Sat === Sage supports solving clauses in Conjunctive Normal Form (see :wikipedia:`Conjunctive_normal_form`), i.e., SAT solving, via an interface inspired by the usual DIMACS format used in SAT solving [SG09]_. For example, to express that:: x1 OR x2 OR (NOT x3) should be true, we write:: (1, 2, -3) .. WARNING:: Variable indices **must** start at one. Solvers ------- By default, Sage solves SAT instances as an Integer Linear Program (see :mod:`sage.numerical.mip`), but any SAT solver supporting the DIMACS input format is easily interfaced using the :class:`sage.sat.solvers.dimacs.DIMACS` blueprint. Sage ships with pre-written interfaces for *RSat* [RS]_ and *Glucose* [GL]_. Furthermore, Sage provides an interface to the *CryptoMiniSat* [CMS]_ SAT solver which can be used interchangably with DIMACS-based solvers. For this last solver, the optional CryptoMiniSat package must be installed, this can be accomplished by typing the following in the shell:: sage -i cryptominisat sagelib We now show how to solve a simple SAT problem. :: (x1 OR x2 OR x3) AND (x1 OR x2 OR (NOT x3)) In Sage's notation:: sage: solver = SAT() sage: solver.add_clause( ( 1, 2, 3) ) sage: solver.add_clause( ( 1, 2, -3) ) sage: solver() # random (None, True, True, False) .. NOTE:: :meth:`~sage.sat.solvers.dimacs.DIMACS.add_clause` creates new variables when necessary. When using CryptoMiniSat, it creates *all* variables up to the given index. Hence, adding a literal involving the variable 1000 creates up to 1000 internal variables. DIMACS-base solvers can also be used to write DIMACS files:: sage: from sage.sat.solvers.dimacs import DIMACS sage: fn = tmp_filename() sage: solver = DIMACS(filename=fn) sage: solver.add_clause( ( 1, 2, 3) ) sage: solver.add_clause( ( 1, 2, -3) ) sage: _ = solver.write() sage: for line in open(fn).readlines(): ....: print(line) p cnf 3 2 1 2 3 0 1 2 -3 0 Alternatively, there is :meth:`sage.sat.solvers.dimacs.DIMACS.clauses`:: sage: from sage.sat.solvers.dimacs import DIMACS sage: fn = tmp_filename() sage: solver = DIMACS() sage: solver.add_clause( ( 1, 2, 3) ) sage: solver.add_clause( ( 1, 2, -3) ) sage: solver.clauses(fn) sage: for line in open(fn).readlines(): ....: print(line) p cnf 3 2 1 2 3 0 1 2 -3 0 These files can then be passed external SAT solvers. Details on Specific Solvers ^^^^^^^^^^^^^^^^^^^^^^^^^^^ .. toctree:: :maxdepth: 1 sage/sat/solvers/satsolver sage/sat/solvers/dimacs sage/sat/solvers/picosat sage/sat/solvers/sat_lp sage/sat/solvers/cryptominisat Converters ---------- Sage supports conversion from Boolean polynomials (also known as Algebraic Normal Form) to Conjunctive Normal Form:: sage: B.<a,b,c> = BooleanPolynomialRing() sage: from sage.sat.converters.polybori import CNFEncoder sage: from sage.sat.solvers.dimacs import DIMACS sage: fn = tmp_filename() sage: solver = DIMACS(filename=fn) sage: e = CNFEncoder(solver, B) sage: e.clauses_sparse(a*b + a + 1) sage: _ = solver.write() sage: print(open(fn).read()) p cnf 3 2 -2 0 1 0 <BLANKLINE> Details on Specific Converterts ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ .. toctree:: :maxdepth: 1 sage/sat/converters/polybori Highlevel Interfaces -------------------- Sage provides various highlevel functions which make working with Boolean polynomials easier. We construct a very small-scale AES system of equations and pass it to a SAT solver:: sage: sr = mq.SR(1,1,1,4,gf2=True,polybori=True) sage: F,s = sr.polynomial_system() sage: from sage.sat.boolean_polynomials import solve as solve_sat # optional - cryptominisat sage: s = solve_sat(F) # optional - cryptominisat sage: F.subs(s[0]) # optional - cryptominisat Polynomial Sequence with 36 Polynomials in 0 Variables Details on Specific Highlevel Interfaces ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ .. toctree:: :maxdepth: 1 sage/sat/boolean_polynomials REFERENCES: .. [RS] http://reasoning.cs.ucla.edu/rsat/ .. [GL] http://www.lri.fr/~simon/?page=glucose .. [CMS] http://www.msoos.org .. [SG09] http://www.satcompetition.org/2009/format-benchmarks2009.html .. include:: ../footer.txt