Processing math: 100%

DKiPI_2_2019_s izradom

2263 days ago by mdemsic@grad.hr

Prisilno titranje sustava s jednim stupnjem slobode

Na prikazani okvir djeluje dinamička sila p(t). Treba odrediti funkciju odziva sustava za različite vrijednosti funkcije sile p(t). Rješenja odrediti za homogene početne uvjete. Također odrediti i funkciju odziva za prigušenje 5% za funkcije pobude pod a) i d).


Zadano je:

EI=15103kNm2

L=6m

h=3m

m=3t


P0=20kN

t1=0,6s

t2=1s


Matematički model prislinog neprigušenog titranja:

m¨u(t)+ku(t)=P(t)

 

Matematički model prisilnog prigušenog titranja:

 m¨u(t)+2ζmωn˙u(t)+ku(t)=P(t)

       
       
7619.05
                                
                            

                                

Dinamičke karakteristike sustava su:

prirodna kružna frekvencija sustava: ωn=km

period slobodnog titranja: Tn=2πω

       
(400317,2120017π)
                                
                            

                                
       
(50.4,0.125)
                                
                            

                                

a) Konstantna sila P(t)=P0

                                   

       
       
       
16000021u(t)+32(t)2u(t)=20
                                
                            

                                
       
218000cos(400217t)+218000
                                
                            

                                

Vrijednost statičkog pomaka ust=P0k

       
0.00262
                                
                            

                                
       

U trenutku t1=0.6 s sila P0 prestaje djelovati, pa za t>0.6 s imamo slobodno titranje

¨u(t)+ω2nu(t)=0

       

Početne uvjete za slobodno titranje određujemo iz funkcije odziva na konstantnu silu:

ut1=u(t=0.6)

vt1=u(t=0.6)

       
(0.0016220,0.12225)
                                
                            

                                
       
21(cos(11.428571428571437)cos(11.4285714285714277)+sin(11.428571428571437)sin(11.4285714285714277)cos(11.4285714285714277))cos(400217t)8000(cos(11.4285714285714277)2+sin(11.4285714285714277)2)+21(cos(11.4285714285714277)sin(11.428571428571437)cos(11.428571428571437)sin(11.4285714285714277)+sin(11.4285714285714277))sin(400217t)8000(cos(11.4285714285714277)2+sin(11.4285714285714277)2)
                                
                            

                                
       
       
       

a1) Konstantna sila P(t)=P0 - prigušen sustav

Matematički model prislinog prigušenog titranja:

¨u(t)+2ζωn˙u(t)+ω2nu(t)=P(t)m


gdje je ζ relativno prigušenje sustava (zadano 5%).


 

       

Rješenje jednadžbe za 0<t<t1

       
       
1152000(1973sin(203193t)+399cos(203193t))e(20217t)+218000
                                
                            

                                
       
       
       
Traceback (click to the left of this block for traceback)
...
TypeError: cannot evaluate symbolic expression numerically
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
  File "_sage_input_38.py", line 10, in <module>
    exec compile(u'open("___code___.py","w").write("# -*- coding: utf-8 -*-\\n" + _support_.preparse_worksheet_cell(base64.b64decode("bnVtZXJpY2FsX2FwcHJveChzb2xfMyk="),globals())+"\\n"); execfile(os.path.abspath("___code___.py"))
  File "", line 1, in <module>
    
  File "/tmp/tmpiE9h6l/___code___.py", line 2, in <module>
    exec compile(u'numerical_approx(sol_3)
  File "", line 1, in <module>
    
  File "/opt/SageMath/local/lib/python2.7/site-packages/sage/misc/functional.py", line 1419, in numerical_approx
    return n(prec, algorithm=algorithm)
  File "sage/symbolic/expression.pyx", line 5981, in sage.symbolic.expression.Expression.numerical_approx (build/cythonized/sage/symbolic/expression.cpp:37400)
TypeError: cannot evaluate symbolic expression numerically

Rješenje jednadžbe za t>t1

       
(0.0024514,0.027393)
                                
                            

                                
       
       
78000((3197cos(4.0193)(3197cos(4.0193)e(0.57142857142857147)3e(0.57142857142857147)sin(4.0193))cos(4.0193)(3197e(0.57142857142857147)sin(4.0193)+3cos(4.0193)e(0.57142857142857147))sin(4.0193)3sin(4.0193))cos(203193t)197cos(4.0193)2e(0.57142857142857147)+197e(0.57142857142857147)sin(4.0193)2((3197e(0.57142857142857147)sin(4.0193)+3cos(4.0193)e(0.57142857142857147))cos(4.0193)3197sin(4.0193)(3197cos(4.0193)e(0.57142857142857147)3e(0.57142857142857147)sin(4.0193))sin(4.0193)3cos(4.0193))sin(203193t)197cos(4.0193)2e(0.57142857142857147)+197e(0.57142857142857147)sin(4.0193)2)e(20217t)
                                
                            

                                
       

b) Linearna sila P(t)

                                    

 

Interval 0<t<t1

       
       
16000021u(t)+32(t)2u(t)=33.3333333333333t
                                
                            

                                
       
216400007sin(400217t)+71600t
                                
                            

                                
       
216400007sin(400217t)+71600t
                                
                            

                                

Ako sila P0 djeluje statički, pomak se također linearno povećava proporcionalno sili (nema titranja), ust=P0ktt1

       
0.00437500000000000t
                                
                            

                                
       

U trenutku t1=0.6 s sila P0 prestaje djelovati, pa za t>0.6 s imamo slobodno titranje

       
16000063u(t)+2(t)2u(t)=0
                                
                            

                                

Početne uvjete za slobodno titranje određujemo iz prethodno određene funkcije:

ut1=u(t=0.6)

vt1=u(t=0.6)

       
(0.0027052,0.0027034)
                                
                            

                                
       
21(7cos(11.4285714285714277)sin(11.428571428571437)7(cos(11.428571428571437)1)sin(11.4285714285714277)80cos(11.4285714285714277))cos(400217t)640000(cos(11.4285714285714277)2+sin(11.4285714285714277)2)21(7(cos(11.428571428571437)1)cos(11.4285714285714277)+7sin(11.428571428571437)sin(11.4285714285714277)80sin(11.4285714285714277))sin(400217t)640000(cos(11.4285714285714277)2+sin(11.4285714285714277)2)
                                
                            

                                
       
       

b) Linearna+konstantna sila P(t)

                                    

Interval 0<t<t1 : rješenje je ranije određeno sol_5

Interval t1<t<t2

       
(0.00271,0.00270)
                                
                            

                                
       
16000063u(t)+2(t)2u(t)=(203)
                                
                            

                                
       
21(7cos(11.4285714285714277)sin(11.428571428571437)7(cos(11.428571428571437)1)sin(11.4285714285714277))cos(400217t)640000(cos(11.4285714285714277)2+sin(11.4285714285714277)2)21(7(cos(11.428571428571437)1)cos(11.4285714285714277)+7sin(11.428571428571437)sin(11.4285714285714277))sin(400217t)640000(cos(11.4285714285714277)2+sin(11.4285714285714277)2)+218000
                                
                            

                                
       
       

c) harmonijska pobuda P(t)=P0sin(ωt)

Diferencijalna jednadžba:

m¨u(t)+ku(t)=P0sin(ωt)

c1) Reznancija ω=ωn

       
       
16000021u(t)+32(t)2u(t)=20sin(133.33333333333317t)
                                
                            

                                
       
1407tcos(400217t)+2116000sin(400217t)
                                
                            

                                
       

c2) Pulsiranje (eng. bating) ωωn

Zadajemo npr. ω=0.95ωn

       
       
16000021u(t)+32(t)2u(t)=20sin(126.66666666666717t)
                                
                            

                                
       
1335200sin(400217t)+7260sin(380217t)
                                
                            

                                
       

c3) Prigušeno titranje

Diferencijalna jednadžba je:

m¨u(t)+c˙u(t)+ku(t)=P0sin(ωt)

 

¨u(t)+2ζωn˙u(t)+ω2nu(t)=P0msin(ωt)

Rezonancija ω=ωn

       
       
13.333333333333317tu(t)+16000063u(t)+2(t)2u(t)=203sin(133.33333333333317t)
                                
                            

                                
       
115200(1973sin(203193t)+399cos(203193t))e(20217t)21800cos(400217t)