Prisilno titranje sustava s jednim stupnjem slobode
Na prikazani okvir djeluje dinamička sila p(t). Treba odrediti funkciju odziva sustava za različite vrijednosti funkcije sile p(t). Rješenja odrediti za homogene početne uvjete. Također odrediti i funkciju odziva za prigušenje 5% za funkcije pobude pod a) i d).
Zadano je:
EI=15⋅103kNm2
L=6m
h=3m
m=3t
P0=20kN
t1=0,6s
t2=1s
Matematički model prislinog neprigušenog titranja:
m¨u(t)+ku(t)=P(t)
Matematički model prisilnog prigušenog titranja:
m¨u(t)+2ζmωn˙u(t)+ku(t)=P(t)
|
7619.05
|
Dinamičke karakteristike sustava su:
prirodna kružna frekvencija sustava: ωn=√km
period slobodnog titranja: Tn=2πω
(4003√17,21200√17π)
|
(50.4,0.125)
|
a) Konstantna sila P(t)=P0
|
|
16000021u(t)+3∂2(∂t)2u(t)=20
|
−218000cos(40021√7t)+218000
|
Vrijednost statičkog pomaka ust=P0k
0.00262
|
![]() |
U trenutku t1=0.6 s sila P0 prestaje djelovati, pa za t>0.6 s imamo slobodno titranje
¨u(t)+ω2nu(t)=0
|
Početne uvjete za slobodno titranje određujemo iz funkcije odziva na konstantnu silu:
ut1=u(t=0.6)
vt1=u′(t=0.6)
(0.0016220,−0.12225)
|
−21(cos(11.42857142857143√7)cos(11.428571428571427√7)+sin(11.42857142857143√7)sin(11.428571428571427√7)−cos(11.428571428571427√7))cos(40021√7t)8000(cos(11.428571428571427√7)2+sin(11.428571428571427√7)2)+21(cos(11.428571428571427√7)sin(11.42857142857143√7)−cos(11.42857142857143√7)sin(11.428571428571427√7)+sin(11.428571428571427√7))sin(40021√7t)8000(cos(11.428571428571427√7)2+sin(11.428571428571427√7)2)
|
![]() |
![]() |
|
a1) Konstantna sila P(t)=P0 - prigušen sustav
Matematički model prislinog prigušenog titranja:
¨u(t)+2ζωn˙u(t)+ω2nu(t)=P(t)m
gdje je ζ relativno prigušenje sustava (zadano 5%).
|
Rješenje jednadžbe za 0<t<t1
|
−1152000(√19√7√3sin(203√19√3t)+399cos(203√19√3t))e(−2021√7t)+218000
|
|
![]() |
Traceback (click to the left of this block for traceback) ... TypeError: cannot evaluate symbolic expression numerically Traceback (most recent call last): File "<stdin>", line 1, in <module> File "_sage_input_38.py", line 10, in <module> exec compile(u'open("___code___.py","w").write("# -*- coding: utf-8 -*-\\n" + _support_.preparse_worksheet_cell(base64.b64decode("bnVtZXJpY2FsX2FwcHJveChzb2xfMyk="),globals())+"\\n"); execfile(os.path.abspath("___code___.py")) File "", line 1, in <module> File "/tmp/tmpiE9h6l/___code___.py", line 2, in <module> exec compile(u'numerical_approx(sol_3) File "", line 1, in <module> File "/opt/SageMath/local/lib/python2.7/site-packages/sage/misc/functional.py", line 1419, in numerical_approx return n(prec, algorithm=algorithm) File "sage/symbolic/expression.pyx", line 5981, in sage.symbolic.expression.Expression.numerical_approx (build/cythonized/sage/symbolic/expression.cpp:37400) TypeError: cannot evaluate symbolic expression numerically |
Rješenje jednadžbe za t>t1
(0.0024514,−0.027393)
|
|
78000((3√19√7cos(4.0√19√3)−(3√19√7cos(4.0√19√3)e(−0.5714285714285714√7)−√3e(−0.5714285714285714√7)sin(4.0√19√3))cos(4.0√19√3)−(3√19√7e(−0.5714285714285714√7)sin(4.0√19√3)+√3cos(4.0√19√3)e(−0.5714285714285714√7))sin(4.0√19√3)−√3sin(4.0√19√3))cos(203√19√3t)√19√7cos(4.0√19√3)2e(−0.5714285714285714√7)+√19√7e(−0.5714285714285714√7)sin(4.0√19√3)2−((3√19√7e(−0.5714285714285714√7)sin(4.0√19√3)+√3cos(4.0√19√3)e(−0.5714285714285714√7))cos(4.0√19√3)−3√19√7sin(4.0√19√3)−(3√19√7cos(4.0√19√3)e(−0.5714285714285714√7)−√3e(−0.5714285714285714√7)sin(4.0√19√3))sin(4.0√19√3)−√3cos(4.0√19√3))sin(203√19√3t)√19√7cos(4.0√19√3)2e(−0.5714285714285714√7)+√19√7e(−0.5714285714285714√7)sin(4.0√19√3)2)e(−2021√7t)
|
![]() |
b) Linearna sila P(t)
Interval 0<t<t1
|
16000021u(t)+3∂2(∂t)2u(t)=33.3333333333333t
|
−21640000√7sin(40021√7t)+71600t
|
−21640000√7sin(40021√7t)+71600t
|
Ako sila P0 djeluje statički, pomak se također linearno povećava proporcionalno sili (nema titranja), ust=P0ktt1
0.00437500000000000t
|
![]() |
U trenutku t1=0.6 s sila P0 prestaje djelovati, pa za t>0.6 s imamo slobodno titranje
16000063u(t)+∂2(∂t)2u(t)=0
|
Početne uvjete za slobodno titranje određujemo iz prethodno određene funkcije:
ut1=u(t=0.6)
vt1=u′(t=0.6)
(0.0027052,0.0027034)
|
−21(√7cos(11.428571428571427√7)sin(11.42857142857143√7)−√7(cos(11.42857142857143√7)−1)sin(11.428571428571427√7)−80cos(11.428571428571427√7))cos(40021√7t)640000(cos(11.428571428571427√7)2+sin(11.428571428571427√7)2)−21(√7(cos(11.42857142857143√7)−1)cos(11.428571428571427√7)+√7sin(11.42857142857143√7)sin(11.428571428571427√7)−80sin(11.428571428571427√7))sin(40021√7t)640000(cos(11.428571428571427√7)2+sin(11.428571428571427√7)2)
|
![]() |
![]() |
b) Linearna+konstantna sila P(t)
Interval 0<t<t1 : rješenje je ranije određeno sol_5
Interval t1<t<t2
(0.00271,0.00270)
|
16000063u(t)+∂2(∂t)2u(t)=(203)
|
−21(√7cos(11.428571428571427√7)sin(11.42857142857143√7)−√7(cos(11.42857142857143√7)−1)sin(11.428571428571427√7))cos(40021√7t)640000(cos(11.428571428571427√7)2+sin(11.428571428571427√7)2)−21(√7(cos(11.42857142857143√7)−1)cos(11.428571428571427√7)+√7sin(11.42857142857143√7)sin(11.428571428571427√7))sin(40021√7t)640000(cos(11.428571428571427√7)2+sin(11.428571428571427√7)2)+218000
|
|
![]() |
c) harmonijska pobuda P(t)=P0sin(ωt)
Diferencijalna jednadžba:
m¨u(t)+ku(t)=P0sin(ωt)
c1) Reznancija ω=ωn
|
16000021u(t)+3∂2(∂t)2u(t)=20sin(133.333333333333√17t)
|
−140√7tcos(40021√7t)+2116000sin(40021√7t)
|
![]() |
c2) Pulsiranje (eng. bating) ω≈ωn
Zadajemo npr. ω=0.95ωn
|
16000021u(t)+3∂2(∂t)2u(t)=20sin(126.666666666667√17t)
|
−1335200sin(40021√7t)+7260sin(38021√7t)
|
![]() |
c3) Prigušeno titranje
Diferencijalna jednadžba je:
m¨u(t)+c˙u(t)+ku(t)=P0sin(ωt)
¨u(t)+2ζωn˙u(t)+ω2nu(t)=P0msin(ωt)
Rezonancija ω=ωn
|
13.3333333333333√17∂∂tu(t)+16000063u(t)+∂2(∂t)2u(t)=203sin(133.333333333333√17t)
|
115200(√19√7√3sin(203√19√3t)+399cos(203√19√3t))e(−2021√7t)−21800cos(40021√7t)
|
![]() |
|