Trivial valuations¶
AUTHORS:
- Julian Rüth (2016-10-14): initial version
EXAMPLES:
sage: v = valuations.TrivialValuation(QQ); v
Trivial valuation on Rational Field
sage: v(1)
0
-
class
sage.rings.valuation.trivial_valuation.
TrivialDiscretePseudoValuation
(parent)¶ Bases:
sage.rings.valuation.trivial_valuation.TrivialDiscretePseudoValuation_base
,sage.rings.valuation.valuation.InfiniteDiscretePseudoValuation
The trivial pseudo-valuation that is \(\infty\) everywhere.
EXAMPLES:
sage: v = valuations.TrivialPseudoValuation(QQ); v Trivial pseudo-valuation on Rational Field
-
lift
(X)¶ Return a lift of
X
to the domain of this valuation.EXAMPLES:
sage: v = valuations.TrivialPseudoValuation(QQ) sage: v.lift(v.residue_ring().zero()) 0
-
reduce
(x)¶ Reduce
x
modulo the positive elements of this valuation.EXAMPLES:
sage: v = valuations.TrivialPseudoValuation(QQ) sage: v.reduce(1) 0
-
residue_ring
()¶ Return the residue ring of this valuation.
EXAMPLES:
sage: valuations.TrivialPseudoValuation(QQ).residue_ring() Quotient of Rational Field by the ideal (1)
-
value_group
()¶ Return the value group of this valuation.
EXAMPLES:
A trivial discrete pseudo-valuation has no value group:
sage: v = valuations.TrivialPseudoValuation(QQ) sage: v.value_group() Traceback (most recent call last): ... ValueError: The trivial pseudo-valuation that is infinity everywhere does not have a value group.
-
-
class
sage.rings.valuation.trivial_valuation.
TrivialDiscretePseudoValuation_base
(parent)¶ Bases:
sage.rings.valuation.valuation.DiscretePseudoValuation
Base class for code shared by trivial valuations.
EXAMPLES:
sage: v = valuations.TrivialPseudoValuation(ZZ); v Trivial pseudo-valuation on Integer Ring
-
is_negative_pseudo_valuation
()¶ Return whether this valuation attains the value \(-\infty\).
EXAMPLES:
sage: v = valuations.TrivialPseudoValuation(QQ) sage: v.is_negative_pseudo_valuation() False
-
is_trivial
()¶ Return whether this valuation is trivial.
EXAMPLES:
sage: v = valuations.TrivialPseudoValuation(QQ) sage: v.is_trivial() True
-
uniformizer
()¶ Return a uniformizing element for this valuation.
EXAMPLES:
sage: v = valuations.TrivialPseudoValuation(ZZ) sage: v.uniformizer() Traceback (most recent call last): ... ValueError: Trivial valuations do not define a uniformizing element
-
-
class
sage.rings.valuation.trivial_valuation.
TrivialDiscreteValuation
(parent)¶ Bases:
sage.rings.valuation.trivial_valuation.TrivialDiscretePseudoValuation_base
,sage.rings.valuation.valuation.DiscreteValuation
The trivial valuation that is zero on non-zero elements.
EXAMPLES:
sage: v = valuations.TrivialValuation(QQ); v Trivial valuation on Rational Field
-
extensions
(ring)¶ Return the unique extension of this valuation to
ring
.EXAMPLES:
sage: v = valuations.TrivialValuation(ZZ) sage: v.extensions(QQ) [Trivial valuation on Rational Field]
-
lift
(X)¶ Return a lift of
X
to the domain of this valuation.EXAMPLES:
sage: v = valuations.TrivialValuation(QQ) sage: v.lift(v.residue_ring().zero()) 0
-
reduce
(x)¶ Reduce
x
modulo the positive elements of this valuation.EXAMPLES:
sage: v = valuations.TrivialValuation(QQ) sage: v.reduce(1) 1
-
residue_ring
()¶ Return the residue ring of this valuation.
EXAMPLES:
sage: valuations.TrivialValuation(QQ).residue_ring() Rational Field
-
value_group
()¶ Return the value group of this valuation.
EXAMPLES:
A trivial discrete valuation has a trivial value group:
sage: v = valuations.TrivialValuation(QQ) sage: v.value_group() Trivial Additive Abelian Group
-
-
class
sage.rings.valuation.trivial_valuation.
TrivialValuationFactory
(clazz, parent, *args, **kwargs)¶ Bases:
sage.structure.factory.UniqueFactory
Create a trivial valuation on
domain
.EXAMPLES:
sage: v = valuations.TrivialValuation(QQ); v Trivial valuation on Rational Field sage: v(1) 0
-
create_key
(domain)¶ Create a key that identifies this valuation.
EXAMPLES:
sage: valuations.TrivialValuation(QQ) is valuations.TrivialValuation(QQ) # indirect doctest True
-
create_object
(version, key, **extra_args)¶ Create a trivial valuation from
key
.EXAMPLES:
sage: valuations.TrivialValuation(QQ) # indirect doctest Trivial valuation on Rational Field
-