, -0.0, -0.0, -0.0)
     (0.0, 1.0, -0.0, -0.0, -0.0, -0.0, -0.0, -0.0, 0.5770056631863276, -0.0, -0.0, 0.5770056631863278)
     (0.0, 0.0, 1.0, -0.0, -0.0, -0.0, -0.0, -0.0, -0.0, -0.0, -0.0, -0.0)
     (0.0, 0.0, 0.0, 1.0, -0.0, -0.0, -0.0, -0.0, -0.0, 0.5770056631863278, 0.5770056631863276, -0.0)
     (0.0, 0.0, 0.0, 0.0, 1.0, 0.9999999999999998, -0.0, -0.0, 0.9999999999999998, -0.0, -0.0, 0.9999999999999998)
     (0.0, 0.0, 0.0, 0.0, 0.0, 1.0, -0.0, -0.0, -0.0, -0.0, -0.0, 1.0)
     (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, -0.0, -0.0, -0.0, -0.0, 0.9999999999999998)
     (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, -1.0, -0.0, -0.0, -0.0)
     (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, -0.0, -0.0, -0.0)
     (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.9999999999999997, -0.9999999999999997)
     (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 7.850462293418876e-17)
     (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0)
       
Kernel:
   Vector space of degree 12 and dimension 0
Kernel:
   Vector space of degree 12 and dimension 0
       
Left kernel:
   Vector space of degree 12 and dimension 0
Left kernel:
   Vector space of degree 12 and dimension 0

 

Primjer 7. — Schwedlerova „kupola” tipa 1.

 

       
       
       
3 * 24 - 72  ==  0
3 * 24 - 72  ==  0
       
24
24
       
72 x 72 dense matrix over Real Double Field (use the '.str()' method to see the
entries)
72 x 72 dense matrix over Real Double Field (use the '.str()' method to see the entries)
       
       
Column space:
   Vector space of degree 72 and dimension 72
Column space:
   Vector space of degree 72 and dimension 72
       
Row space:
   Vector space of degree 72 and dimension 72
Row space:
   Vector space of degree 72 and dimension 72
       
Kernel:
   Vector space of degree 72 and dimension 0
Kernel:
   Vector space of degree 72 and dimension 0
       
Left kernel:
   Vector space of degree 72 and dimension 0
Left kernel:
   Vector space of degree 72 and dimension 0
       
       
       
72 x 73 dense matrix over Real Double Field (use the '.str()' method to see the
entries)
72 x 73 dense matrix over Real Double Field (use the '.str()' method to see the entries)
       
       
0:   -204.91580904761287
1:   -204.91580904761233
2:   -204.915809047613
3:   -204.91580904761224
4:   -204.91580904761292
5:   -204.91580904761236
6:   -204.91580904761287
7:   -204.91580904761256
8:   74.3059609475446
9:   74.30596094754473
10:  74.30596094754475
11:  74.30596094754468
12:  74.30596094754466
13:  74.30596094754462
14:  74.30596094754459
15:  74.30596094754458
16:  -2.344791028008332e-13
17:  -4.123438810097339e-13
18:  -3.107228441586106e-13
19:  -1.6891368726487216e-13
20:  -1.8474111129762605e-13
21:  -3.789786770149045e-13
22:  -3.484466443801332e-13
23:  -2.723070371319736e-13
24:  -164.92256296788312
25:  -164.9225629678829
26:  -164.92256296788318
27:  -164.92256296788287
28:  -164.92256296788312
29:  -164.92256296788293
30:  -164.9225629678831
31:  -164.922562967883
32:  -22.84939741307861
33:  -22.84939741307855
34:  -22.84939741307855
35:  -22.849397413078606
36:  -22.849397413078613
37:  -22.849397413078623
38:  -22.849397413078638
39:  -22.849397413078655
40:  -7.64356351572866e-14
41:  -1.623481864654965e-13
42:  -8.511261034077713e-14
43:  -3.266854609446906e-14
44:  -2.8421709430403998e-14
45:  -1.2372766761210908e-13
46:  -1.0513433228822938e-13
47:  -8.518831645185593e-14
48:  -97.75311369041621
49:  -97.75311369041613
50:  -97.75311369041621
51:  -97.7531136904161
52:  -97.75311369041621
53:  -97.75311369041616
54:  -97.7531136904162
55:  -97.75311369041619
56:  -109.7487321707687
57:  -109.74873217076869
58:  -109.74873217076869
59:  -109.74873217076872
60:  -109.74873217076869
61:  -109.74873217076869
62:  -109.7487321707687
63:  -109.7487321707687
64:  -7.675729386064e-14
65:  -9.210875263276802e-14
66:  -4.605437631638405e-14
67:  -2.5962967559471267e-14
68:  1.5351458772128003e-14
69:  -9.210875263276803e-14
70:  -6.140583508851202e-14
71:  -5.0794326301168806e-14
0:   -204.91580904761287
1:   -204.91580904761233
2:   -204.915809047613
3:   -204.91580904761224
4:   -204.91580904761292
5:   -204.91580904761236
6:   -204.91580904761287
7:   -204.91580904761256
8:   74.3059609475446
9:   74.30596094754473
10:  74.30596094754475
11:  74.30596094754468
12:  74.30596094754466
13:  74.30596094754462
14:  74.30596094754459
15:  74.30596094754458
16:  -2.344791028008332e-13
17:  -4.123438810097339e-13
18:  -3.107228441586106e-13
19:  -1.6891368726487216e-13
20:  -1.8474111129762605e-13
21:  -3.789786770149045e-13
22:  -3.484466443801332e-13
23:  -2.723070371319736e-13
24:  -164.92256296788312
25:  -164.9225629678829
26:  -164.92256296788318
27:  -164.92256296788287
28:  -164.92256296788312
29:  -164.92256296788293
30:  -164.9225629678831
31:  -164.922562967883
32:  -22.84939741307861
33:  -22.84939741307855
34:  -22.84939741307855
35:  -22.849397413078606
36:  -22.849397413078613
37:  -22.849397413078623
38:  -22.849397413078638
39:  -22.849397413078655
40:  -7.64356351572866e-14
41:  -1.623481864654965e-13
42:  -8.511261034077713e-14
43:  -3.266854609446906e-14
44:  -2.8421709430403998e-14
45:  -1.2372766761210908e-13
46:  -1.0513433228822938e-13
47:  -8.518831645185593e-14
48:  -97.75311369041621
49:  -97.75311369041613
50:  -97.75311369041621
51:  -97.7531136904161
52:  -97.75311369041621
53:  -97.75311369041616
54:  -97.7531136904162
55:  -97.75311369041619
56:  -109.7487321707687
57:  -109.74873217076869
58:  -109.74873217076869
59:  -109.74873217076872
60:  -109.74873217076869
61:  -109.74873217076869
62:  -109.7487321707687
63:  -109.7487321707687
64:  -7.675729386064e-14
65:  -9.210875263276802e-14
66:  -4.605437631638405e-14
67:  -2.5962967559471267e-14
68:  1.5351458772128003e-14
69:  -9.210875263276803e-14
70:  -6.140583508851202e-14
71:  -5.0794326301168806e-14
       
0:   -204.91580904761287
1:   -204.91580904761233
2:   -204.915809047613
3:   -204.91580904761224
4:   -204.91580904761292
5:   -204.91580904761236
6:   -204.91580904761287
7:   -204.91580904761256
8:   74.3059609475446
9:   74.30596094754473
10:  74.30596094754475
11:  74.30596094754468
12:  74.30596094754466
13:  74.30596094754462
14:  74.30596094754459
15:  74.30596094754458
16:  0.0
17:  0.0
18:  0.0
19:  0.0
20:  0.0
21:  0.0
22:  0.0
23:  0.0
24:  -164.92256296788312
25:  -164.9225629678829
26:  -164.92256296788318
27:  -164.92256296788287
28:  -164.92256296788312
29:  -164.92256296788293
30:  -164.9225629678831
31:  -164.922562967883
32:  -22.84939741307861
33:  -22.84939741307855
34:  -22.84939741307855
35:  -22.849397413078606
36:  -22.849397413078613
37:  -22.849397413078623
38:  -22.849397413078638
39:  -22.849397413078655
40:  0.0
41:  0.0
42:  0.0
43:  0.0
44:  0.0
45:  0.0
46:  0.0
47:  0.0
48:  -97.75311369041621
49:  -97.75311369041613
50:  -97.75311369041621
51:  -97.7531136904161
52:  -97.75311369041621
53:  -97.75311369041616
54:  -97.7531136904162
55:  -97.75311369041619
56:  -109.7487321707687
57:  -109.74873217076869
58:  -109.74873217076869
59:  -109.74873217076872
60:  -109.74873217076869
61:  -109.74873217076869
62:  -109.7487321707687
63:  -109.7487321707687
64:  0.0
65:  0.0
66:  0.0
67:  0.0
68:  0.0
69:  0.0
70:  0.0
71:  0.0
0:   -204.91580904761287
1:   -204.91580904761233
2:   -204.915809047613
3:   -204.91580904761224
4:   -204.91580904761292
5:   -204.91580904761236
6:   -204.91580904761287
7:   -204.91580904761256
8:   74.3059609475446
9:   74.30596094754473
10:  74.30596094754475
11:  74.30596094754468
12:  74.30596094754466
13:  74.30596094754462
14:  74.30596094754459
15:  74.30596094754458
16:  0.0
17:  0.0
18:  0.0
19:  0.0
20:  0.0
21:  0.0
22:  0.0
23:  0.0
24:  -164.92256296788312
25:  -164.9225629678829
26:  -164.92256296788318
27:  -164.92256296788287
28:  -164.92256296788312
29:  -164.92256296788293
30:  -164.9225629678831
31:  -164.922562967883
32:  -22.84939741307861
33:  -22.84939741307855
34:  -22.84939741307855
35:  -22.849397413078606
36:  -22.849397413078613
37:  -22.849397413078623
38:  -22.849397413078638
39:  -22.849397413078655
40:  0.0
41:  0.0
42:  0.0
43:  0.0
44:  0.0
45:  0.0
46:  0.0
47:  0.0
48:  -97.75311369041621
49:  -97.75311369041613
50:  -97.75311369041621
51:  -97.7531136904161
52:  -97.75311369041621
53:  -97.75311369041616
54:  -97.7531136904162
55:  -97.75311369041619
56:  -109.7487321707687
57:  -109.74873217076869
58:  -109.74873217076869
59:  -109.74873217076872
60:  -109.74873217076869
61:  -109.74873217076869
62:  -109.7487321707687
63:  -109.7487321707687
64:  0.0
65:  0.0
66:  0.0
67:  0.0
68:  0.0
69:  0.0
70:  0.0
71:  0.0
       

 

Primjer 8. — Schwedlerova „kupola” tipa 2.

 

       
       
       
       
       
3 * 27 - 81  ==  0
3 * 27 - 81  ==  0
       
27
27
       
81 x 81 dense matrix over Real Double Field (use the '.str()' method to see the
entries)
81 x 81 dense matrix over Real Double Field (use the '.str()' method to see the entries)
       
       
Column space:
   Vector space of degree 81 and dimension 81
Column space:
   Vector space of degree 81 and dimension 81
       
Row space:
   Vector space of degree 81 and dimension 81
Row space:
   Vector space of degree 81 and dimension 81
       
Kernel:
   Vector space of degree 81 and dimension 0
Kernel:
   Vector space of degree 81 and dimension 0
       
Left kernel:
   Vector space of degree 81 and dimension 0
Left kernel:
   Vector space of degree 81 and dimension 0
       
       
       
81 x 82 dense matrix over Real Double Field (use the '.str()' method to see the
entries)
81 x 82 dense matrix over Real Double Field (use the '.str()' method to see the entries)
       
       
0:   38.31709601066699
1:   -11.820854133014523
2:   148.71154384434323
3:   -478.0987061578426
4:   461.3094526157981
5:   -175.7980321365149
6:   -319.95626928659163
7:   371.00935110582776
8:   -305.6897740958585
9:   0.0
10:  -24.442817402623973
11:  209.25602071615936
12:  -370.21985726545563
13:  236.69341356679251
14:  122.76595440294201
15:  -270.02323811939914
16:  188.5775368128822
17:  -64.39599275802256
18:  150.6825660326815
19:  -20.163519154402916
20:  25.0025003629832
21:  -239.04999119562868
22:  536.0684402408183
23:  -424.63077733973887
24:  -1.8244508669559565
25:  375.85768989202825
26:  -340.13976812572355
27:  0.0
28:  0.0
29:  47.22459414143603
30:  -250.01773494571543
31:  181.27448470928414
32:  -135.12078475542737
33:  -166.6193036116831
34:  170.65837961037107
35:  -107.88696717718597
36:  0.0
37:  0.0
38:  80.68695925095594
39:  -198.60405856306593
40:  91.4545127516499
41:  55.15322303693489
42:  -128.4435257346175
43:  163.09957429928346
44:  0.0
45:  66.01561809617336
46:  0.0
47:  0.0
48:  -81.858504102034
49:  283.34622025206005
50:  -170.95080753882408
51:  -37.44470182110243
52:  186.26250576245593
53:  -211.48181761235386
54:  0.0
55:  0.0
56:  0.0
57:  -134.21901968049764
58:  -6.050451908071864
59:  0.0
60:  -91.74483208883017
61:  -16.29797221743867
62:  0.0
63:  0.0
64:  0.0
65:  0.0
66:  -205.64145509232745
67:  0.0
68:  0.0
69:  -140.5653298083926
70:  0.0
71:  0.0
72:  0.0
73:  0.0
74:  0.0
75:  0.0
76:  207.39181591315503
77:  -183.0874341335986
78:  0.0
79:  141.76178139911323
80:  -167.2532263542124
0:   38.31709601066699
1:   -11.820854133014523
2:   148.71154384434323
3:   -478.0987061578426
4:   461.3094526157981
5:   -175.7980321365149
6:   -319.95626928659163
7:   371.00935110582776
8:   -305.6897740958585
9:   0.0
10:  -24.442817402623973
11:  209.25602071615936
12:  -370.21985726545563
13:  236.69341356679251
14:  122.76595440294201
15:  -270.02323811939914
16:  188.5775368128822
17:  -64.39599275802256
18:  150.6825660326815
19:  -20.163519154402916
20:  25.0025003629832
21:  -239.04999119562868
22:  536.0684402408183
23:  -424.63077733973887
24:  -1.8244508669559565
25:  375.85768989202825
26:  -340.13976812572355
27:  0.0
28:  0.0
29:  47.22459414143603
30:  -250.01773494571543
31:  181.27448470928414
32:  -135.12078475542737
33:  -166.6193036116831
34:  170.65837961037107
35:  -107.88696717718597
36:  0.0
37:  0.0
38:  80.68695925095594
39:  -198.60405856306593
40:  91.4545127516499
41:  55.15322303693489
42:  -128.4435257346175
43:  163.09957429928346
44:  0.0
45:  66.01561809617336
46:  0.0
47:  0.0
48:  -81.858504102034
49:  283.34622025206005
50:  -170.95080753882408
51:  -37.44470182110243
52:  186.26250576245593
53:  -211.48181761235386
54:  0.0
55:  0.0
56:  0.0
57:  -134.21901968049764
58:  -6.050451908071864
59:  0.0
60:  -91.74483208883017
61:  -16.29797221743867
62:  0.0
63:  0.0
64:  0.0
65:  0.0
66:  -205.64145509232745
67:  0.0
68:  0.0
69:  -140.5653298083926
70:  0.0
71:  0.0
72:  0.0
73:  0.0
74:  0.0
75:  0.0
76:  207.39181591315503
77:  -183.0874341335986
78:  0.0
79:  141.76178139911323
80:  -167.2532263542124
       

 

Primjer 9. — Pseudo-Schwedlerova „kupola” bez dijagonalnih štapova

 

       
joints:
   0:   (10.0000000000000, 0.000000000000000, 0.000000000000000)
   1:   (6.12323399573676e-16, 10.0000000000000, 0.000000000000000)
   2:   (-10.0000000000000, 1.22464679914735e-15, 0.000000000000000)
   3:   (-1.83697019872103e-15, -10.0000000000000, 0.000000000000000)
   4:   (6.61437827766148, 0.000000000000000, 7.50000000000000)
   5:   (4.05013859304395e-16, 6.61437827766148, 7.50000000000000)
   6:   (-6.61437827766148, 8.10027718608790e-16, 7.50000000000000)
   7:   (-1.21504157791318e-15, -6.61437827766148, 7.50000000000000)

bars:
   0:   (0, 4)
   1:   (1, 5)
   2:   (2, 6)
   3:   (3, 7)
   4:   (4, 5)
   5:   (5, 6)
   6:   (6, 7)
   7:   (7, 4)

supports: [0, 1, 2, 3]
joints:
   0:   (10.0000000000000, 0.000000000000000, 0.000000000000000)
   1:   (6.12323399573676e-16, 10.0000000000000, 0.000000000000000)
   2:   (-10.0000000000000, 1.22464679914735e-15, 0.000000000000000)
   3:   (-1.83697019872103e-15, -10.0000000000000, 0.000000000000000)
   4:   (6.61437827766148, 0.000000000000000, 7.50000000000000)
   5:   (4.05013859304395e-16, 6.61437827766148, 7.50000000000000)
   6:   (-6.61437827766148, 8.10027718608790e-16, 7.50000000000000)
   7:   (-1.21504157791318e-15, -6.61437827766148, 7.50000000000000)

bars:
   0:   (0, 4)
   1:   (1, 5)
   2:   (2, 6)
   3:   (3, 7)
   4:   (4, 5)
   5:   (5, 6)
   6:   (6, 7)
   7:   (7, 4)

supports: [0, 1, 2, 3]
       
       
3 * 4 - 8  ==  4  !=  0
3 * 4 - 8  ==  4  !=  0
       
[4, 5, 6, 7]
[4, 5, 6, 7]
       
(0.41140.00000.00000.00000.70710.00000.00000.70710.00000.00000.00000.00000.70710.00000.00000.70710.91140.00000.00000.00000.00000.00000.00000.00000.00002.519×10170.00000.00000.70710.70710.00000.00000.00000.41140.00000.00000.70710.70710.00000.00000.00000.91140.00000.00000.00000.00000.00000.00000.00000.00000.41140.00000.00000.70710.70710.00000.00000.00005.039×10170.00000.00000.70710.70710.00000.00000.00000.91140.00000.00000.00000.00000.00000.00000.00000.00007.558×10170.00000.00000.70710.70710.00000.00000.00000.41140.00000.00000.70710.70710.00000.00000.00000.91140.00000.00000.00000.0000)

                                
       
(12, 8)
(12, 8)
       
4:   0
5:   3
6:   6
7:   9
4:   0
5:   3
6:   6
7:   9
       
0:   0
1:   1
2:   2
3:   3
4:   4
5:   5
6:   6
7:   7
0:   0
1:   1
2:   2
3:   3
4:   4
5:   5
6:   6
7:   7
       
       
Column space:
   Vector space of degree 12 and dimension 8
   Basis:
     (0.4114378277661477, 0.0, -0.9114378277661477, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0)
     (0.0, 0.0, 0.0, 2.5193300941097603e-17, 0.4114378277661477,
-0.9114378277661477, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
     (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -0.4114378277661477, 5.0386601882195206e-17,
-0.9114378277661477, 0.0, 0.0, 0.0)
     (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -7.557990282329279e-17,
-0.4114378277661477, -0.9114378277661477)
     (-0.7071067811865475, 0.7071067811865475, 0.0, 0.7071067811865475,
-0.7071067811865475, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
     (0.0, 0.0, 0.0, -0.7071067811865476, -0.7071067811865475, 0.0,
0.7071067811865476, 0.7071067811865475, 0.0, 0.0, 0.0, 0.0)
     (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.7071067811865474, -0.7071067811865476,
0.0, -0.7071067811865474, 0.7071067811865476, 0.0)
     (-0.7071067811865476, -0.7071067811865475, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.7071067811865476, 0.7071067811865475, 0.0)
Column space:
   Vector space of degree 12 and dimension 8
   Basis:
     (0.4114378277661477, 0.0, -0.9114378277661477, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
     (0.0, 0.0, 0.0, 2.5193300941097603e-17, 0.4114378277661477, -0.9114378277661477, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
     (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -0.4114378277661477, 5.0386601882195206e-17, -0.9114378277661477, 0.0, 0.0, 0.0)
     (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -7.557990282329279e-17, -0.4114378277661477, -0.9114378277661477)
     (-0.7071067811865475, 0.7071067811865475, 0.0, 0.7071067811865475, -0.7071067811865475, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
     (0.0, 0.0, 0.0, -0.7071067811865476, -0.7071067811865475, 0.0, 0.7071067811865476, 0.7071067811865475, 0.0, 0.0, 0.0, 0.0)
     (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.7071067811865474, -0.7071067811865476, 0.0, -0.7071067811865474, 0.7071067811865476, 0.0)
     (-0.7071067811865476, -0.7071067811865475, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.7071067811865476, 0.7071067811865475, 0.0)
       
(0.4114378277661477, 0.0, -0.9114378277661477, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0)
(0.0, 0.0, 0.0, 0.0, 0.4114378277661477, -0.9114378277661477, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0)
(0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -0.4114378277661477, 0.0, -0.9114378277661477,
0.0, 0.0, 0.0)
(0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -0.4114378277661477,
-0.9114378277661477)
(-0.7071067811865475, 0.7071067811865475, 0.0, 0.7071067811865475,
-0.7071067811865475, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
(0.0, 0.0, 0.0, -0.7071067811865476, -0.7071067811865475, 0.0,
0.7071067811865476, 0.7071067811865475, 0.0, 0.0, 0.0, 0.0)
(0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.7071067811865474, -0.7071067811865476, 0.0,
-0.7071067811865474, 0.7071067811865476, 0.0)
(-0.7071067811865476, -0.7071067811865475, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.7071067811865476, 0.7071067811865475, 0.0)
(0.4114378277661477, 0.0, -0.9114378277661477, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
(0.0, 0.0, 0.0, 0.0, 0.4114378277661477, -0.9114378277661477, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
(0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -0.4114378277661477, 0.0, -0.9114378277661477, 0.0, 0.0, 0.0)
(0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -0.4114378277661477, -0.9114378277661477)
(-0.7071067811865475, 0.7071067811865475, 0.0, 0.7071067811865475, -0.7071067811865475, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
(0.0, 0.0, 0.0, -0.7071067811865476, -0.7071067811865475, 0.0, 0.7071067811865476, 0.7071067811865475, 0.0, 0.0, 0.0, 0.0)
(0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.7071067811865474, -0.7071067811865476, 0.0, -0.7071067811865474, 0.7071067811865476, 0.0)
(-0.7071067811865476, -0.7071067811865475, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.7071067811865476, 0.7071067811865475, 0.0)
       
Row space:
   Vector space of degree 8 and dimension 8
   Basis:
     (1.0, -0.0, -0.0, -0.0, -0.0, -0.0, -0.0, -0.0)
     (0.0, 1.0, -0.0, -0.0, -0.0, -0.0, -0.0, -0.0)
     (0.0, 0.0, 1.0, -0.0, -0.0, -0.0, -0.0, -0.0)
     (0.0, 0.0, 0.0, 1.0, -0.0, -0.0, -0.0, -0.0)
     (0.0, 0.0, 0.0, 0.0, 1.0, 1.0, -0.0, -0.0)
     (0.0, 0.0, 0.0, 0.0, 0.0, 1.0, -0.0, -0.0)
     (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, -0.0)
     (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0)
Row space:
   Vector space of degree 8 and dimension 8
   Basis:
     (1.0, -0.0, -0.0, -0.0, -0.0, -0.0, -0.0, -0.0)
     (0.0, 1.0, -0.0, -0.0, -0.0, -0.0, -0.0, -0.0)
     (0.0, 0.0, 1.0, -0.0, -0.0, -0.0, -0.0, -0.0)
     (0.0, 0.0, 0.0, 1.0, -0.0, -0.0, -0.0, -0.0)
     (0.0, 0.0, 0.0, 0.0, 1.0, 1.0, -0.0, -0.0)
     (0.0, 0.0, 0.0, 0.0, 0.0, 1.0, -0.0, -0.0)
     (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, -0.0)
     (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0)
       
Kernel:
   Vector space of degree 8 and dimension 0
Kernel:
   Vector space of degree 8 and dimension 0
       
Left kernel:
   Vector space of degree 12 and dimension 4
   Basis:
     (0.0, 0.0, 0.0, 1.0, 1.0, 0.45141622964513645, 1.0, 0.9999999999999997,
-0.45141622964513645, 0.0, 0.0, 0.0)
     (1.0, 0.0, 0.4514162296451365, 1.6653345369377348e-16, -0.9999999999999998,
-0.4514162296451364, 0.0, -0.9999999999999997, -5.5282544071808195e-17, 1.0,
0.0, -8.292381610771231e-17)
     (0.9999999999999998, 0.0, 0.4514162296451364, 0.9999999999999999,
1.1102230246251565e-16, 5.551115123125783e-17, 0.0, 1.0, 5.5282544071808213e-17,
0.0, 1.0, -0.4514162296451365)
     (-0.9999999999999998, 1.0, -0.4514162296451364, -0.9999999999999999,
0.9999999999999999, 0.45141622964513645, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
Left kernel:
   Vector space of degree 12 and dimension 4
   Basis:
     (0.0, 0.0, 0.0, 1.0, 1.0, 0.45141622964513645, 1.0, 0.9999999999999997, -0.45141622964513645, 0.0, 0.0, 0.0)
     (1.0, 0.0, 0.4514162296451365, 1.6653345369377348e-16, -0.9999999999999998, -0.4514162296451364, 0.0, -0.9999999999999997, -5.5282544071808195e-17, 1.0, 0.0, -8.292381610771231e-17)
     (0.9999999999999998, 0.0, 0.4514162296451364, 0.9999999999999999, 1.1102230246251565e-16, 5.551115123125783e-17, 0.0, 1.0, 5.5282544071808213e-17, 0.0, 1.0, -0.4514162296451365)
     (-0.9999999999999998, 1.0, -0.4514162296451364, -0.9999999999999999, 0.9999999999999999, 0.45141622964513645, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
       
(0.0, 0.0, 0.0, 1.0, 1.0, 0.45141622964513645, 1.0, 0.9999999999999997,
-0.45141622964513645, 0.0, 0.0, 0.0)
(1.0, 0.0, 0.4514162296451365, 0.0, -0.9999999999999998, -0.4514162296451364,
0.0, -0.9999999999999997, 0.0, 1.0, 0.0, 0.0)
(0.9999999999999998, 0.0, 0.4514162296451364, 0.9999999999999999, 0.0, 0.0, 0.0,
1.0, 0.0, 0.0, 1.0, -0.4514162296451365)
(-0.9999999999999998, 1.0, -0.4514162296451364, -0.9999999999999999,
0.9999999999999999, 0.45141622964513645, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
(0.0, 0.0, 0.0, 1.0, 1.0, 0.45141622964513645, 1.0, 0.9999999999999997, -0.45141622964513645, 0.0, 0.0, 0.0)
(1.0, 0.0, 0.4514162296451365, 0.0, -0.9999999999999998, -0.4514162296451364, 0.0, -0.9999999999999997, 0.0, 1.0, 0.0, 0.0)
(0.9999999999999998, 0.0, 0.4514162296451364, 0.9999999999999999, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, -0.4514162296451365)
(-0.9999999999999998, 1.0, -0.4514162296451364, -0.9999999999999999, 0.9999999999999999, 0.45141622964513645, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
       
       
       
       
       
       
       
       
       
4:   (0.000000000000000, 0.000000000000000, -100.000000000000)
5:   (0.000000000000000, 0.000000000000000, -100.000000000000)
6:   (0.000000000000000, 0.000000000000000, -100.000000000000)
7:   (0.000000000000000, 0.000000000000000, -100.000000000000)
4:   (0.000000000000000, 0.000000000000000, -100.000000000000)
5:   (0.000000000000000, 0.000000000000000, -100.000000000000)
6:   (0.000000000000000, 0.000000000000000, -100.000000000000)
7:   (0.000000000000000, 0.000000000000000, -100.000000000000)
       
       
(0.0, 0.0, -100.0, 0.0, 0.0, -100.0, 0.0, 0.0, -100.0, 0.0, 0.0, -100.0)
(0.0, 0.0, -100.0, 0.0, 0.0, -100.0, 0.0, 0.0, -100.0, 0.0, 0.0, -100.0)
       
True
True
       
False
False
       
(0.41140.00000.00000.00000.70710.00000.00000.70710.00000.00000.00000.00000.00000.70710.00000.00000.70710.00000.91140.00000.00000.00000.00000.00000.00000.0000100.00.00002.519×10170.00000.00000.70710.70710.00000.00000.00000.00000.41140.00000.00000.70710.70710.00000.00000.00000.00000.91140.00000.00000.00000.00000.00000.0000100.00.00000.00000.41140.00000.00000.70710.70710.00000.00000.00000.00005.039×10170.00000.00000.70710.70710.00000.00000.00000.00000.91140.00000.00000.00000.00000.0000100.00.00000.00000.00007.558×10170.00000.00000.70710.70710.00000.00000.00000.00000.41140.00000.00000.70710.70710.00000.00000.00000.00000.91140.00000.00000.00000.0000100.0)

                                
       
(1.0000.00000.00000.00000.00000.00000.00000.0000109.70.00001.0000.00000.00000.00000.00000.00000.0000109.70.00000.00001.0000.00000.00000.00000.00000.0000109.70.00000.00000.00001.0000.00000.00000.00000.0000109.70.00000.00000.00000.00001.0001.0000.00000.000063.840.00000.00000.00000.00000.00001.0000.00000.000031.920.00000.00000.00000.00000.00000.00001.0000.000031.920.00000.00000.00000.00000.00000.00000.00001.00031.920.00000.00000.00000.00000.00000.00000.00000.00007.105×10150.00000.00000.00000.00000.00000.00000.00000.00003.553×10150.00000.00000.00000.00000.00000.00000.00000.00003.553×10150.00000.00000.00000.00000.00000.00000.00000.00003.553×1015)

                                
       
(1.0000.00000.00000.00000.00000.00000.00000.0000109.70.00001.0000.00000.00000.00000.00000.00000.0000109.70.00000.00001.0000.00000.00000.00000.00000.0000109.70.00000.00000.00001.0000.00000.00000.00000.0000109.70.00000.00000.00000.00001.0001.0000.00000.000063.840.00000.00000.00000.00000.00001.0000.00000.000031.920.00000.00000.00000.00000.00000.00001.0000.000031.920.00000.00000.00000.00000.00000.00000.00001.00031.920.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.0000)

                                
       
0:   -109.7167540709727
1:   -109.7167540709727
2:   -109.7167540709727
3:   -109.7167540709727
4:   -31.91994771197398
5:   -31.91994771197398
6:   -31.919947711973986
7:   -31.919947711973975
0:   -109.7167540709727
1:   -109.7167540709727
2:   -109.7167540709727
3:   -109.7167540709727
4:   -31.91994771197398
5:   -31.91994771197398
6:   -31.919947711973986
7:   -31.919947711973975
       
       
4:   (100.000000000000, 0.000000000000000, 0.000000000000000)
5:   (0.000000000000000, 100.000000000000, 0.000000000000000)
6:   (-100.000000000000, 0.000000000000000, 0.000000000000000)
7:   (0.000000000000000, -100.000000000000, 0.000000000000000)
4:   (100.000000000000, 0.000000000000000, 0.000000000000000)
5:   (0.000000000000000, 100.000000000000, 0.000000000000000)
6:   (-100.000000000000, 0.000000000000000, 0.000000000000000)
7:   (0.000000000000000, -100.000000000000, 0.000000000000000)
       
       
(100.0, 0.0, 0.0, 0.0, 100.0, 0.0, -100.0, 0.0, 0.0, 0.0, -100.0, 0.0)
(100.0, 0.0, 0.0, 0.0, 100.0, 0.0, -100.0, 0.0, 0.0, 0.0, -100.0, 0.0)
       
True
True
       
(0.41140.00000.00000.00000.70710.00000.00000.7071100.00.00000.00000.00000.00000.70710.00000.00000.70710.00000.91140.00000.00000.00000.00000.00000.00000.00000.00000.00002.519×10170.00000.00000.70710.70710.00000.00000.00000.00000.41140.00000.00000.70710.70710.00000.0000100.00.00000.91140.00000.00000.00000.00000.00000.00000.00000.00000.00000.41140.00000.00000.70710.70710.0000100.00.00000.00005.039×10170.00000.00000.70710.70710.00000.00000.00000.00000.91140.00000.00000.00000.00000.00000.00000.00000.00000.00007.558×10170.00000.00000.70710.70710.00000.00000.00000.00000.41140.00000.00000.70710.7071100.00.00000.00000.00000.91140.00000.00000.00000.00000.0000)

                                
       
(1.0000.00000.00000.00000.00000.00000.00000.00000.00000.00001.0000.00000.00000.00000.00000.00000.00000.00000.00000.00001.0000.00000.00000.00000.00000.00000.00000.00000.00000.00001.0000.00000.00000.00000.00000.00000.00000.00000.00000.00001.0001.0000.00000.0000141.40.00000.00000.00000.00000.00001.0000.00000.000070.710.00000.00000.00000.00000.00000.00001.0000.000070.710.00000.00000.00000.00000.00000.00000.00001.00070.710.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.0000)

                                
       
0:   0.0
1:   0.0
2:   0.0
3:   0.0
4:   70.71067811865476
5:   70.71067811865476
6:   70.71067811865474
7:   70.71067811865474
0:   0.0
1:   0.0
2:   0.0
3:   0.0
4:   70.71067811865476
5:   70.71067811865476
6:   70.71067811865474
7:   70.71067811865474
       
       
4:   (100.000000000000, 0.000000000000000, 0.000000000000000)
5:   (-100.000000000000, 0.000000000000000, 0.000000000000000)
6:   (100.000000000000, 0.000000000000000, 0.000000000000000)
7:   (-100.000000000000, 0.000000000000000, 0.000000000000000)
4:   (100.000000000000, 0.000000000000000, 0.000000000000000)
5:   (-100.000000000000, 0.000000000000000, 0.000000000000000)
6:   (100.000000000000, 0.000000000000000, 0.000000000000000)
7:   (-100.000000000000, 0.000000000000000, 0.000000000000000)
       
       
(100.0, 0.0, 0.0, -100.0, 0.0, 0.0, 100.0, 0.0, 0.0, -100.0, 0.0, 0.0)
(100.0, 0.0, 0.0, -100.0, 0.0, 0.0, 100.0, 0.0, 0.0, -100.0, 0.0, 0.0)
       
True
True
       
(0.41140.00000.00000.00000.70710.00000.00000.7071100.00.00000.00000.00000.00000.70710.00000.00000.70710.00000.91140.00000.00000.00000.00000.00000.00000.00000.00000.00002.519×10170.00000.00000.70710.70710.00000.0000100.00.00000.41140.00000.00000.70710.70710.00000.00000.00000.00000.91140.00000.00000.00000.00000.00000.00000.00000.00000.00000.41140.00000.00000.70710.70710.0000100.00.00000.00005.039×10170.00000.00000.70710.70710.00000.00000.00000.00000.91140.00000.00000.00000.00000.00000.00000.00000.00000.00007.558×10170.00000.00000.70710.7071100.00.00000.00000.00000.41140.00000.00000.70710.70710.00000.00000.00000.00000.91140.00000.00000.00000.00000.0000)

                                
       
(1.0000.00000.00000.00000.00000.00000.00000.00000.00000.00001.0000.00000.00000.00000.00000.00000.00000.00000.00000.00001.0000.00000.00000.00000.00000.00000.00000.00000.00000.00001.0000.00000.00000.00000.00000.00000.00000.00000.00000.00001.0001.0000.00000.00000.00000.00000.00000.00000.00000.00001.0000.00000.000070.710.00000.00000.00000.00000.00000.00001.0000.000070.710.00000.00000.00000.00000.00000.00000.00001.00070.710.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.0000)

                                
       
0:   0.0
1:   0.0
2:   0.0
3:   0.0
4:   70.71067811865476
5:   -70.71067811865476
6:   -70.71067811865474
7:   70.71067811865474
0:   0.0
1:   0.0
2:   0.0
3:   0.0
4:   70.71067811865476
5:   -70.71067811865476
6:   -70.71067811865474
7:   70.71067811865474
       

 

Primjer 10. — Pseudo-Schwedlerova „kupola” bez dijagonalnih štapova

 

       
       
       
3 * 27 - 54  ==  27  !=  0
3 * 27 - 54  ==  27  !=  0
       
27
27
       
81 x 54 dense matrix over Real Double Field (use the '.str()' method to see the
entries)
81 x 54 dense matrix over Real Double Field (use the '.str()' method to see the entries)
       
       
Column space:
   Vector space of degree 81 and dimension 54
Column space:
   Vector space of degree 81 and dimension 54
       
Row space:
   Vector space of degree 54 and dimension 54
Row space:
   Vector space of degree 54 and dimension 54
       
Kernel:
   Vector space of degree 54 and dimension 0
Kernel:
   Vector space of degree 54 and dimension 0
       
Left kernel:
   Vector space of degree 81 and dimension 27
Left kernel:
   Vector space of degree 81 and dimension 27
       
       
       
       
True
True
       
False
False
       
81 x 55 dense matrix over Real Double Field (use the '.str()' method to see the
entries)
81 x 55 dense matrix over Real Double Field (use the '.str()' method to see the entries)
       
54
54
       
0:   -242.79669133959382
1:   -242.79669133959385
2:   -242.79669133959368
3:   -242.79669133959396
4:   -242.79669133959396
5:   -242.79669133959396
6:   -242.79669133959376
7:   -242.79669133959396
8:   -242.79669133959396
9:   37.64244088603992
10:  37.642440886039864
11:  37.642440886039886
12:  37.64244088603995
13:  37.64244088603996
14:  37.642440886039935
15:  37.64244088603992
16:  37.64244088603993
17:  37.642440886039935
18:  -208.811957197297
19:  -208.811957197297
20:  -208.81195719729686
21:  -208.81195719729703
22:  -208.81195719729703
23:  -208.81195719729703
24:  -208.81195719729692
25:  -208.8119571972971
26:  -208.8119571972971
27:  -72.13931385770061
28:  -72.13931385770064
29:  -72.13931385770064
30:  -72.13931385770069
31:  -72.13931385770069
32:  -72.13931385770064
33:  -72.13931385770061
34:  -72.13931385770059
35:  -72.13931385770063
36:  -124.54025738583246
37:  -124.5402573858324
38:  -124.54025738583235
39:  -124.54025738583246
40:  -124.54025738583243
41:  -124.54025738583243
42:  -124.54025738583243
43:  -124.54025738583248
44:  -124.54025738583248
45:  -166.74835942081702
46:  -166.74835942081702
47:  -166.748359420817
48:  -166.74835942081702
49:  -166.74835942081702
50:  -166.748359420817
51:  -166.74835942081702
52:  -166.74835942081705
53:  -166.74835942081705
0:   -242.79669133959382
1:   -242.79669133959385
2:   -242.79669133959368
3:   -242.79669133959396
4:   -242.79669133959396
5:   -242.79669133959396
6:   -242.79669133959376
7:   -242.79669133959396
8:   -242.79669133959396
9:   37.64244088603992
10:  37.642440886039864
11:  37.642440886039886
12:  37.64244088603995
13:  37.64244088603996
14:  37.642440886039935
15:  37.64244088603992
16:  37.64244088603993
17:  37.642440886039935
18:  -208.811957197297
19:  -208.811957197297
20:  -208.81195719729686
21:  -208.81195719729703
22:  -208.81195719729703
23:  -208.81195719729703
24:  -208.81195719729692
25:  -208.8119571972971
26:  -208.8119571972971
27:  -72.13931385770061
28:  -72.13931385770064
29:  -72.13931385770064
30:  -72.13931385770069
31:  -72.13931385770069
32:  -72.13931385770064
33:  -72.13931385770061
34:  -72.13931385770059
35:  -72.13931385770063
36:  -124.54025738583246
37:  -124.5402573858324
38:  -124.54025738583235
39:  -124.54025738583246
40:  -124.54025738583243
41:  -124.54025738583243
42:  -124.54025738583243
43:  -124.54025738583248
44:  -124.54025738583248
45:  -166.74835942081702
46:  -166.74835942081702
47:  -166.748359420817
48:  -166.74835942081702
49:  -166.74835942081702
50:  -166.748359420817
51:  -166.74835942081702
52:  -166.74835942081705
53:  -166.74835942081705
       

 

Primjer 11. — Pseudo-Schwedlerova „kupola” s ukriženim dijagonalama

 

       
joints:
   0:   (10.0000000000000, 0.000000000000000, 0.000000000000000)
   1:   (6.12323399573676e-16, 10.0000000000000, 0.000000000000000)
   2:   (-10.0000000000000, 1.22464679914735e-15, 0.000000000000000)
   3:   (-1.83697019872103e-15, -10.0000000000000, 0.000000000000000)
   4:   (6.61437827766148, 0.000000000000000, 7.50000000000000)
   5:   (4.05013859304395e-16, 6.61437827766148, 7.50000000000000)
   6:   (-6.61437827766148, 8.10027718608790e-16, 7.50000000000000)
   7:   (-1.21504157791318e-15, -6.61437827766148, 7.50000000000000)

bars:
   0:   (0, 4)
   1:   (1, 5)
   2:   (2, 6)
   3:   (3, 7)
   4:   (4, 5)
   5:   (5, 6)
   6:   (6, 7)
   7:   (7, 4)
   8:   (0, 5)
   9:   (1, 6)
   10:  (2, 7)
   11:  (3, 4)
   12:  (0, 7)
   13:  (1, 4)
   14:  (2, 5)
   15:  (3, 6)

supports: [0, 1, 2, 3]
joints:
   0:   (10.0000000000000, 0.000000000000000, 0.000000000000000)
   1:   (6.12323399573676e-16, 10.0000000000000, 0.000000000000000)
   2:   (-10.0000000000000, 1.22464679914735e-15, 0.000000000000000)
   3:   (-1.83697019872103e-15, -10.0000000000000, 0.000000000000000)
   4:   (6.61437827766148, 0.000000000000000, 7.50000000000000)
   5:   (4.05013859304395e-16, 6.61437827766148, 7.50000000000000)
   6:   (-6.61437827766148, 8.10027718608790e-16, 7.50000000000000)
   7:   (-1.21504157791318e-15, -6.61437827766148, 7.50000000000000)

bars:
   0:   (0, 4)
   1:   (1, 5)
   2:   (2, 6)
   3:   (3, 7)
   4:   (4, 5)
   5:   (5, 6)
   6:   (6, 7)
   7:   (7, 4)
   8:   (0, 5)
   9:   (1, 6)
   10:  (2, 7)
   11:  (3, 4)
   12:  (0, 7)
   13:  (1, 4)
   14:  (2, 5)
   15:  (3, 6)

supports: [0, 1, 2, 3]
       
       
3 * 4 - 16  ==  -4  !=  0
3 * 4 - 16  ==  -4  !=  0
       
[4, 5, 6, 7]
[4, 5, 6, 7]
       
(0.41140.00000.00000.00000.70710.00000.00000.70710.00000.00000.00000.46770.00000.46770.00000.00000.00000.00000.00000.00000.70710.00000.00000.70710.00000.00000.00000.70710.00000.70710.00000.00000.91140.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.53030.00000.53030.00000.00000.00002.519×10170.00000.00000.70710.70710.00000.00000.70710.00000.00000.00000.00000.00000.70710.00000.00000.41140.00000.00000.70710.70710.00000.00000.46770.00000.00000.00000.00000.00000.46770.00000.00000.91140.00000.00000.00000.00000.00000.00000.53030.00000.00000.00000.00000.00000.53030.00000.00000.00000.41140.00000.00000.70710.70710.00000.00000.46770.00000.00000.00000.00000.00000.46770.00000.00005.039×10170.00000.00000.70710.70710.00000.00000.70710.00000.00000.00000.00000.00000.70710.00000.00000.91140.00000.00000.00000.00000.00000.00000.53030.00000.00000.00000.00000.00000.53030.00000.00000.00007.558×10170.00000.00000.70710.70710.00000.00000.70710.00000.70710.00000.00000.00000.00000.00000.00000.41140.00000.00000.70710.70710.00000.00000.46770.00000.46770.00000.00000.00000.00000.00000.00000.91140.00000.00000.00000.00000.00000.00000.53030.00000.53030.00000.00000.0000)

                                
       
4:   0
5:   3
6:   6
7:   9
4:   0
5:   3
6:   6
7:   9
       
(1.00.00.00.00.00.00.00.00.00.00.00.58186095610021150.00.58186095610021150.00.00.01.00.00.00.00.00.00.00.58186095610021150.00.00.00.00.00.58186095610021150.00.00.01.00.00.00.00.00.00.00.58186095610021150.00.00.00.00.00.58186095610021160.00.00.01.00.00.00.00.00.00.00.58186095610021160.00.58186095610021150.00.00.00.00.00.00.01.01.00.00.01.00.00.00.00.00.01.00.00.00.00.00.00.01.00.00.00.00.00.00.00.00.01.00.00.00.00.00.00.00.01.00.00.00.99999999999999980.00.00.00.00.99999999999999981.00.00.00.00.00.00.00.01.00.99999999999999980.00.01.00.00.99999999999999980.00.00.00.00.00.00.00.00.00.01.00.00.00.00.01.00.00.00.00.00.00.00.00.00.00.00.01.00.00.00.00.01.07.850462293418876×10170.00.00.00.00.00.00.00.00.00.01.00.99999999999999970.99999999999999970.00.01.00.00.00.00.00.00.00.00.00.00.00.01.01.00.00.07.850462293418876×1017)

                                
       
       
[12, 13, 14, 15]
[12, 13, 14, 15]
       
Column space:
   Vector space of degree 12 and dimension 12
   Basis:
     (0.4114378277661477, 0.0, -0.9114378277661477, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0)
     (0.0, 0.0, 0.0, 2.5193300941097603e-17, 0.4114378277661477,
-0.9114378277661477, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
     (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -0.4114378277661477, 5.0386601882195206e-17,
-0.9114378277661477, 0.0, 0.0, 0.0)
     (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -7.557990282329279e-17,
-0.4114378277661477, -0.9114378277661477)
     (-0.7071067811865475, 0.7071067811865475, 0.0, 0.7071067811865475,
-0.7071067811865475, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
     (0.0, 0.0, 0.0, -0.7071067811865476, -0.7071067811865475, 0.0,
0.7071067811865476, 0.7071067811865475, 0.0, 0.0, 0.0, 0.0)
     (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.7071067811865474, -0.7071067811865476,
0.0, -0.7071067811865474, 0.7071067811865476, 0.0)
     (-0.7071067811865476, -0.7071067811865475, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.7071067811865476, 0.7071067811865475, 0.0)
     (0.0, 0.0, 0.0, 0.7071067811865475, -0.46770717334674267,
-0.5303300858899106, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
     (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.4677071733467427, 0.7071067811865475,
-0.5303300858899106, 0.0, 0.0, 0.0)
     (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -0.7071067811865475,
0.4677071733467428, -0.5303300858899107)
     (-0.4677071733467428, -0.7071067811865475, -0.5303300858899106, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
Column space:
   Vector space of degree 12 and dimension 12
   Basis:
     (0.4114378277661477, 0.0, -0.9114378277661477, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
     (0.0, 0.0, 0.0, 2.5193300941097603e-17, 0.4114378277661477, -0.9114378277661477, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
     (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -0.4114378277661477, 5.0386601882195206e-17, -0.9114378277661477, 0.0, 0.0, 0.0)
     (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -7.557990282329279e-17, -0.4114378277661477, -0.9114378277661477)
     (-0.7071067811865475, 0.7071067811865475, 0.0, 0.7071067811865475, -0.7071067811865475, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
     (0.0, 0.0, 0.0, -0.7071067811865476, -0.7071067811865475, 0.0, 0.7071067811865476, 0.7071067811865475, 0.0, 0.0, 0.0, 0.0)
     (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.7071067811865474, -0.7071067811865476, 0.0, -0.7071067811865474, 0.7071067811865476, 0.0)
     (-0.7071067811865476, -0.7071067811865475, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.7071067811865476, 0.7071067811865475, 0.0)
     (0.0, 0.0, 0.0, 0.7071067811865475, -0.46770717334674267, -0.5303300858899106, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
     (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.4677071733467427, 0.7071067811865475, -0.5303300858899106, 0.0, 0.0, 0.0)
     (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -0.7071067811865475, 0.4677071733467428, -0.5303300858899107)
     (-0.4677071733467428, -0.7071067811865475, -0.5303300858899106, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
       
Row space:
   Vector space of degree 16 and dimension 12
   Basis:
     (1.0, -0.0, -0.0, -0.0, -0.0, -0.0, -0.0, -0.0, -0.0, -0.0, -0.0,
0.5818609561002115, -0.0, 0.5818609561002115, -0.0, -0.0)
     (0.0, 1.0, -0.0, -0.0, -0.0, -0.0, -0.0, -0.0, 0.5818609561002115, -0.0,
-0.0, -0.0, -0.0, -0.0, 0.5818609561002115, -0.0)
     (0.0, 0.0, 1.0, -0.0, -0.0, -0.0, -0.0, -0.0, -0.0, 0.5818609561002115,
-0.0, -0.0, -0.0, -0.0, -0.0, 0.5818609561002116)
     (0.0, 0.0, 0.0, 1.0, -0.0, -0.0, -0.0, -0.0, -0.0, -0.0,
0.5818609561002116, -0.0, 0.5818609561002115, -0.0, -0.0, -0.0)
     (0.0, 0.0, 0.0, 0.0, 1.0, 1.0, -0.0, -0.0, 1.0, -0.0, -0.0, -0.0, -0.0,
-0.0, 1.0, -0.0)
     (0.0, 0.0, 0.0, 0.0, 0.0, 1.0, -0.0, -0.0, -0.0, -0.0, -0.0, -0.0, -0.0,
-0.0, 1.0, -0.0)
     (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, -0.0, -0.0, -0.9999999999999998, -0.0,
-0.0, -0.0, -0.0, 0.9999999999999998, 1.0)
     (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, -0.9999999999999998, -0.0, -0.0,
1.0, -0.0, 0.9999999999999998, -0.0, -0.0)
     (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, -0.0, -0.0, -0.0, -0.0, -1.0,
-0.0, -0.0)
     (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0,
-1.0, 7.850462293418876e-17)
     (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0,
-0.9999999999999997, 0.9999999999999997, 0.0, 0.0, -1.0)
     (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, -1.0, -0.0,
-0.0, 7.850462293418876e-17)
Row space:
   Vector space of degree 16 and dimension 12
   Basis:
     (1.0, -0.0, -0.0, -0.0, -0.0, -0.0, -0.0, -0.0, -0.0, -0.0, -0.0, 0.5818609561002115, -0.0, 0.5818609561002115, -0.0, -0.0)
     (0.0, 1.0, -0.0, -0.0, -0.0, -0.0, -0.0, -0.0, 0.5818609561002115, -0.0, -0.0, -0.0, -0.0, -0.0, 0.5818609561002115, -0.0)
     (0.0, 0.0, 1.0, -0.0, -0.0, -0.0, -0.0, -0.0, -0.0, 0.5818609561002115, -0.0, -0.0, -0.0, -0.0, -0.0, 0.5818609561002116)
     (0.0, 0.0, 0.0, 1.0, -0.0, -0.0, -0.0, -0.0, -0.0, -0.0, 0.5818609561002116, -0.0, 0.5818609561002115, -0.0, -0.0, -0.0)
     (0.0, 0.0, 0.0, 0.0, 1.0, 1.0, -0.0, -0.0, 1.0, -0.0, -0.0, -0.0, -0.0, -0.0, 1.0, -0.0)
     (0.0, 0.0, 0.0, 0.0, 0.0, 1.0, -0.0, -0.0, -0.0, -0.0, -0.0, -0.0, -0.0, -0.0, 1.0, -0.0)
     (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, -0.0, -0.0, -0.9999999999999998, -0.0, -0.0, -0.0, -0.0, 0.9999999999999998, 1.0)
     (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, -0.9999999999999998, -0.0, -0.0, 1.0, -0.0, 0.9999999999999998, -0.0, -0.0)
     (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, -0.0, -0.0, -0.0, -0.0, -1.0, -0.0, -0.0)
     (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, -1.0, 7.850462293418876e-17)
     (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, -0.9999999999999997, 0.9999999999999997, 0.0, 0.0, -1.0)
     (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, -1.0, -0.0, -0.0, 7.850462293418876e-17)
       
Kernel:
   Vector space of degree 16 and dimension 4
   Basis:
     (-0.5818609561002115, 0.0, 0.0, -0.5818609561002115, 0.0, 0.0, 0.0, -1.0,
0.0, -0.0, 0.0, 1.0, 1.0, 0.0, 0.0, 0.0)
     (-0.5818609561002115, -0.5818609561002115, 0.0, 0.0, -1.0, 0.0, 0.0, 0.0,
1.0, -0.0, -0.0, 0.0, 0.0, 1.0, 0.0, 0.0)
     (0.0, -0.5818609561002115, -0.5818609561002115, 0.0, 0.0, -1.0, 0.0, 0.0,
0.0, 1.0, -0.0, 0.0, 0.0, 0.0, 1.0, 0.0)
     (4.567877495877366e-17, 0.0, -0.5818609561002116, -0.5818609561002115, 0.0,
0.0, -1.0, 7.850462293418876e-17, 0.0, -7.850462293418876e-17,
0.9999999999999999, -7.850462293418876e-17, 0.0, 0.0, 0.0, 1.0)
Kernel:
   Vector space of degree 16 and dimension 4
   Basis:
     (-0.5818609561002115, 0.0, 0.0, -0.5818609561002115, 0.0, 0.0, 0.0, -1.0, 0.0, -0.0, 0.0, 1.0, 1.0, 0.0, 0.0, 0.0)
     (-0.5818609561002115, -0.5818609561002115, 0.0, 0.0, -1.0, 0.0, 0.0, 0.0, 1.0, -0.0, -0.0, 0.0, 0.0, 1.0, 0.0, 0.0)
     (0.0, -0.5818609561002115, -0.5818609561002115, 0.0, 0.0, -1.0, 0.0, 0.0, 0.0, 1.0, -0.0, 0.0, 0.0, 0.0, 1.0, 0.0)
     (4.567877495877366e-17, 0.0, -0.5818609561002116, -0.5818609561002115, 0.0, 0.0, -1.0, 7.850462293418876e-17, 0.0, -7.850462293418876e-17, 0.9999999999999999, -7.850462293418876e-17, 0.0, 0.0, 0.0, 1.0)
       
Left kernel:
   Vector space of degree 12 and dimension 0
Left kernel:
   Vector space of degree 12 and dimension 0
       
0:   -0.5818609561002115
3:   -0.5818609561002115
7:   -1.0
11:  1.0
12:  1.0
0:   -0.5818609561002115
3:   -0.5818609561002115
7:   -1.0
11:  1.0
12:  1.0
       
       
0:   -0.5818609561002115
1:   -0.5818609561002115
4:   -1.0
8:   1.0
13:  1.0
0:   -0.5818609561002115
1:   -0.5818609561002115
4:   -1.0
8:   1.0
13:  1.0
       
       
1:   -0.5818609561002115
2:   -0.5818609561002115
5:   -1.0
9:   1.0
14:  1.0
1:   -0.5818609561002115
2:   -0.5818609561002115
5:   -1.0
9:   1.0
14:  1.0
       
       
2:   -0.5818609561002116
3:   -0.5818609561002115
6:   -1.0
10:  0.9999999999999999
15:  1.0
2:   -0.5818609561002116
3:   -0.5818609561002115
6:   -1.0
10:  0.9999999999999999
15:  1.0
       

 

Primjer 12. — Pseudo-Schwedlerova „kupola” s ukriženim dijagonalama

 

       
       
       
3 * 27 - 108  ==  -27  !=  0
3 * 27 - 108  ==  -27  !=  0
       
27
27
       
81 x 108 dense matrix over Real Double Field (use the '.str()' method to see the
entries)
81 x 108 dense matrix over Real Double Field (use the '.str()' method to see the entries)
       
       
       
Column space:
   Vector space of degree 81 and dimension 81
Column space:
   Vector space of degree 81 and dimension 81
       
Row space:
   Vector space of degree 108 and dimension 81
Row space:
   Vector space of degree 108 and dimension 81
       
Kernel:
   Vector space of degree 108 and dimension 27
Kernel:
   Vector space of degree 108 and dimension 27
       
0:   -0.472786879768055
8:   -0.47278687976805506
17:  -0.9776149204186074
26:  1.0
27:  1.0
0:   -0.472786879768055
8:   -0.47278687976805506
17:  -0.9776149204186074
26:  1.0
27:  1.0
       
       
0:   -0.47278687976805517
1:   -0.47278687976805517
9:   -0.9776149204186072
18:  1.0
28:  1.0
0:   -0.47278687976805517
1:   -0.47278687976805517
9:   -0.9776149204186072
18:  1.0
28:  1.0
       
       
17:  -0.6768676394036834
36:  -0.5769051689800252
44:  -0.5769051689800252
53:  -0.9856881717552798
62:  1.0
63:  1.0
17:  -0.6768676394036834
36:  -0.5769051689800252
44:  -0.5769051689800252
53:  -0.9856881717552798
62:  1.0
63:  1.0
       
       
45:  -0.5861098319452693
72:  -0.6471760666616742
73:  -0.6471760666616739
81:  -0.9915601258751666
90:  0.9999999999999999
100: 1.0
45:  -0.5861098319452693
72:  -0.6471760666616742
73:  -0.6471760666616739
81:  -0.9915601258751666
90:  0.9999999999999999
100: 1.0
       
       
Left kernel:
   Vector space of degree 81 and dimension 0
Left kernel:
   Vector space of degree 81 and dimension 0

 

Primjer 13. — Mreža kabela

 

       
       

Tvorba rječnika čvorova, rječnika štapova i liste ležajnih čvorova:

surface_net (f, lx, ly, m, n)

    • f — funkcija dviju varijabli kojom je opisana ploha na kojoj leže čvorovi mreže
    • lx, ly — duljine stranica tlocrtnoga pravokutnika nad kojim je razapeta mreža
    • m, n — broj kabela tlocrtno usporednih s osima y i x
    • rezultat: redom rječnik čvorova, rječnik štapova, lista oznaka ležajnih čvorova
       
       
       
3 * 20 - 49  ==  11  !=  0
3 * 20 - 49  ==  11  !=  0
       
[7, 8, 9, 10, 13, 14, 15, 16, 19, 20, 21, 22, 25, 26, 27, 28, 31, 32, 33, 34]
[7, 8, 9, 10, 13, 14, 15, 16, 19, 20, 21, 22, 25, 26, 27, 28, 31, 32, 33, 34]
       
60 x 49 dense matrix over Real Double Field (use the '.str()' method to see the
entries)
60 x 49 dense matrix over Real Double Field (use the '.str()' method to see the entries)
       
       
Column space:
   Vector space of degree 60 and dimension 48
Column space:
   Vector space of degree 60 and dimension 48
       
Row space:
   Vector space of degree 49 and dimension 48
Row space:
   Vector space of degree 49 and dimension 48
       
Kernel:
   Vector space of degree 49 and dimension 1
Kernel:
   Vector space of degree 49 and dimension 1
       
0:   0.9186369279044543
1:   0.7973407128633153
2:   0.7525766947068775
3:   0.7973407128633153
4:   0.9186369279044544
5:   0.9186369279044532
6:   0.7973407128633143
7:   0.7525766947068765
8:   0.7973407128633143
9:   0.9186369279044532
10:  0.9186369279044533
11:  0.7973407128633144
12:  0.7525766947068766
13:  0.7973407128633144
14:  0.9186369279044533
15:  0.9186369279044534
16:  0.7973407128633145
17:  0.7525766947068767
18:  0.7973407128633145
19:  0.9186369279044534
20:  0.9186369279044537
21:  0.7973407128633148
22:  0.7525766947068769
23:  0.7973407128633148
24:  0.9186369279044537
25:  0.9999999999999988
26:  0.849986985845191
27:  0.7640136217105626
28:  0.7640136217105626
29:  0.8499869858451911
30:  0.9999999999999989
31:  0.9999999999999997
32:  0.8499869858451917
33:  0.7640136217105632
34:  0.7640136217105632
35:  0.8499869858451917
36:  0.9999999999999996
37:  0.9999999999999979
38:  0.8499869858451902
39:  0.7640136217105618
40:  0.7640136217105618
41:  0.8499869858451902
42:  0.9999999999999978
43:  0.9999999999999999
44:  0.849986985845192
45:  0.7640136217105635
46:  0.7640136217105635
47:  0.849986985845192
48:  1.0
0:   0.9186369279044543
1:   0.7973407128633153
2:   0.7525766947068775
3:   0.7973407128633153
4:   0.9186369279044544
5:   0.9186369279044532
6:   0.7973407128633143
7:   0.7525766947068765
8:   0.7973407128633143
9:   0.9186369279044532
10:  0.9186369279044533
11:  0.7973407128633144
12:  0.7525766947068766
13:  0.7973407128633144
14:  0.9186369279044533
15:  0.9186369279044534
16:  0.7973407128633145
17:  0.7525766947068767
18:  0.7973407128633145
19:  0.9186369279044534
20:  0.9186369279044537
21:  0.7973407128633148
22:  0.7525766947068769
23:  0.7973407128633148
24:  0.9186369279044537
25:  0.9999999999999988
26:  0.849986985845191
27:  0.7640136217105626
28:  0.7640136217105626
29:  0.8499869858451911
30:  0.9999999999999989
31:  0.9999999999999997
32:  0.8499869858451917
33:  0.7640136217105632
34:  0.7640136217105632
35:  0.8499869858451917
36:  0.9999999999999996
37:  0.9999999999999979
38:  0.8499869858451902
39:  0.7640136217105618
40:  0.7640136217105618
41:  0.8499869858451902
42:  0.9999999999999978
43:  0.9999999999999999
44:  0.849986985845192
45:  0.7640136217105635
46:  0.7640136217105635
47:  0.849986985845192
48:  1.0
       
       
Left kernel:
   Vector space of degree 60 and dimension 12
Left kernel:
   Vector space of degree 60 and dimension 12
       
       
       
       
       

 

Primjer 14. — Mreža kabela

 

       
       
       
       
       
3 * 20 - 49  ==  11  !=  0
3 * 20 - 49  ==  11  !=  0
       
20
20
       
60 x 49 dense matrix over Real Double Field (use the '.str()' method to see the
entries)
60 x 49 dense matrix over Real Double Field (use the '.str()' method to see the entries)
       
       
Column space:
   Vector space of degree 60 and dimension 40
Column space:
   Vector space of degree 60 and dimension 40
       
Row space:
   Vector space of degree 49 and dimension 40
Row space:
   Vector space of degree 49 and dimension 40
       
Kernel:
   Vector space of degree 49 and dimension 9
Kernel:
   Vector space of degree 49 and dimension 9
       
0:   1.0
1:   1.0
2:   1.0
3:   1.0
4:   1.0
0:   1.0
1:   1.0
2:   1.0
3:   1.0
4:   1.0
       
       
5:   1.0
6:   1.0
7:   1.0
8:   1.0
9:   1.0
5:   1.0
6:   1.0
7:   1.0
8:   1.0
9:   1.0
       
       
43:  0.9999999999999994
44:  0.9999999999999996
45:  0.9999999999999997
46:  0.9999999999999998
47:  0.9999999999999999
48:  1.0
43:  0.9999999999999994
44:  0.9999999999999996
45:  0.9999999999999997
46:  0.9999999999999998
47:  0.9999999999999999
48:  1.0
       
       
Left kernel:
   Vector space of degree 60 and dimension 20
Left kernel:
   Vector space of degree 60 and dimension 20
       
       
       

 

Primjer 15. — Slobodni tetraedar

 

       
joints:
   0:   (0.000000000000000, 0.000000000000000, 0.000000000000000)
   1:   (2.00000000000000, 0.000000000000000, 0.000000000000000)
   2:   (0.000000000000000, 2.00000000000000, 0.000000000000000)
   3:   (0.000000000000000, 0.000000000000000, 2.00000000000000)

bars:
   0:   (0, 3)
   1:   (1, 3)
   2:   (2, 3)
   3:   (0, 1)
   4:   (1, 2)
   5:   (2, 0)
joints:
   0:   (0.000000000000000, 0.000000000000000, 0.000000000000000)
   1:   (2.00000000000000, 0.000000000000000, 0.000000000000000)
   2:   (0.000000000000000, 2.00000000000000, 0.000000000000000)
   3:   (0.000000000000000, 0.000000000000000, 2.00000000000000)

bars:
   0:   (0, 3)
   1:   (1, 3)
   2:   (2, 3)
   3:   (0, 1)
   4:   (1, 2)
   5:   (2, 0)
       
3 * 4 - 6  ==  6  !=  0
3 * 4 - 6  ==  6  !=  0
       
[0, 1, 2, 3]
[0, 1, 2, 3]
       
       
(0.00000.00000.00001.0000.00000.00000.00000.00000.00000.00000.00001.0001.0000.00000.00000.00000.00000.00000.00000.70710.00001.0000.70710.00000.00000.00000.00000.00000.70710.00000.00000.70710.00000.00000.00000.00000.00000.00000.00000.00000.70710.00000.00000.00000.70710.00000.70711.0000.00000.00000.70710.00000.00000.00000.00000.70710.00000.00000.00000.00000.00000.00000.70710.00000.00000.00001.0000.70710.70710.00000.00000.0000)

                                
       
       
Column space:
   Vector space of degree 12 and dimension 6
   Basis:
     (0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0)
     (0.0, 0.0, 0.0, -0.7071067811865475, 0.0, 0.7071067811865475, 0.0, 0.0,
0.0, 0.7071067811865475, 0.0, -0.7071067811865475)
     (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -0.7071067811865475,
0.7071067811865475, 0.0, 0.7071067811865475, -0.7071067811865475)
     (1.0, 0.0, 0.0, -1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
     (0.0, 0.0, 0.0, -0.7071067811865475, 0.7071067811865475, 0.0,
0.7071067811865475, -0.7071067811865475, 0.0, 0.0, 0.0, 0.0)
     (0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0, 0.0, 0.0, 0.0, 0.0)
Column space:
   Vector space of degree 12 and dimension 6
   Basis:
     (0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0)
     (0.0, 0.0, 0.0, -0.7071067811865475, 0.0, 0.7071067811865475, 0.0, 0.0, 0.0, 0.7071067811865475, 0.0, -0.7071067811865475)
     (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -0.7071067811865475, 0.7071067811865475, 0.0, 0.7071067811865475, -0.7071067811865475)
     (1.0, 0.0, 0.0, -1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
     (0.0, 0.0, 0.0, -0.7071067811865475, 0.7071067811865475, 0.0, 0.7071067811865475, -0.7071067811865475, 0.0, 0.0, 0.0, 0.0)
     (0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0, 0.0, 0.0, 0.0, 0.0)
       
Row space:
   Vector space of degree 6 and dimension 6
   Basis:
     (1.0, 0.0, 0.0, 0.0, 0.0, 0.0)
     (0.0, 1.0, -0.0, 1.4142135623730951, 1.0, -0.0)
     (0.0, 0.0, 1.0, -0.0, 1.0, 1.4142135623730951)
     (0.0, 0.0, 0.0, 1.0, 0.7071067811865475, -0.0)
     (0.0, 0.0, 0.0, 0.0, 1.0, 0.0)
     (0.0, 0.0, 0.0, 0.0, 0.0, 1.0)
Row space:
   Vector space of degree 6 and dimension 6
   Basis:
     (1.0, 0.0, 0.0, 0.0, 0.0, 0.0)
     (0.0, 1.0, -0.0, 1.4142135623730951, 1.0, -0.0)
     (0.0, 0.0, 1.0, -0.0, 1.0, 1.4142135623730951)
     (0.0, 0.0, 0.0, 1.0, 0.7071067811865475, -0.0)
     (0.0, 0.0, 0.0, 0.0, 1.0, 0.0)
     (0.0, 0.0, 0.0, 0.0, 0.0, 1.0)
       
Kernel:
   Vector space of degree 6 and dimension 0
Kernel:
   Vector space of degree 6 and dimension 0
       
Left kernel:
   Vector space of degree 12 and dimension 6
   Basis:
     (0.0, 0.0, 0.0, 0.0, -1.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0)
     (1.0, 0.0, 0.0, 1.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
     (0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 1.0, 0.0, 0.0, 0.0)
     (0.0, 0.0, 0.0, 0.0, 0.0, -1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0)
     (0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0)
     (0.0, -1.0, 1.0, 0.0, -1.0, 1.0, 0.0, -1.0, 0.0, 0.0, 0.0, 1.0)
Left kernel:
   Vector space of degree 12 and dimension 6
   Basis:
     (0.0, 0.0, 0.0, 0.0, -1.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0)
     (1.0, 0.0, 0.0, 1.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
     (0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 1.0, 0.0, 0.0, 0.0)
     (0.0, 0.0, 0.0, 0.0, 0.0, -1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0)
     (0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0)
     (0.0, -1.0, 1.0, 0.0, -1.0, 1.0, 0.0, -1.0, 0.0, 0.0, 0.0, 1.0)
       
       
       
       
       
       

 

Primjer 16. — „Ely”


       
joints:
   0:   (0.000000000000000, 0.000000000000000, 0.000000000000000)
   1:   (2.00000000000000, 0.000000000000000, 0.000000000000000)
   2:   (2.00000000000000, 2.00000000000000, 0.000000000000000)
   3:   (0.000000000000000, 2.00000000000000, 0.000000000000000)
   4:   (1.00000000000000, 0.000000000000000, 1.00000000000000)
   5:   (2.00000000000000, 1.00000000000000, 1.00000000000000)
   6:   (1.00000000000000, 2.00000000000000, 1.00000000000000)
   7:   (0.000000000000000, 1.00000000000000, 1.00000000000000)

bars:
   0:   (0, 4)
   1:   (1, 4)
   2:   (1, 5)
   3:   (2, 5)
   4:   (2, 6)
   5:   (3, 6)
   6:   (3, 7)
   7:   (0, 7)
   8:   (7, 4)
   9:   (4, 5)
   10:  (5, 6)
   11:  (6, 7)

supports: [0, 1, 2, 3]
joints:
   0:   (0.000000000000000, 0.000000000000000, 0.000000000000000)
   1:   (2.00000000000000, 0.000000000000000, 0.000000000000000)
   2:   (2.00000000000000, 2.00000000000000, 0.000000000000000)
   3:   (0.000000000000000, 2.00000000000000, 0.000000000000000)
   4:   (1.00000000000000, 0.000000000000000, 1.00000000000000)
   5:   (2.00000000000000, 1.00000000000000, 1.00000000000000)
   6:   (1.00000000000000, 2.00000000000000, 1.00000000000000)
   7:   (0.000000000000000, 1.00000000000000, 1.00000000000000)

bars:
   0:   (0, 4)
   1:   (1, 4)
   2:   (1, 5)
   3:   (2, 5)
   4:   (2, 6)
   5:   (3, 6)
   6:   (3, 7)
   7:   (0, 7)
   8:   (7, 4)
   9:   (4, 5)
   10:  (5, 6)
   11:  (6, 7)

supports: [0, 1, 2, 3]
       
       
3 * 4 - 12  ==  0
3 * 4 - 12  ==  0
       
[4, 5, 6, 7]
[4, 5, 6, 7]
       
(0.70710.70710.00000.00000.00000.00000.00000.00000.70710.70710.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.70710.70710.00000.00000.70710.70710.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.70710.70710.00000.00000.00000.70710.70710.00000.00000.00000.00000.00000.70710.70710.00000.00000.00000.70710.70710.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.70710.70710.00000.00000.00000.00000.70710.70710.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.70710.70710.00000.00000.00000.00000.70710.70710.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.70710.00000.00000.70710.00000.00000.00000.00000.00000.00000.70710.70710.70710.00000.00000.70710.00000.00000.00000.00000.00000.00000.70710.70710.00000.00000.00000.0000)

                                
       
       
Column space:
   Vector space of degree 12 and dimension 11
   Basis:
     (-0.7071067811865475, 0.0, -0.7071067811865475, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0)
     (0.7071067811865475, 0.0, -0.7071067811865475, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0)
     (0.0, 0.0, 0.0, 0.0, -0.7071067811865475, -0.7071067811865475, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0)
     (0.0, 0.0, 0.0, 0.0, 0.7071067811865475, -0.7071067811865475, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0)
     (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.7071067811865475, 0.0,
-0.7071067811865475, 0.0, 0.0, 0.0)
     (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -0.7071067811865475, 0.0,
-0.7071067811865475, 0.0, 0.0, 0.0)
     (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.7071067811865475,
-0.7071067811865475)
     (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -0.7071067811865475,
-0.7071067811865475)
     (-0.7071067811865475, 0.7071067811865475, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.7071067811865475, -0.7071067811865475, 0.0)
     (0.7071067811865475, 0.7071067811865475, 0.0, -0.7071067811865475,
-0.7071067811865475, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
     (0.0, 0.0, 0.0, -0.7071067811865475, 0.7071067811865475, 0.0,
0.7071067811865475, -0.7071067811865475, 0.0, 0.0, 0.0, 0.0)
Column space:
   Vector space of degree 12 and dimension 11
   Basis:
     (-0.7071067811865475, 0.0, -0.7071067811865475, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
     (0.7071067811865475, 0.0, -0.7071067811865475, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
     (0.0, 0.0, 0.0, 0.0, -0.7071067811865475, -0.7071067811865475, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
     (0.0, 0.0, 0.0, 0.0, 0.7071067811865475, -0.7071067811865475, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
     (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.7071067811865475, 0.0, -0.7071067811865475, 0.0, 0.0, 0.0)
     (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -0.7071067811865475, 0.0, -0.7071067811865475, 0.0, 0.0, 0.0)
     (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.7071067811865475, -0.7071067811865475)
     (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -0.7071067811865475, -0.7071067811865475)
     (-0.7071067811865475, 0.7071067811865475, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.7071067811865475, -0.7071067811865475, 0.0)
     (0.7071067811865475, 0.7071067811865475, 0.0, -0.7071067811865475, -0.7071067811865475, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
     (0.0, 0.0, 0.0, -0.7071067811865475, 0.7071067811865475, 0.0, 0.7071067811865475, -0.7071067811865475, 0.0, 0.0, 0.0, 0.0)
       
Row space:
   Vector space of degree 12 and dimension 11
   Basis:
     (1.0, -1.0, -0.0, -0.0, -0.0, -0.0, -0.0, -0.0, 1.0, -1.0, -0.0, -0.0)
     (0.0, 1.0, -0.0, -0.0, -0.0, -0.0, -0.0, -0.0, -0.5, 0.5, -0.0, -0.0)
     (0.0, 0.0, 1.0, -1.0, -0.0, -0.0, -0.0, -0.0, -0.0, 1.0, -1.0, -0.0)
     (0.0, 0.0, 0.0, 1.0, -0.0, -0.0, -0.0, -0.0, -0.0, -0.5, 0.5, -0.0)
     (0.0, 0.0, 0.0, 0.0, 1.0, -1.0, 0.0, 0.0, 0.0, 0.0, 1.0, -1.0)
     (0.0, 0.0, 0.0, 0.0, 0.0, 1.0, -0.0, -0.0, -0.0, -0.0, -0.5, 0.5)
     (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, -1.0, -1.0, 0.0, 0.0, 1.0)
     (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.5, -0.0, -0.0, -0.5)
     (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0)
     (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, -0.0)
     (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0)
Row space:
   Vector space of degree 12 and dimension 11
   Basis:
     (1.0, -1.0, -0.0, -0.0, -0.0, -0.0, -0.0, -0.0, 1.0, -1.0, -0.0, -0.0)
     (0.0, 1.0, -0.0, -0.0, -0.0, -0.0, -0.0, -0.0, -0.5, 0.5, -0.0, -0.0)
     (0.0, 0.0, 1.0, -1.0, -0.0, -0.0, -0.0, -0.0, -0.0, 1.0, -1.0, -0.0)
     (0.0, 0.0, 0.0, 1.0, -0.0, -0.0, -0.0, -0.0, -0.0, -0.5, 0.5, -0.0)
     (0.0, 0.0, 0.0, 0.0, 1.0, -1.0, 0.0, 0.0, 0.0, 0.0, 1.0, -1.0)
     (0.0, 0.0, 0.0, 0.0, 0.0, 1.0, -0.0, -0.0, -0.0, -0.0, -0.5, 0.5)
     (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, -1.0, -1.0, 0.0, 0.0, 1.0)
     (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.5, -0.0, -0.0, -0.5)
     (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0)
     (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, -0.0)
     (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0)
       
Kernel:
   Vector space of degree 12 and dimension 1
   Basis:
     (1.0, -1.0, -1.0, 1.0, 1.0, -1.0, -1.0, 1.0, -1.0, 1.0, -1.0, 1.0)
Kernel:
   Vector space of degree 12 and dimension 1
   Basis:
     (1.0, -1.0, -1.0, 1.0, 1.0, -1.0, -1.0, 1.0, -1.0, 1.0, -1.0, 1.0)
       
0:   1.0
1:   -1.0
2:   -1.0
3:   1.0
4:   1.0
5:   -1.0
6:   -1.0
7:   1.0
8:   -1.0
9:   1.0
10:  -1.0
11:  1.0
0:   1.0
1:   -1.0
2:   -1.0
3:   1.0
4:   1.0
5:   -1.0
6:   -1.0
7:   1.0
8:   -1.0
9:   1.0
10:  -1.0
11:  1.0
       
       
Left kernel:
   Vector space of degree 12 and dimension 1
   Basis:
     (0.0, -1.0, 0.0, -1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0)
Left kernel:
   Vector space of degree 12 and dimension 1
   Basis:
     (0.0, -1.0, 0.0, -1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0)
       

 

Primjer 17. — Nesimetrični „Ely”

 

       
joints:
   0:   (0.000000000000000, -0.250000000000000, 0.000000000000000)
   1:   (2.00000000000000, 0.000000000000000, 0.000000000000000)
   2:   (2.00000000000000, 2.00000000000000, 0.000000000000000)
   3:   (0.000000000000000, 2.00000000000000, 0.000000000000000)
   4:   (1.00000000000000, 0.000000000000000, 1.00000000000000)
   5:   (2.00000000000000, 1.00000000000000, 1.00000000000000)
   6:   (1.00000000000000, 2.00000000000000, 1.00000000000000)
   7:   (0.000000000000000, 1.00000000000000, 1.00000000000000)

bars:
   0:   (0, 4)
   1:   (1, 4)
   2:   (1, 5)
   3:   (2, 5)
   4:   (2, 6)
   5:   (3, 6)
   6:   (3, 7)
   7:   (0, 7)
   8:   (7, 4)
   9:   (4, 5)
   10:  (5, 6)
   11:  (6, 7)

supports: [0, 1, 2, 3]
joints:
   0:   (0.000000000000000, -0.250000000000000, 0.000000000000000)
   1:   (2.00000000000000, 0.000000000000000, 0.000000000000000)
   2:   (2.00000000000000, 2.00000000000000, 0.000000000000000)
   3:   (0.000000000000000, 2.00000000000000, 0.000000000000000)
   4:   (1.00000000000000, 0.000000000000000, 1.00000000000000)
   5:   (2.00000000000000, 1.00000000000000, 1.00000000000000)
   6:   (1.00000000000000, 2.00000000000000, 1.00000000000000)
   7:   (0.000000000000000, 1.00000000000000, 1.00000000000000)

bars:
   0:   (0, 4)
   1:   (1, 4)
   2:   (1, 5)
   3:   (2, 5)
   4:   (2, 6)
   5:   (3, 6)
   6:   (3, 7)
   7:   (0, 7)
   8:   (7, 4)
   9:   (4, 5)
   10:  (5, 6)
   11:  (6, 7)

supports: [0, 1, 2, 3]
       
       
[4, 5, 6, 7]
[4, 5, 6, 7]
       
(0.69630.70710.00000.00000.00000.00000.00000.00000.70710.70710.00000.00000.17410.00000.00000.00000.00000.00000.00000.00000.70710.70710.00000.00000.69630.70710.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.70710.70710.00000.00000.00000.70710.70710.00000.00000.00000.00000.00000.70710.70710.00000.00000.00000.70710.70710.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.70710.70710.00000.00000.00000.00000.70710.70710.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.70710.70710.00000.00000.00000.00000.70710.70710.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.70710.00000.00000.70710.00000.00000.00000.00000.00000.00000.70710.78090.70710.00000.00000.70710.00000.00000.00000.00000.00000.00000.70710.62470.00000.00000.00000.0000)

                                
       
       
Kernel:
   Vector space of degree 12 and dimension 0
Kernel:
   Vector space of degree 12 and dimension 0
       
Left kernel:
   Vector space of degree 12 and dimension 0
Left kernel:
   Vector space of degree 12 and dimension 0

 

Primjer 18. — Ely

 

       
joints:
   0:   (0.000000000000000, -2.00000000000000, 0.000000000000000)
   1:   (1.41421356237310, -1.41421356237310, 0.000000000000000)
   2:   (2.00000000000000, 0.000000000000000, 0.000000000000000)
   3:   (1.41421356237310, 1.41421356237310, 0.000000000000000)
   4:   (0.000000000000000, 2.00000000000000, 0.000000000000000)
   5:   (-1.41421356237310, 1.41421356237310, 0.000000000000000)
   6:   (-2.00000000000000, 0.000000000000000, 0.000000000000000)
   7:   (-1.41421356237310, -1.41421356237310, 0.000000000000000)
   8:   (sin(0.125000000000000*pi), -cos(0.125000000000000*pi),
1.41421356237310)
   9:   (sin(0.375000000000000*pi), -cos(0.375000000000000*pi),
1.41421356237310)
   10:  (sin(0.625000000000000*pi), -cos(0.625000000000000*pi),
1.41421356237310)
   11:  (sin(0.875000000000000*pi), -cos(0.875000000000000*pi),
1.41421356237310)
   12:  (sin(1.12500000000000*pi), -cos(1.12500000000000*pi), 1.41421356237310)
   13:  (sin(1.37500000000000*pi), -cos(1.37500000000000*pi), 1.41421356237310)
   14:  (sin(1.62500000000000*pi), -cos(1.62500000000000*pi), 1.41421356237310)
   15:  (sin(1.87500000000000*pi), -cos(1.87500000000000*pi), 1.41421356237310)

bars:
   0:   (0, 8)
   1:   (1, 8)
   2:   (1, 9)
   3:   (2, 9)
   4:   (2, 10)
   5:   (3, 10)
   6:   (3, 11)
   7:   (4, 11)
   8:   (4, 12)
   9:   (5, 12)
   10:  (5, 13)
   11:  (6, 13)
   12:  (6, 14)
   13:  (7, 14)
   15:  (7, 15)
   16:  (0, 15)
   17:  (15, 8)
   18:  (8, 9)
   19:  (9, 10)
   20:  (10, 11)
   21:  (11, 12)
   22:  (12, 13)
   23:  (13, 14)
   24:  (14, 15)

supports: [0, 1, 2, 3, 4, 5, 6, 7]
joints:
   0:   (0.000000000000000, -2.00000000000000, 0.000000000000000)
   1:   (1.41421356237310, -1.41421356237310, 0.000000000000000)
   2:   (2.00000000000000, 0.000000000000000, 0.000000000000000)
   3:   (1.41421356237310, 1.41421356237310, 0.000000000000000)
   4:   (0.000000000000000, 2.00000000000000, 0.000000000000000)
   5:   (-1.41421356237310, 1.41421356237310, 0.000000000000000)
   6:   (-2.00000000000000, 0.000000000000000, 0.000000000000000)
   7:   (-1.41421356237310, -1.41421356237310, 0.000000000000000)
   8:   (sin(0.125000000000000*pi), -cos(0.125000000000000*pi), 1.41421356237310)
   9:   (sin(0.375000000000000*pi), -cos(0.375000000000000*pi), 1.41421356237310)
   10:  (sin(0.625000000000000*pi), -cos(0.625000000000000*pi), 1.41421356237310)
   11:  (sin(0.875000000000000*pi), -cos(0.875000000000000*pi), 1.41421356237310)
   12:  (sin(1.12500000000000*pi), -cos(1.12500000000000*pi), 1.41421356237310)
   13:  (sin(1.37500000000000*pi), -cos(1.37500000000000*pi), 1.41421356237310)
   14:  (sin(1.62500000000000*pi), -cos(1.62500000000000*pi), 1.41421356237310)
   15:  (sin(1.87500000000000*pi), -cos(1.87500000000000*pi), 1.41421356237310)

bars:
   0:   (0, 8)
   1:   (1, 8)
   2:   (1, 9)
   3:   (2, 9)
   4:   (2, 10)
   5:   (3, 10)
   6:   (3, 11)
   7:   (4, 11)
   8:   (4, 12)
   9:   (5, 12)
   10:  (5, 13)
   11:  (6, 13)
   12:  (6, 14)
   13:  (7, 14)
   15:  (7, 15)
   16:  (0, 15)
   17:  (15, 8)
   18:  (8, 9)
   19:  (9, 10)
   20:  (10, 11)
   21:  (11, 12)
   22:  (12, 13)
   23:  (13, 14)
   24:  (14, 15)

supports: [0, 1, 2, 3, 4, 5, 6, 7]
       

 

       
3 * 8 - 24  ==  0
3 * 8 - 24  ==  0
       
[8, 9, 10, 11, 12, 13, 14, 15]
[8, 9, 10, 11, 12, 13, 14, 15]
       
24 x 24 dense matrix over Real Double Field (use the '.str()' method to see the
entries)
24 x 24 dense matrix over Real Double Field (use the '.str()' method to see the entries)
       
       
Column space:
   Vector space of degree 24 and dimension 23
Column space:
   Vector space of degree 24 and dimension 23
       
Row space:
   Vector space of degree 24 and dimension 23
Row space:
   Vector space of degree 24 and dimension 23
       
Kernel:
   Vector space of degree 24 and dimension 1
Kernel:
   Vector space of degree 24 and dimension 1
       
0:   2.1943069386526513
1:   -2.1943069386526513
2:   -2.1943069386526517
3:   2.1943069386526517
4:   2.1943069386526526
5:   -2.1943069386526526
6:   -2.194306938652653
7:   2.194306938652653
8:   2.1943069386526557
9:   -2.1943069386526557
10:  -2.194306938652659
11:  2.1943069386526592
12:  2.1943069386526624
13:  -2.194306938652662
15:  -2.1943069386526552
16:  2.1943069386526557
17:  -0.9999999999999946
18:  0.999999999999995
19:  -0.9999999999999953
20:  0.9999999999999953
21:  -0.9999999999999962
22:  0.9999999999999972
23:  -0.9999999999999994
24:  1.0
0:   2.1943069386526513
1:   -2.1943069386526513
2:   -2.1943069386526517
3:   2.1943069386526517
4:   2.1943069386526526
5:   -2.1943069386526526
6:   -2.194306938652653
7:   2.194306938652653
8:   2.1943069386526557
9:   -2.1943069386526557
10:  -2.194306938652659
11:  2.1943069386526592
12:  2.1943069386526624
13:  -2.194306938652662
15:  -2.1943069386526552
16:  2.1943069386526557
17:  -0.9999999999999946
18:  0.999999999999995
19:  -0.9999999999999953
20:  0.9999999999999953
21:  -0.9999999999999962
22:  0.9999999999999972
23:  -0.9999999999999994
24:  1.0
       
       
Left kernel:
   Vector space of degree 24 and dimension 1
Left kernel:
   Vector space of degree 24 and dimension 1