Points on schemes¶
-
class
sage.schemes.generic.point.
SchemePoint
(S, parent=None)¶ Bases:
sage.structure.element.Element
Base class for points on a scheme, either topological or defined by a morphism.
-
scheme
()¶ Return the scheme on which self is a point.
EXAMPLES:
sage: from sage.schemes.generic.point import SchemePoint sage: S = Spec(ZZ) sage: P = SchemePoint(S) sage: P.scheme() Spectrum of Integer Ring
-
-
class
sage.schemes.generic.point.
SchemeRationalPoint
(f)¶ Bases:
sage.schemes.generic.point.SchemePoint
INPUT:
f
- a morphism of schemes
-
morphism
()¶
-
class
sage.schemes.generic.point.
SchemeTopologicalPoint
(S)¶ Bases:
sage.schemes.generic.point.SchemePoint
Base class for topological points on schemes.
-
class
sage.schemes.generic.point.
SchemeTopologicalPoint_affine_open
(u, x)¶ Bases:
sage.schemes.generic.point.SchemeTopologicalPoint
INPUT:
u
– morphism with domain an affine scheme \(U\)x
– topological point on \(U\)
-
affine_open
()¶ Return the affine open subset U.
-
embedding_of_affine_open
()¶ Return the embedding from the affine open subset U into this scheme.
-
point_on_affine
()¶ Return the scheme point on the affine open U.
-
class
sage.schemes.generic.point.
SchemeTopologicalPoint_prime_ideal
(S, P, check=False)¶ Bases:
sage.schemes.generic.point.SchemeTopologicalPoint
INPUT:
S
– an affine schemeP
– a prime ideal of the coordinate ring of \(S\), or anything that can be converted into such an ideal
-
prime_ideal
()¶ Return the prime ideal that defines this scheme point.
EXAMPLES:
sage: from sage.schemes.generic.point import SchemeTopologicalPoint_prime_ideal sage: P2.<x, y, z> = ProjectiveSpace(2, QQ) sage: pt = SchemeTopologicalPoint_prime_ideal(P2, y*z-x^2) sage: pt.prime_ideal() Ideal (-x^2 + y*z) of Multivariate Polynomial Ring in x, y, z over Rational Field
-
sage.schemes.generic.point.
is_SchemeRationalPoint
(x)¶
-
sage.schemes.generic.point.
is_SchemeTopologicalPoint
(x)¶