The Spec functor¶
AUTHORS:
- William Stein (2006): initial implementation
- Peter Bruin (2014): rewrite Spec as a functor
-
sage.schemes.generic.spec.
Spec
(R, S=None)¶ Apply the Spec functor to \(R\).
INPUT:
R
– either a commutative ring or a ring homomorphismS
– a commutative ring (optional), the base ring
OUTPUT:
AffineScheme
– the affine scheme \(\mathrm{Spec}(R)\)
EXAMPLES:
sage: Spec(QQ) Spectrum of Rational Field sage: Spec(PolynomialRing(QQ, 'x')) Spectrum of Univariate Polynomial Ring in x over Rational Field sage: Spec(PolynomialRing(QQ, 'x', 3)) Spectrum of Multivariate Polynomial Ring in x0, x1, x2 over Rational Field sage: X = Spec(PolynomialRing(GF(49,'a'), 3, 'x')); X Spectrum of Multivariate Polynomial Ring in x0, x1, x2 over Finite Field in a of size 7^2 sage: TestSuite(X).run()
Applying
Spec
twice to the same ring gives identical output (see trac ticket #17008):sage: A = Spec(ZZ); B = Spec(ZZ) sage: A is B True
A
TypeError
is raised if the input is not a commutative ring:sage: Spec(5) Traceback (most recent call last): ... TypeError: x (=5) is not in Category of commutative rings sage: Spec(FreeAlgebra(QQ,2, 'x')) Traceback (most recent call last): ... TypeError: x (=Free Algebra on 2 generators (x0, x1) over Rational Field) is not in Category of commutative rings
-
class
sage.schemes.generic.spec.
SpecFunctor
(base_ring=None)¶ Bases:
sage.categories.functor.Functor
,sage.structure.unique_representation.UniqueRepresentation
The Spec functor.