Arbitrary Precision Real Numbers¶
AUTHORS:
- Kyle Schalm (2005-09)
- William Stein: bug fixes, examples, maintenance
- Didier Deshommes (2006-03-19): examples
- David Harvey (2006-09-20): compatibility with Element._parent
- William Stein (2006-10): default printing truncates to avoid base-2 rounding confusing (fix suggested by Bill Hart)
- Didier Deshommes: special constructor for QD numbers
- Paul Zimmermann (2008-01): added new functions from mpfr-2.3.0, replaced some, e.g., sech = 1/cosh, by their original mpfr version.
- Carl Witty (2008-02): define floating-point rank and associated functions; add some documentation
- Robert Bradshaw (2009-09): decimal literals, optimizations
- Jeroen Demeyer (2012-05-27): set the MPFR exponent range to the maximal possible value (trac ticket #13033)
- Travis Scrimshaw (2012-11-02): Added doctests for full coverage
- Eviatar Bach (2013-06): Fixing numerical evaluation of log_gamma
- Vincent Klein (2017-06): RealNumber constructor support gmpy2.mpfr , gmpy2.mpq or gmpy2.mpz parameter. Add __mpfr__ to class RealNumber.
This is a binding for the MPFR arbitrary-precision floating point library.
We define a class RealField
, where each instance of
RealField
specifies a field of floating-point
numbers with a specified precision and rounding mode. Individual
floating-point numbers are of RealNumber
.
In Sage (as in MPFR), floating-point numbers of precision
\(p\) are of the form \(s m 2^{e-p}\), where
\(s \in \{-1, 1\}\), \(2^{p-1} \leq m < 2^p\), and
\(-2^B + 1 \leq e \leq 2^B - 1\) where \(B = 30\) on 32-bit systems
and \(B = 62\) on 64-bit systems;
additionally, there are the special values +0
, -0
,
+infinity
, -infinity
and NaN
(which stands for Not-a-Number).
Operations in this module which are direct wrappers of MPFR functions are “correctly rounded”; we briefly describe what this means. Assume that you could perform the operation exactly, on real numbers, to get a result \(r\). If this result can be represented as a floating-point number, then we return that number.
Otherwise, the result \(r\) is between two floating-point numbers. For the directed rounding modes (round to plus infinity, round to minus infinity, round to zero), we return the floating-point number in the indicated direction from \(r\). For round to nearest, we return the floating-point number which is nearest to \(r\).
This leaves one case unspecified: in round to nearest mode, what happens if \(r\) is exactly halfway between the two nearest floating-point numbers? In that case, we round to the number with an even mantissa (the mantissa is the number \(m\) in the representation above).
Consider the ordered set of floating-point numbers of precision
\(p\). (Here we identify +0
and
-0
, and ignore NaN
.) We can give a
bijection between these floating-point numbers and a segment of the
integers, where 0 maps to 0 and adjacent floating-point numbers map
to adjacent integers. We call the integer corresponding to a given
floating-point number the “floating-point rank” of the number.
(This is not standard terminology; I just made it up.)
EXAMPLES:
A difficult conversion:
sage: RR(sys.maxsize)
9.22337203685478e18 # 64-bit
2.14748364700000e9 # 32-bit
-
class
sage.rings.real_mpfr.
QQtoRR
¶ Bases:
sage.categories.map.Map
-
class
sage.rings.real_mpfr.
RRtoRR
¶ Bases:
sage.categories.map.Map
-
section
()¶ EXAMPLES:
sage: from sage.rings.real_mpfr import RRtoRR sage: R10 = RealField(10) sage: R100 = RealField(100) sage: f = RRtoRR(R100, R10) sage: f.section() Generic map: From: Real Field with 10 bits of precision To: Real Field with 100 bits of precision
-
-
sage.rings.real_mpfr.
RealField
(prec=53, sci_not=0, rnd='MPFR_RNDN')¶ RealField(prec, sci_not, rnd):
INPUT:
prec
– (integer) precision; default = 53 prec is the number of bits used to represent the mantissa of a floating-point number. The precision can be any integer betweenmpfr_prec_min()
andmpfr_prec_max()
. In the current implementation,mpfr_prec_min()
is equal to 2.sci_not
– (default:False
) ifTrue
, always display using scientific notation; ifFalse
, display using scientific notation only for very large or very small numbersrnd
– (string) the rounding mode:'RNDN'
– (default) round to nearest (ties go to the even number): Knuth says this is the best choice to prevent “floating point drift”'RNDD'
– round towards minus infinity'RNDZ'
– round towards zero'RNDU'
– round towards plus infinity'RNDA'
– round away from zero'RNDF'
– faithful rounding (currently experimental; not- guaranteed correct for every operation)
- for specialized applications, the rounding mode can also be
given as an integer value of type
mpfr_rnd_t
. However, the exact values are unspecified.
EXAMPLES:
sage: RealField(10) Real Field with 10 bits of precision sage: RealField() Real Field with 53 bits of precision sage: RealField(100000) Real Field with 100000 bits of precision
Here we show the effect of rounding:
sage: R17d = RealField(17,rnd='RNDD') sage: a = R17d(1)/R17d(3); a.exact_rational() 87381/262144 sage: R17u = RealField(17,rnd='RNDU') sage: a = R17u(1)/R17u(3); a.exact_rational() 43691/131072
Note
The default precision is 53, since according to the MPFR manual: ‘mpfr should be able to exactly reproduce all computations with double-precision machine floating-point numbers (double type in C), except the default exponent range is much wider and subnormal numbers are not implemented.’
-
class
sage.rings.real_mpfr.
RealField_class
¶ Bases:
sage.rings.ring.Field
An approximation to the field of real numbers using floating point numbers with any specified precision. Answers derived from calculations in this approximation may differ from what they would be if those calculations were performed in the true field of real numbers. This is due to the rounding errors inherent to finite precision calculations.
See the documentation for the module
sage.rings.real_mpfr
for more details.-
algebraic_closure
()¶ Return the algebraic closure of
self
, i.e., the complex field with the same precision.EXAMPLES:
sage: RR.algebraic_closure() Complex Field with 53 bits of precision sage: RR.algebraic_closure() is CC True sage: RealField(100,rnd='RNDD').algebraic_closure() Complex Field with 100 bits of precision sage: RealField(100).algebraic_closure() Complex Field with 100 bits of precision
-
catalan_constant
()¶ Returns Catalan’s constant to the precision of this field.
EXAMPLES:
sage: RealField(100).catalan_constant() 0.91596559417721901505460351493
-
characteristic
()¶ Returns 0, since the field of real numbers has characteristic 0.
EXAMPLES:
sage: RealField(10).characteristic() 0
-
complex_field
()¶ Return complex field of the same precision.
EXAMPLES:
sage: RR.complex_field() Complex Field with 53 bits of precision sage: RR.complex_field() is CC True sage: RealField(100,rnd='RNDD').complex_field() Complex Field with 100 bits of precision sage: RealField(100).complex_field() Complex Field with 100 bits of precision
-
construction
()¶ Return the functorial construction of
self
, namely, completion of the rational numbers with respect to the prime at \(\infty\).Also preserves other information that makes this field unique (e.g. precision, rounding, print mode).
EXAMPLES:
sage: R = RealField(100, rnd='RNDU') sage: c, S = R.construction(); S Rational Field sage: R == c(S) True
-
euler_constant
()¶ Returns Euler’s gamma constant to the precision of this field.
EXAMPLES:
sage: RealField(100).euler_constant() 0.57721566490153286060651209008
-
factorial
(n)¶ Return the factorial of the integer
n
as a real number.EXAMPLES:
sage: RR.factorial(0) 1.00000000000000 sage: RR.factorial(1000000) 8.26393168833124e5565708 sage: RR.factorial(-1) Traceback (most recent call last): ... ArithmeticError: n must be nonnegative
-
gen
(i=0)¶ Return the
i
-th generator ofself
.EXAMPLES:
sage: R=RealField(100) sage: R.gen(0) 1.0000000000000000000000000000 sage: R.gen(1) Traceback (most recent call last): ... IndexError: self has only one generator
-
gens
()¶ Return a list of generators.
EXAMPLES:
sage: RR.gens() [1.00000000000000]
-
is_exact
()¶ Return
False
, since a real field (represented using finite precision) is not exact.EXAMPLES:
sage: RR.is_exact() False sage: RealField(100).is_exact() False
-
log2
()¶ Return \(\log(2)\) (i.e., the natural log of 2) to the precision of this field.
EXAMPLES:
sage: R=RealField(100) sage: R.log2() 0.69314718055994530941723212146 sage: R(2).log() 0.69314718055994530941723212146
-
name
()¶ Return the name of
self
, which encodes the precision and rounding convention.EXAMPLES:
sage: RR.name() 'RealField53_0' sage: RealField(100,rnd='RNDU').name() 'RealField100_2'
-
ngens
()¶ Return the number of generators.
EXAMPLES:
sage: RR.ngens() 1
-
pi
()¶ Return \(\pi\) to the precision of this field.
EXAMPLES:
sage: R = RealField(100) sage: R.pi() 3.1415926535897932384626433833 sage: R.pi().sqrt()/2 0.88622692545275801364908374167 sage: R = RealField(150) sage: R.pi().sqrt()/2 0.88622692545275801364908374167057259139877473
-
prec
()¶ Return the precision of
self
.EXAMPLES:
sage: RR.precision() 53 sage: RealField(20).precision() 20
-
precision
()¶ Return the precision of
self
.EXAMPLES:
sage: RR.precision() 53 sage: RealField(20).precision() 20
-
random_element
(min=-1, max=1, distribution=None)¶ Return a uniformly distributed random number between
min
andmax
(default -1 to 1).Warning
The argument
distribution
is ignored—the random number is from the uniform distribution.EXAMPLES:
sage: RealField(100).random_element(-5, 10) -1.7093633198207765227646362966 sage: RealField(10).random_element() -0.11
-
rounding_mode
()¶ Return the rounding mode.
EXAMPLES:
sage: RR.rounding_mode() 'RNDN' sage: RealField(20,rnd='RNDZ').rounding_mode() 'RNDZ' sage: RealField(20,rnd='RNDU').rounding_mode() 'RNDU' sage: RealField(20,rnd='RNDD').rounding_mode() 'RNDD'
-
scientific_notation
(status=None)¶ Set or return the scientific notation printing flag. If this flag is
True
then real numbers with this space as parent print using scientific notation.INPUT:
status
– boolean optional flag
EXAMPLES:
sage: RR.scientific_notation() False sage: elt = RR(0.2512); elt 0.251200000000000 sage: RR.scientific_notation(True) sage: elt 2.51200000000000e-1 sage: RR.scientific_notation() True sage: RR.scientific_notation(False) sage: elt 0.251200000000000 sage: R = RealField(20, sci_not=1) sage: R.scientific_notation() True sage: R(0.2512) 2.5120e-1
-
to_prec
(prec)¶ Return the real field that is identical to
self
, except that it has the specified precision.EXAMPLES:
sage: RR.to_prec(212) Real Field with 212 bits of precision sage: R = RealField(30, rnd="RNDZ") sage: R.to_prec(300) Real Field with 300 bits of precision and rounding RNDZ
-
zeta
(n=2)¶ Return an \(n\)-th root of unity in the real field, if one exists, or raise a
ValueError
otherwise.EXAMPLES:
sage: R = RealField() sage: R.zeta() -1.00000000000000 sage: R.zeta(1) 1.00000000000000 sage: R.zeta(5) Traceback (most recent call last): ... ValueError: No 5th root of unity in self
-
-
class
sage.rings.real_mpfr.
RealLiteral
¶ Bases:
sage.rings.real_mpfr.RealNumber
Real literals are created in preparsing and provide a way to allow casting into higher precision rings.
-
base
¶
-
literal
¶
-
numerical_approx
(prec=None, digits=None, algorithm=None)¶ Change the precision of
self
toprec
bits ordigits
decimal digits.INPUT:
prec
– precision in bitsdigits
– precision in decimal digits (only used ifprec
is not given)algorithm
– ignored for real numbers
If neither
prec
nordigits
is given, the default precision is 53 bits (roughly 16 digits).OUTPUT:
A
RealNumber
with the given precision.EXAMPLES:
sage: (1.3).numerical_approx() 1.30000000000000 sage: n(1.3, 120) 1.3000000000000000000000000000000000
Compare with:
sage: RealField(120)(RR(13/10)) 1.3000000000000000444089209850062616 sage: n(RR(13/10), 120) Traceback (most recent call last): ... TypeError: cannot approximate to a precision of 120 bits, use at most 53 bits
The result is a non-literal:
sage: type(1.3) <type 'sage.rings.real_mpfr.RealLiteral'> sage: type(n(1.3)) <type 'sage.rings.real_mpfr.RealNumber'>
-
-
class
sage.rings.real_mpfr.
RealNumber
¶ Bases:
sage.structure.element.RingElement
A floating point approximation to a real number using any specified precision. Answers derived from calculations with such approximations may differ from what they would be if those calculations were performed with true real numbers. This is due to the rounding errors inherent to finite precision calculations.
The approximation is printed to slightly fewer digits than its internal precision, in order to avoid confusing roundoff issues that occur because numbers are stored internally in binary.
-
agm
(other)¶ Return the arithmetic-geometric mean of
self
andother
.The arithmetic-geometric mean is the common limit of the sequences \(u_n\) and \(v_n\), where \(u_0\) is
self
, \(v_0\) is other, \(u_{n+1}\) is the arithmetic mean of \(u_n\) and \(v_n\), and \(v_{n+1}\) is the geometric mean of \(u_n\) and \(v_n\). If any operand is negative, the return value isNaN
.INPUT:
right
– another real number
OUTPUT:
- the AGM of
self
andother
EXAMPLES:
sage: a = 1.5 sage: b = 2.5 sage: a.agm(b) 1.96811775182478 sage: RealField(200)(a).agm(b) 1.9681177518247777389894630877503739489139488203685819712291 sage: a.agm(100) 28.1189391225320
The AGM always lies between the geometric and arithmetic mean:
sage: sqrt(a*b) < a.agm(b) < (a+b)/2 True
It is, of course, symmetric:
sage: b.agm(a) 1.96811775182478
and satisfies the relation \(AGM(ra, rb) = r AGM(a, b)\):
sage: (2*a).agm(2*b) / 2 1.96811775182478 sage: (3*a).agm(3*b) / 3 1.96811775182478
It is also related to the elliptic integral
\[\int_0^{\pi/2} \frac{d\theta}{\sqrt{1-m\sin^2\theta}}.\]sage: m = (a-b)^2/(a+b)^2 sage: E = numerical_integral(1/sqrt(1-m*sin(x)^2), 0, RR.pi()/2)[0] sage: RR.pi()/4 * (a+b)/E 1.96811775182478
-
algdep
(n)¶ Return a polynomial of degree at most \(n\) which is approximately satisfied by this number.
Note
The resulting polynomial need not be irreducible, and indeed usually won’t be if this number is a good approximation to an algebraic number of degree less than \(n\).
ALGORITHM:
Uses the PARI C-library
algdep
command.EXAMPLES:
sage: r = sqrt(2.0); r 1.41421356237310 sage: r.algebraic_dependency(5) x^2 - 2
-
algebraic_dependency
(n)¶ Return a polynomial of degree at most \(n\) which is approximately satisfied by this number.
Note
The resulting polynomial need not be irreducible, and indeed usually won’t be if this number is a good approximation to an algebraic number of degree less than \(n\).
ALGORITHM:
Uses the PARI C-library
algdep
command.EXAMPLES:
sage: r = sqrt(2.0); r 1.41421356237310 sage: r.algebraic_dependency(5) x^2 - 2
-
arccos
()¶ Return the inverse cosine of
self
.EXAMPLES:
sage: q = RR.pi()/3 sage: i = q.cos() sage: i.arccos() == q True
-
arccosh
()¶ Return the hyperbolic inverse cosine of
self
.EXAMPLES:
sage: q = RR.pi()/2 sage: i = q.cosh() ; i 2.50917847865806 sage: q == i.arccosh() True
-
arccoth
()¶ Return the inverse hyperbolic cotangent of
self
.EXAMPLES:
sage: q = RR.pi()/5 sage: i = q.coth() sage: i.arccoth() == q True
-
arccsch
()¶ Return the inverse hyperbolic cosecant of
self
.EXAMPLES:
sage: i = RR.pi()/5 sage: q = i.csch() sage: q.arccsch() == i True
-
arcsech
()¶ Return the inverse hyperbolic secant of
self
.EXAMPLES:
sage: i = RR.pi()/3 sage: q = i.sech() sage: q.arcsech() == i True
-
arcsin
()¶ Return the inverse sine of
self
.EXAMPLES:
sage: q = RR.pi()/5 sage: i = q.sin() sage: i.arcsin() == q True sage: i.arcsin() - q 0.000000000000000
-
arcsinh
()¶ Return the hyperbolic inverse sine of
self
.EXAMPLES:
sage: q = RR.pi()/7 sage: i = q.sinh() ; i 0.464017630492991 sage: i.arcsinh() - q 0.000000000000000
-
arctan
()¶ Return the inverse tangent of
self
.EXAMPLES:
sage: q = RR.pi()/5 sage: i = q.tan() sage: i.arctan() == q True
-
arctanh
()¶ Return the hyperbolic inverse tangent of
self
.EXAMPLES:
sage: q = RR.pi()/7 sage: i = q.tanh() ; i 0.420911241048535 sage: i.arctanh() - q 0.000000000000000
-
as_integer_ratio
()¶ Return a coprime pair of integers
(a, b)
such thatself
equalsa / b
exactly.EXAMPLES:
sage: RR(0).as_integer_ratio() (0, 1) sage: RR(1/3).as_integer_ratio() (6004799503160661, 18014398509481984) sage: RR(37/16).as_integer_ratio() (37, 16) sage: RR(3^60).as_integer_ratio() (42391158275216203520420085760, 1) sage: RR('nan').as_integer_ratio() Traceback (most recent call last): ... ValueError: unable to convert NaN to a rational number
This coincides with Python floats:
sage: pi = RR.pi() sage: pi.as_integer_ratio() (884279719003555, 281474976710656) sage: float(pi).as_integer_ratio() == pi.as_integer_ratio() True
-
ceil
()¶ Return the ceiling of
self
.EXAMPLES:
sage: (2.99).ceil() 3 sage: (2.00).ceil() 2 sage: (2.01).ceil() 3
sage: ceil(10^16 * 1.0) 10000000000000000 sage: ceil(10^17 * 1.0) 100000000000000000 sage: ceil(RR(+infinity)) Traceback (most recent call last): ... ValueError: Calling ceil() on infinity or NaN
-
ceiling
()¶ Return the ceiling of
self
.EXAMPLES:
sage: (2.99).ceil() 3 sage: (2.00).ceil() 2 sage: (2.01).ceil() 3
sage: ceil(10^16 * 1.0) 10000000000000000 sage: ceil(10^17 * 1.0) 100000000000000000 sage: ceil(RR(+infinity)) Traceback (most recent call last): ... ValueError: Calling ceil() on infinity or NaN
-
conjugate
()¶ Return the complex conjugate of this real number, which is the number itself.
EXAMPLES:
sage: x = RealField(100)(1.238) sage: x.conjugate() 1.2380000000000000000000000000
-
cos
()¶ Returnn the cosine of
self
.EXAMPLES:
sage: t=RR.pi()/2 sage: t.cos() 6.12323399573677e-17
-
cosh
()¶ Return the hyperbolic cosine of
self
.EXAMPLES:
sage: q = RR.pi()/12 sage: q.cosh() 1.03446564009551
-
cot
()¶ Return the cotangent of
self
.EXAMPLES:
sage: RealField(100)(2).cot() -0.45765755436028576375027741043
-
coth
()¶ Return the hyperbolic cotangent of
self
.EXAMPLES:
sage: RealField(100)(2).coth() 1.0373147207275480958778097648
-
csc
()¶ Return the cosecant of
self
.EXAMPLES:
sage: RealField(100)(2).csc() 1.0997501702946164667566973970
-
csch
()¶ Return the hyperbolic cosecant of
self
.EXAMPLES:
sage: RealField(100)(2).csch() 0.27572056477178320775835148216
-
cube_root
()¶ Return the cubic root (defined over the real numbers) of
self
.EXAMPLES:
sage: r = 125.0; r.cube_root() 5.00000000000000 sage: r = -119.0 sage: r.cube_root()^3 - r # illustrates precision loss -1.42108547152020e-14
-
eint
()¶ Returns the exponential integral of this number.
EXAMPLES:
sage: r = 1.0 sage: r.eint() 1.89511781635594
sage: r = -1.0 sage: r.eint() -0.219383934395520
-
epsilon
(field=None)¶ Returns
abs(self)
divided by \(2^b\) where \(b\) is the precision in bits ofself
. Equivalently, returnabs(self)
multiplied by theulp()
of 1.This is a scale-invariant version of
ulp()
and it lies in \([u/2, u)\) where \(u\) isself.ulp()
(except in the case of zero or underflow).INPUT:
field
–RealField
used as parent of the result. If not specified, useparent(self)
.
OUTPUT:
field(self.abs() / 2^self.precision())
EXAMPLES:
sage: RR(2^53).epsilon() 1.00000000000000 sage: RR(0).epsilon() 0.000000000000000 sage: a = RR.pi() sage: a.epsilon() 3.48786849800863e-16 sage: a.ulp()/2, a.ulp() (2.22044604925031e-16, 4.44089209850063e-16) sage: a / 2^a.precision() 3.48786849800863e-16 sage: (-a).epsilon() 3.48786849800863e-16
We use a different field:
sage: a = RealField(256).pi() sage: a.epsilon() 2.713132368784788677624750042896586252980746500631892201656843478528498954308e-77 sage: e = a.epsilon(RealField(64)) sage: e 2.71313236878478868e-77 sage: parent(e) Real Field with 64 bits of precision sage: e = a.epsilon(QQ) Traceback (most recent call last): ... TypeError: field argument must be a RealField
Special values:
sage: RR('nan').epsilon() NaN sage: parent(RR('nan').epsilon(RealField(42))) Real Field with 42 bits of precision sage: RR('+Inf').epsilon() +infinity sage: RR('-Inf').epsilon() +infinity
-
erf
()¶ Return the value of the error function on
self
.EXAMPLES:
sage: R = RealField(53) sage: R(2).erf() 0.995322265018953 sage: R(6).erf() 1.00000000000000
-
erfc
()¶ Return the value of the complementary error function on
self
, i.e., \(1-\mathtt{erf}(\mathtt{self})\).EXAMPLES:
sage: R = RealField(53) sage: R(2).erfc() 0.00467773498104727 sage: R(6).erfc() 2.15197367124989e-17
-
exact_rational
()¶ Returns the exact rational representation of this floating-point number.
EXAMPLES:
sage: RR(0).exact_rational() 0 sage: RR(1/3).exact_rational() 6004799503160661/18014398509481984 sage: RR(37/16).exact_rational() 37/16 sage: RR(3^60).exact_rational() 42391158275216203520420085760 sage: RR(3^60).exact_rational() - 3^60 6125652559 sage: RealField(5)(-pi).exact_rational() -25/8
-
exp
()¶ Return \(e^\mathtt{self}\).
EXAMPLES:
sage: r = 0.0 sage: r.exp() 1.00000000000000
sage: r = 32.3 sage: a = r.exp(); a 1.06588847274864e14 sage: a.log() 32.3000000000000
sage: r = -32.3 sage: r.exp() 9.38184458849869e-15
-
exp10
()¶ Return \(10^\mathtt{self}\).
EXAMPLES:
sage: r = 0.0 sage: r.exp10() 1.00000000000000
sage: r = 32.0 sage: r.exp10() 1.00000000000000e32
sage: r = -32.3 sage: r.exp10() 5.01187233627276e-33
-
exp2
()¶ Return \(2^\mathtt{self}\).
EXAMPLES:
sage: r = 0.0 sage: r.exp2() 1.00000000000000
sage: r = 32.0 sage: r.exp2() 4.29496729600000e9
sage: r = -32.3 sage: r.exp2() 1.89117248253021e-10
-
expm1
()¶ Return \(e^\mathtt{self}-1\), avoiding cancellation near 0.
EXAMPLES:
sage: r = 1.0 sage: r.expm1() 1.71828182845905
sage: r = 1e-16 sage: exp(r)-1 0.000000000000000 sage: r.expm1() 1.00000000000000e-16
-
floor
()¶ Return the floor of
self
.EXAMPLES:
sage: R = RealField() sage: (2.99).floor() 2 sage: (2.00).floor() 2 sage: floor(RR(-5/2)) -3 sage: floor(RR(+infinity)) Traceback (most recent call last): ... ValueError: Calling floor() on infinity or NaN
-
fp_rank
()¶ Returns the floating-point rank of this number. That is, if you list the floating-point numbers of this precision in order, and number them starting with \(0.0 \rightarrow 0\) and extending the list to positive and negative infinity, returns the number corresponding to this floating-point number.
EXAMPLES:
sage: RR(0).fp_rank() 0 sage: RR(0).nextabove().fp_rank() 1 sage: RR(0).nextbelow().nextbelow().fp_rank() -2 sage: RR(1).fp_rank() 4835703278458516698824705 # 32-bit 20769187434139310514121985316880385 # 64-bit sage: RR(-1).fp_rank() -4835703278458516698824705 # 32-bit -20769187434139310514121985316880385 # 64-bit sage: RR(1).fp_rank() - RR(1).nextbelow().fp_rank() 1 sage: RR(-infinity).fp_rank() -9671406552413433770278913 # 32-bit -41538374868278621023740371006390273 # 64-bit sage: RR(-infinity).fp_rank() - RR(-infinity).nextabove().fp_rank() -1
-
fp_rank_delta
(other)¶ Return the floating-point rank delta between
self
andother
. That is, if the return value is positive, this is the number of times you have to call.nextabove()
to get fromself
toother
.EXAMPLES:
sage: [x.fp_rank_delta(x.nextabove()) for x in ....: (RR(-infinity), -1.0, 0.0, 1.0, RR(pi), RR(infinity))] [1, 1, 1, 1, 1, 0]
In the 2-bit floating-point field, one subsegment of the floating-point numbers is: 1, 1.5, 2, 3, 4, 6, 8, 12, 16, 24, 32
sage: R2 = RealField(2) sage: R2(1).fp_rank_delta(R2(2)) 2 sage: R2(2).fp_rank_delta(R2(1)) -2 sage: R2(1).fp_rank_delta(R2(1048576)) 40 sage: R2(24).fp_rank_delta(R2(4)) -5 sage: R2(-4).fp_rank_delta(R2(-24)) -5
There are lots of floating-point numbers around 0:
sage: R2(-1).fp_rank_delta(R2(1)) 4294967298 # 32-bit 18446744073709551618 # 64-bit
-
frac
()¶ Return a real number such that
self = self.trunc() + self.frac()
. The return value will also satisfy-1 < self.frac() < 1
.EXAMPLES:
sage: (2.99).frac() 0.990000000000000 sage: (2.50).frac() 0.500000000000000 sage: (-2.79).frac() -0.790000000000000 sage: (-2.79).trunc() + (-2.79).frac() -2.79000000000000
-
gamma
()¶ Return the value of the Euler gamma function on
self
.EXAMPLES:
sage: R = RealField() sage: R(6).gamma() 120.000000000000 sage: R(1.5).gamma() 0.886226925452758
-
hex
()¶ Return a hexadecimal floating-point representation of
self
, in the style of C99 hexadecimal floating-point constants.EXAMPLES:
sage: RR(-1/3).hex() '-0x5.5555555555554p-4' sage: Reals(100)(123.456e789).hex() '0xf.721008e90630c8da88f44dd2p+2624' sage: (-0.).hex() '-0x0p+0'
sage: [(a.hex(), float(a).hex()) for a in [.5, 1., 2., 16.]] [('0x8p-4', '0x1.0000000000000p-1'), ('0x1p+0', '0x1.0000000000000p+0'), ('0x2p+0', '0x1.0000000000000p+1'), ('0x1p+4', '0x1.0000000000000p+4')]
Special values:
sage: [RR(s).hex() for s in ['+inf', '-inf', 'nan']] ['inf', '-inf', 'nan']
-
imag
()¶ Return the imaginary part of
self
.(Since
self
is a real number, this simply returns exactly 0.)EXAMPLES:
sage: RR.pi().imag() 0 sage: RealField(100)(2).imag() 0
-
integer_part
()¶ If in decimal this number is written
n.defg
, returnsn
.OUTPUT: a Sage Integer
EXAMPLES:
sage: a = 119.41212 sage: a.integer_part() 119 sage: a = -123.4567 sage: a.integer_part() -123
A big number with no decimal point:
sage: a = RR(10^17); a 1.00000000000000e17 sage: a.integer_part() 100000000000000000
-
is_NaN
()¶ Return
True
ifself
is Not-a-NumberNaN
.EXAMPLES:
sage: a = RR(0) / RR(0); a NaN sage: a.is_NaN() True
-
is_infinity
()¶ Return
True
ifself
is \(\infty\) andFalse
otherwise.EXAMPLES:
sage: a = RR('1.494') / RR(0); a +infinity sage: a.is_infinity() True sage: a = -RR('1.494') / RR(0); a -infinity sage: a.is_infinity() True sage: RR(1.5).is_infinity() False sage: RR('nan').is_infinity() False
-
is_integer
()¶ Return
True
if this number is a integer.EXAMPLES:
sage: RR(1).is_integer() True sage: RR(0.1).is_integer() False
-
is_negative_infinity
()¶ Return
True
ifself
is \(-\infty\).EXAMPLES:
sage: a = RR('1.494') / RR(0); a +infinity sage: a.is_negative_infinity() False sage: a = -RR('1.494') / RR(0); a -infinity sage: RR(1.5).is_negative_infinity() False sage: a.is_negative_infinity() True
-
is_positive_infinity
()¶ Return
True
ifself
is \(+\infty\).EXAMPLES:
sage: a = RR('1.494') / RR(0); a +infinity sage: a.is_positive_infinity() True sage: a = -RR('1.494') / RR(0); a -infinity sage: RR(1.5).is_positive_infinity() False sage: a.is_positive_infinity() False
-
is_real
()¶ Return
True
ifself
is real (of course, this always returnsTrue
for a finite element of a real field).EXAMPLES:
sage: RR(1).is_real() True sage: RR('-100').is_real() True sage: RR(NaN).is_real() False
-
is_square
()¶ Return whether or not this number is a square in this field. For the real numbers, this is
True
if and only ifself
is non-negative.EXAMPLES:
sage: r = 3.5 sage: r.is_square() True sage: r = 0.0 sage: r.is_square() True sage: r = -4.0 sage: r.is_square() False
-
is_unit
()¶ Return
True
ifself
is a unit (has a multiplicative inverse) andFalse
otherwise.EXAMPLES:
sage: RR(1).is_unit() True sage: RR('0').is_unit() False sage: RR('-0').is_unit() False sage: RR('nan').is_unit() False sage: RR('inf').is_unit() False sage: RR('-inf').is_unit() False
-
j0
()¶ Return the value of the Bessel \(J\) function of order 0 at
self
.EXAMPLES:
sage: R = RealField(53) sage: R(2).j0() 0.223890779141236
-
j1
()¶ Return the value of the Bessel \(J\) function of order 1 at
self
.EXAMPLES:
sage: R = RealField(53) sage: R(2).j1() 0.576724807756873
-
jn
(n)¶ Return the value of the Bessel \(J\) function of order \(n\) at
self
.EXAMPLES:
sage: R = RealField(53) sage: R(2).jn(3) 0.128943249474402 sage: R(2).jn(-17) -2.65930780516787e-15
-
log
(base=None)¶ Return the logarithm of
self
to thebase
.EXAMPLES:
sage: R = RealField() sage: R(2).log() 0.693147180559945 sage: log(RR(2)) 0.693147180559945 sage: log(RR(2), "e") 0.693147180559945 sage: log(RR(2), e) 0.693147180559945
sage: r = R(-1); r.log() 3.14159265358979*I sage: log(RR(-1),e) 3.14159265358979*I sage: r.log(2) 4.53236014182719*I
For the error value NaN (Not A Number), log will return NaN:
sage: r = R(NaN); r.log() NaN
-
log10
()¶ Return log to the base 10 of
self
.EXAMPLES:
sage: r = 16.0; r.log10() 1.20411998265592 sage: r.log() / log(10.0) 1.20411998265592
sage: r = 39.9; r.log10() 1.60097289568675
sage: r = 0.0 sage: r.log10() -infinity
sage: r = -1.0 sage: r.log10() 1.36437635384184*I
-
log1p
()¶ Return log base \(e\) of
1 + self
.EXAMPLES:
sage: r = 15.0; r.log1p() 2.77258872223978 sage: (r+1).log() 2.77258872223978
For small values, this is more accurate than computing
log(1 + self)
directly, as it avoids cancellation issues:sage: r = 3e-10 sage: r.log1p() 2.99999999955000e-10 sage: (1+r).log() 3.00000024777111e-10 sage: r100 = RealField(100)(r) sage: (1+r100).log() 2.9999999995500000000978021372e-10
sage: r = 38.9; r.log1p() 3.68637632389582
sage: r = -1.0 sage: r.log1p() -infinity
sage: r = -2.0 sage: r.log1p() 3.14159265358979*I
-
log2
()¶ Return log to the base 2 of
self
.EXAMPLES:
sage: r = 16.0 sage: r.log2() 4.00000000000000
sage: r = 31.9; r.log2() 4.99548451887751
sage: r = 0.0 sage: r.log2() -infinity
sage: r = -3.0; r.log2() 1.58496250072116 + 4.53236014182719*I
-
log_gamma
()¶ Return the principal branch of the log gamma of
self
. Note that this is not in general equal to log(gamma(self
)) for negative input.EXAMPLES:
sage: R = RealField(53) sage: R(6).log_gamma() 4.78749174278205 sage: R(1e10).log_gamma() 2.20258509288811e11 sage: log_gamma(-2.1) 1.53171380819509 - 9.42477796076938*I sage: log(gamma(-1.1)) == log_gamma(-1.1) False
-
multiplicative_order
()¶ Return the multiplicative order of
self
.EXAMPLES:
sage: RR(1).multiplicative_order() 1 sage: RR(-1).multiplicative_order() 2 sage: RR(3).multiplicative_order() +Infinity
-
nearby_rational
(max_error=None, max_denominator=None)¶ Find a rational near to
self
. Exactly one ofmax_error
ormax_denominator
must be specified.If
max_error
is specified, then this returns the simplest rational in the range[self-max_error .. self+max_error]
. Ifmax_denominator
is specified, then this returns the rational closest toself
with denominator at mostmax_denominator
. (In case of ties, we pick the simpler rational.)EXAMPLES:
sage: (0.333).nearby_rational(max_error=0.001) 1/3 sage: (0.333).nearby_rational(max_error=1) 0 sage: (-0.333).nearby_rational(max_error=0.0001) -257/772
sage: (0.333).nearby_rational(max_denominator=100) 1/3 sage: RR(1/3 + 1/1000000).nearby_rational(max_denominator=2999999) 777780/2333333 sage: RR(1/3 + 1/1000000).nearby_rational(max_denominator=3000000) 1000003/3000000 sage: (-0.333).nearby_rational(max_denominator=1000) -333/1000 sage: RR(3/4).nearby_rational(max_denominator=2) 1 sage: RR(pi).nearby_rational(max_denominator=120) 355/113 sage: RR(pi).nearby_rational(max_denominator=10000) 355/113 sage: RR(pi).nearby_rational(max_denominator=100000) 312689/99532 sage: RR(pi).nearby_rational(max_denominator=1) 3 sage: RR(-3.5).nearby_rational(max_denominator=1) -3
-
nextabove
()¶ Return the next floating-point number larger than
self
.EXAMPLES:
sage: RR('-infinity').nextabove() -2.09857871646739e323228496 # 32-bit -5.87565378911159e1388255822130839282 # 64-bit sage: RR(0).nextabove() 2.38256490488795e-323228497 # 32-bit 8.50969131174084e-1388255822130839284 # 64-bit sage: RR('+infinity').nextabove() +infinity sage: RR(-sqrt(2)).str() '-1.4142135623730951' sage: RR(-sqrt(2)).nextabove().str() '-1.4142135623730949'
-
nextbelow
()¶ Return the next floating-point number smaller than
self
.EXAMPLES:
sage: RR('-infinity').nextbelow() -infinity sage: RR(0).nextbelow() -2.38256490488795e-323228497 # 32-bit -8.50969131174084e-1388255822130839284 # 64-bit sage: RR('+infinity').nextbelow() 2.09857871646739e323228496 # 32-bit 5.87565378911159e1388255822130839282 # 64-bit sage: RR(-sqrt(2)).str() '-1.4142135623730951' sage: RR(-sqrt(2)).nextbelow().str() '-1.4142135623730954'
-
nexttoward
(other)¶ Return the floating-point number adjacent to
self
which is closer toother
. Ifself
or other isNaN
, returnsNaN
; ifself
equalsother
, returnsself
.EXAMPLES:
sage: (1.0).nexttoward(2).str() '1.0000000000000002' sage: (1.0).nexttoward(RR('-infinity')).str() '0.99999999999999989' sage: RR(infinity).nexttoward(0) 2.09857871646739e323228496 # 32-bit 5.87565378911159e1388255822130839282 # 64-bit sage: RR(pi).str() '3.1415926535897931' sage: RR(pi).nexttoward(22/7).str() '3.1415926535897936' sage: RR(pi).nexttoward(21/7).str() '3.1415926535897927'
-
nth_root
(n, algorithm=0)¶ Return an \(n^{th}\) root of
self
.INPUT:
n
– A positive number, rounded down to the nearest integer. Note that \(n\) should be less than`sys.maxsize`
.algorithm
– Set this to 1 to call mpfr directly, set this to 2 to use interval arithmetic and logarithms, or leave it at the default of 0 to choose the algorithm which is estimated to be faster.
AUTHORS:
- Carl Witty (2007-10)
EXAMPLES:
sage: R = RealField() sage: R(8).nth_root(3) 2.00000000000000 sage: R(8).nth_root(3.7) # illustrate rounding down 2.00000000000000 sage: R(-8).nth_root(3) -2.00000000000000 sage: R(0).nth_root(3) 0.000000000000000 sage: R(32).nth_root(-1) Traceback (most recent call last): ... ValueError: n must be positive sage: R(32).nth_root(1.0) 32.0000000000000 sage: R(4).nth_root(4) 1.41421356237310 sage: R(4).nth_root(40) 1.03526492384138 sage: R(4).nth_root(400) 1.00347174850950 sage: R(4).nth_root(4000) 1.00034663365385 sage: R(4).nth_root(4000000) 1.00000034657365 sage: R(-27).nth_root(3) -3.00000000000000 sage: R(-4).nth_root(3999999) -1.00000034657374
Note that for negative numbers, any even root throws an exception:
sage: R(-2).nth_root(6) Traceback (most recent call last): ... ValueError: taking an even root of a negative number
The \(n^{th}\) root of 0 is defined to be 0, for any \(n\):
sage: R(0).nth_root(6) 0.000000000000000 sage: R(0).nth_root(7) 0.000000000000000
-
prec
()¶ Return the precision of
self
.EXAMPLES:
sage: RR(1.0).precision() 53 sage: RealField(101)(-1).precision() 101
-
precision
()¶ Return the precision of
self
.EXAMPLES:
sage: RR(1.0).precision() 53 sage: RealField(101)(-1).precision() 101
-
real
()¶ Return the real part of
self
.(Since
self
is a real number, this simply returnsself
.)EXAMPLES:
sage: RR(2).real() 2.00000000000000 sage: RealField(200)(-4.5).real() -4.5000000000000000000000000000000000000000000000000000000000
-
round
()¶ Rounds
self
to the nearest integer. The rounding mode of the parent field has no effect on this function.EXAMPLES:
sage: RR(0.49).round() 0 sage: RR(0.5).round() 1 sage: RR(-0.49).round() 0 sage: RR(-0.5).round() -1
-
sec
()¶ Returns the secant of this number
EXAMPLES:
sage: RealField(100)(2).sec() -2.4029979617223809897546004014
-
sech
()¶ Return the hyperbolic secant of
self
.EXAMPLES:
sage: RealField(100)(2).sech() 0.26580222883407969212086273982
-
sign
()¶ Return
+1
ifself
is positive,-1
ifself
is negative, and0
ifself
is zero.EXAMPLES:
sage: R=RealField(100) sage: R(-2.4).sign() -1 sage: R(2.1).sign() 1 sage: R(0).sign() 0
-
sign_mantissa_exponent
()¶ Return the sign, mantissa, and exponent of
self
.In Sage (as in MPFR), floating-point numbers of precision \(p\) are of the form \(s m 2^{e-p}\), where \(s \in \{-1, 1\}\), \(2^{p-1} \leq m < 2^p\), and \(-2^{30} + 1 \leq e \leq 2^{30} - 1\); plus the special values
+0
,-0
,+infinity
,-infinity
, andNaN
(which stands for Not-a-Number).This function returns \(s\), \(m\), and \(e-p\). For the special values:
+0
returns(1, 0, 0)
(analogous to IEEE-754; note that MPFR actually stores the exponent as “smallest exponent possible”)-0
returns(-1, 0, 0)
(analogous to IEEE-754; note that MPFR actually stores the exponent as “smallest exponent possible”)- the return values for
+infinity
,-infinity
, andNaN
are not specified.
EXAMPLES:
sage: R = RealField(53) sage: a = R(exp(1.0)); a 2.71828182845905 sage: sign, mantissa, exponent = R(exp(1.0)).sign_mantissa_exponent() sage: sign, mantissa, exponent (1, 6121026514868073, -51) sage: sign*mantissa*(2**exponent) == a True
The mantissa is always a nonnegative number (see trac ticket #14448):
sage: RR(-1).sign_mantissa_exponent() (-1, 4503599627370496, -52)
We can also calculate this also using \(p\)-adic valuations:
sage: a = R(exp(1.0)) sage: b = a.exact_rational() sage: valuation, unit = b.val_unit(2) sage: (b/abs(b), unit, valuation) (1, 6121026514868073, -51) sage: a.sign_mantissa_exponent() (1, 6121026514868073, -51)
-
simplest_rational
()¶ Return the simplest rational which is equal to
self
(in the Sage sense). Recall that Sage defines the equality operator by coercing both sides to a single type and then comparing; thus, this finds the simplest rational which (when coerced to this RealField) is equal toself
.Given rationals \(a / b\) and \(c / d\) (both in lowest terms), the former is simpler if \(b < d\) or if \(b = d\) and \(|a| < |c|\).
The effect of rounding modes is slightly counter-intuitive. Consider the case of round-toward-minus-infinity. This rounding is performed when coercing a rational to a floating-point number; so the
simplest_rational()
of a round-to-minus-infinity number will be either exactly equal to or slightly larger than the number.EXAMPLES:
sage: RRd = RealField(53, rnd='RNDD') sage: RRz = RealField(53, rnd='RNDZ') sage: RRu = RealField(53, rnd='RNDU') sage: RRa = RealField(53, rnd='RNDA') sage: def check(x): ....: rx = x.simplest_rational() ....: assert x == rx ....: return rx sage: RRd(1/3) < RRu(1/3) True sage: check(RRd(1/3)) 1/3 sage: check(RRu(1/3)) 1/3 sage: check(RRz(1/3)) 1/3 sage: check(RRa(1/3)) 1/3 sage: check(RR(1/3)) 1/3 sage: check(RRd(-1/3)) -1/3 sage: check(RRu(-1/3)) -1/3 sage: check(RRz(-1/3)) -1/3 sage: check(RRa(-1/3)) -1/3 sage: check(RR(-1/3)) -1/3 sage: check(RealField(20)(pi)) 355/113 sage: check(RR(pi)) 245850922/78256779 sage: check(RR(2).sqrt()) 131836323/93222358 sage: check(RR(1/2^210)) 1/1645504557321205859467264516194506011931735427766374553794641921 sage: check(RR(2^210)) 1645504557321205950811116849375918117252433820865891134852825088 sage: (RR(17).sqrt()).simplest_rational()^2 - 17 -1/348729667233025 sage: (RR(23).cube_root()).simplest_rational()^3 - 23 -1404915133/264743395842039084891584 sage: RRd5 = RealField(5, rnd='RNDD') sage: RRu5 = RealField(5, rnd='RNDU') sage: RR5 = RealField(5) sage: below1 = RR5(1).nextbelow() sage: check(RRd5(below1)) 31/32 sage: check(RRu5(below1)) 16/17 sage: check(below1) 21/22 sage: below1.exact_rational() 31/32 sage: above1 = RR5(1).nextabove() sage: check(RRd5(above1)) 10/9 sage: check(RRu5(above1)) 17/16 sage: check(above1) 12/11 sage: above1.exact_rational() 17/16 sage: check(RR(1234)) 1234 sage: check(RR5(1234)) 1185 sage: check(RR5(1184)) 1120 sage: RRd2 = RealField(2, rnd='RNDD') sage: RRu2 = RealField(2, rnd='RNDU') sage: RR2 = RealField(2) sage: check(RR2(8)) 7 sage: check(RRd2(8)) 8 sage: check(RRu2(8)) 7 sage: check(RR2(13)) 11 sage: check(RRd2(13)) 12 sage: check(RRu2(13)) 13 sage: check(RR2(16)) 14 sage: check(RRd2(16)) 16 sage: check(RRu2(16)) 13 sage: check(RR2(24)) 21 sage: check(RRu2(24)) 17 sage: check(RR2(-24)) -21 sage: check(RRu2(-24)) -24
-
sin
()¶ Return the sine of
self
.EXAMPLES:
sage: R = RealField(100) sage: R(2).sin() 0.90929742682568169539601986591
-
sincos
()¶ Return a pair consisting of the sine and cosine of
self
.EXAMPLES:
sage: R = RealField() sage: t = R.pi()/6 sage: t.sincos() (0.500000000000000, 0.866025403784439)
-
sinh
()¶ Return the hyperbolic sine of
self
.EXAMPLES:
sage: q = RR.pi()/12 sage: q.sinh() 0.264800227602271
-
sqrt
(extend=True, all=False)¶ The square root function.
INPUT:
extend
– bool (default:True
); ifTrue
, return a square root in a complex field if necessary ifself
is negative; otherwise raise aValueError
all
– bool (default:False
); ifTrue
, return a list of all square roots.
EXAMPLES:
sage: r = -2.0 sage: r.sqrt() 1.41421356237310*I
sage: r = 4.0 sage: r.sqrt() 2.00000000000000 sage: r.sqrt()^2 == r True
sage: r = 4344 sage: r.sqrt() 2*sqrt(1086)
sage: r = 4344.0 sage: r.sqrt()^2 == r True sage: r.sqrt()^2 - r 0.000000000000000
sage: r = -2.0 sage: r.sqrt() 1.41421356237310*I
-
str
(base=10, digits=0, no_sci=None, e=None, truncate=False, skip_zeroes=False)¶ Return a string representation of
self
.INPUT:
base
– (default: 10) base for outputdigits
– (default: 0) number of digits to display. Whendigits
is zero, choose this automatically.no_sci
– if 2, never print using scientific notation; ifTrue
, use scientific notation only for large or small numbers; ifFalse
always print with scientific notation; ifNone
(the default), print how the parent prints.e
– symbol used in scientific notation; defaults to ‘e’ for base=10, and ‘@’ otherwisetruncate
– (default:False
) ifTrue
, round off the last digits in base-10 printing to lessen confusing base-2 roundoff issues. This flag may not be used in other bases or whendigits
is given.skip_zeroes
– (default:False
) ifTrue
, skip trailing zeroes in mantissa
EXAMPLES:
sage: a = 61/3.0; a 20.3333333333333 sage: a.str() '20.333333333333332' sage: a.str(truncate=True) '20.3333333333333' sage: a.str(2) '10100.010101010101010101010101010101010101010101010101' sage: a.str(no_sci=False) '2.0333333333333332e1' sage: a.str(16, no_sci=False) '1.4555555555555@1' sage: a.str(digits=5) '20.333' sage: a.str(2, digits=5) '10100.' sage: b = 2.0^99 sage: b.str() '6.3382530011411470e29' sage: b.str(no_sci=False) '6.3382530011411470e29' sage: b.str(no_sci=True) '6.3382530011411470e29' sage: c = 2.0^100 sage: c.str() '1.2676506002282294e30' sage: c.str(no_sci=False) '1.2676506002282294e30' sage: c.str(no_sci=True) '1.2676506002282294e30' sage: c.str(no_sci=2) '1267650600228229400000000000000.' sage: 0.5^53 1.11022302462516e-16 sage: 0.5^54 5.55111512312578e-17 sage: (0.01).str() '0.010000000000000000' sage: (0.01).str(skip_zeroes=True) '0.01' sage: (-10.042).str() '-10.042000000000000' sage: (-10.042).str(skip_zeroes=True) '-10.042' sage: (389.0).str(skip_zeroes=True) '389.'
Test various bases:
sage: print((65536.0).str(base=2)) 1.0000000000000000000000000000000000000000000000000000e16 sage: print((65536.0).str(base=36)) 1ekg.00000000 sage: print((65536.0).str(base=62)) H32.0000000
String conversion respects rounding:
sage: x = -RR.pi() sage: x.str(digits=1) '-3.' sage: y = RealField(53, rnd="RNDD")(x) sage: y.str(digits=1) '-4.' sage: y = RealField(53, rnd="RNDU")(x) sage: y.str(digits=1) '-3.' sage: y = RealField(53, rnd="RNDZ")(x) sage: y.str(digits=1) '-3.' sage: y = RealField(53, rnd="RNDA")(x) sage: y.str(digits=1) '-4.'
Zero has the correct number of digits:
sage: zero = RR.zero() sage: print(zero.str(digits=3)) 0.00 sage: print(zero.str(digits=3, no_sci=False)) 0.00e0 sage: print(zero.str(digits=3, skip_zeroes=True)) 0.
The output always contains a decimal point, except when using scientific notation with exactly one digit:
sage: print((1e1).str(digits=1)) 10. sage: print((1e10).str(digits=1)) 1e10 sage: print((1e-1).str(digits=1)) 0.1 sage: print((1e-10).str(digits=1)) 1e-10 sage: print((-1e1).str(digits=1)) -10. sage: print((-1e10).str(digits=1)) -1e10 sage: print((-1e-1).str(digits=1)) -0.1 sage: print((-1e-10).str(digits=1)) -1e-10
-
tan
()¶ Return the tangent of
self
.EXAMPLES:
sage: q = RR.pi()/3 sage: q.tan() 1.73205080756888 sage: q = RR.pi()/6 sage: q.tan() 0.577350269189626
-
tanh
()¶ Return the hyperbolic tangent of
self
.EXAMPLES:
sage: q = RR.pi()/11 sage: q.tanh() 0.278079429295850
-
trunc
()¶ Truncate
self
.EXAMPLES:
sage: (2.99).trunc() 2 sage: (-0.00).trunc() 0 sage: (0.00).trunc() 0
-
ulp
(field=None)¶ Returns the unit of least precision of
self
, which is the weight of the least significant bit ofself
. This is always a strictly positive number. It is also the gap between this number and the closest number with larger absolute value that can be represented.INPUT:
field
–RealField
used as parent of the result. If not specified, useparent(self)
.
Note
The ulp of zero is defined as the smallest representable positive number. For extremely small numbers, underflow occurs and the output is also the smallest representable positive number (the rounding mode is ignored, this computation is done by rounding towards +infinity).
See also
epsilon()
for a scale-invariant version of this.EXAMPLES:
sage: a = 1.0 sage: a.ulp() 2.22044604925031e-16 sage: (-1.5).ulp() 2.22044604925031e-16 sage: a + a.ulp() == a False sage: a + a.ulp()/2 == a True sage: a = RealField(500).pi() sage: b = a + a.ulp() sage: (a+b)/2 in [a,b] True
The ulp of zero is the smallest non-zero number:
sage: a = RR(0).ulp() sage: a 2.38256490488795e-323228497 # 32-bit 8.50969131174084e-1388255822130839284 # 64-bit sage: a.fp_rank() 1
The ulp of very small numbers results in underflow, so the smallest non-zero number is returned instead:
sage: a.ulp() == a True
We use a different field:
sage: a = RealField(256).pi() sage: a.ulp() 3.454467422037777850154540745120159828446400145774512554009481388067436721265e-77 sage: e = a.ulp(RealField(64)) sage: e 3.45446742203777785e-77 sage: parent(e) Real Field with 64 bits of precision sage: e = a.ulp(QQ) Traceback (most recent call last): ... TypeError: field argument must be a RealField
For infinity and NaN, we get back positive infinity and NaN:
sage: a = RR(infinity) sage: a.ulp() +infinity sage: (-a).ulp() +infinity sage: a = RR('nan') sage: a.ulp() NaN sage: parent(RR('nan').ulp(RealField(42))) Real Field with 42 bits of precision
-
y0
()¶ Return the value of the Bessel \(Y\) function of order 0 at
self
.EXAMPLES:
sage: R = RealField(53) sage: R(2).y0() 0.510375672649745
-
y1
()¶ Return the value of the Bessel \(Y\) function of order 1 at
self
.EXAMPLES:
sage: R = RealField(53) sage: R(2).y1() -0.107032431540938
-
yn
(n)¶ Return the value of the Bessel \(Y\) function of order \(n\) at
self
.EXAMPLES:
sage: R = RealField(53) sage: R(2).yn(3) -1.12778377684043 sage: R(2).yn(-17) 7.09038821729481e12
-
zeta
()¶ Return the Riemann zeta function evaluated at this real number
Note
PARI is vastly more efficient at computing the Riemann zeta function. See the example below for how to use it.
EXAMPLES:
sage: R = RealField() sage: R(2).zeta() 1.64493406684823 sage: R.pi()^2/6 1.64493406684823 sage: R(-2).zeta() 0.000000000000000 sage: R(1).zeta() +infinity
Computing zeta using PARI is much more efficient in difficult cases. Here’s how to compute zeta with at least a given precision:
sage: z = pari(2).zeta(precision=53); z 1.64493406684823 sage: pari(2).zeta(precision=128).sage().prec() 128 sage: pari(2).zeta(precision=65).sage().prec() 128 # 64-bit 96 # 32-bit
Note that the number of bits of precision in the constructor only effects the internal precision of the pari number, which is rounded up to the nearest multiple of 32 or 64. To increase the number of digits that gets displayed you must use
pari.set_real_precision
.sage: type(z) <type 'cypari2.gen.Gen'> sage: R(z) 1.64493406684823
-
-
class
sage.rings.real_mpfr.
ZZtoRR
¶ Bases:
sage.categories.map.Map
-
sage.rings.real_mpfr.
create_RealField
(*args, **kwds)¶ Deprecated function moved to
sage.rings.real_field
.
-
sage.rings.real_mpfr.
create_RealNumber
(s, base=10, pad=0, rnd='RNDN', min_prec=53)¶ Return the real number defined by the string
s
as an element ofRealField(prec=n)
, wheren
potentially has slightly more (controlled by pad) bits than given bys
.INPUT:
s
– a string that defines a real number (or something whose string representation defines a number)base
– an integer between 2 and 62pad
– an integer >= 0.rnd
– rounding mode:'RNDN'
– round to nearest'RNDZ'
– round toward zero'RNDD'
– round down'RNDU'
– round up
min_prec
– number will have at least this many bits of precision, no matter what.
EXAMPLES:
sage: RealNumber('2.3') # indirect doctest 2.30000000000000 sage: RealNumber(10) 10.0000000000000 sage: RealNumber('1.0000000000000000000000000000000000') 1.000000000000000000000000000000000 sage: RealField(200)(1.2) 1.2000000000000000000000000000000000000000000000000000000000 sage: (1.2).parent() is RR True
We can use various bases:
sage: RealNumber("10101e2",base=2) 84.0000000000000 sage: RealNumber("deadbeef", base=16) 3.73592855900000e9 sage: RealNumber("deadbeefxxx", base=16) Traceback (most recent call last): ... TypeError: unable to convert 'deadbeefxxx' to a real number sage: RealNumber("z", base=36) 35.0000000000000 sage: RealNumber("AAA", base=37) 14070.0000000000 sage: RealNumber("aaa", base=37) 50652.0000000000 sage: RealNumber("3.4", base="foo") Traceback (most recent call last): ... TypeError: an integer is required sage: RealNumber("3.4", base=63) Traceback (most recent call last): ... ValueError: base (=63) must be an integer between 2 and 62
The rounding mode is respected in all cases:
sage: RealNumber("1.5", rnd="RNDU").parent() Real Field with 53 bits of precision and rounding RNDU sage: RealNumber("1.50000000000000000000000000000000000000", rnd="RNDU").parent() Real Field with 130 bits of precision and rounding RNDU
-
class
sage.rings.real_mpfr.
double_toRR
¶ Bases:
sage.categories.map.Map
-
class
sage.rings.real_mpfr.
int_toRR
¶ Bases:
sage.categories.map.Map
-
sage.rings.real_mpfr.
is_RealField
(x)¶ Returns
True
ifx
is technically of a Python real field type.EXAMPLES:
sage: sage.rings.real_mpfr.is_RealField(RR) True sage: sage.rings.real_mpfr.is_RealField(CC) False
-
sage.rings.real_mpfr.
is_RealNumber
(x)¶ Return
True
ifx
is of typeRealNumber
, meaning that it is an element of the MPFR real field with some precision.EXAMPLES:
sage: from sage.rings.real_mpfr import is_RealNumber sage: is_RealNumber(2.5) True sage: is_RealNumber(float(2.3)) False sage: is_RealNumber(RDF(2)) False sage: is_RealNumber(pi) False
-
sage.rings.real_mpfr.
mpfr_get_exp_max
()¶ Return the current maximal exponent for MPFR numbers.
EXAMPLES:
sage: from sage.rings.real_mpfr import mpfr_get_exp_max sage: mpfr_get_exp_max() 1073741823 # 32-bit 4611686018427387903 # 64-bit sage: 0.5 << mpfr_get_exp_max() 1.04928935823369e323228496 # 32-bit 2.93782689455579e1388255822130839282 # 64-bit sage: 0.5 << (mpfr_get_exp_max()+1) +infinity
-
sage.rings.real_mpfr.
mpfr_get_exp_max_max
()¶ Get the maximal value allowed for
mpfr_set_exp_max()
.EXAMPLES:
sage: from sage.rings.real_mpfr import mpfr_get_exp_max_max, mpfr_set_exp_max sage: mpfr_get_exp_max_max() 1073741823 # 32-bit 4611686018427387903 # 64-bit
This is really the maximal value allowed:
sage: mpfr_set_exp_max(mpfr_get_exp_max_max() + 1) Traceback (most recent call last): ... OverflowError: bad value for mpfr_set_exp_max()
-
sage.rings.real_mpfr.
mpfr_get_exp_min
()¶ Return the current minimal exponent for MPFR numbers.
EXAMPLES:
sage: from sage.rings.real_mpfr import mpfr_get_exp_min sage: mpfr_get_exp_min() -1073741823 # 32-bit -4611686018427387903 # 64-bit sage: 0.5 >> (-mpfr_get_exp_min()) 2.38256490488795e-323228497 # 32-bit 8.50969131174084e-1388255822130839284 # 64-bit sage: 0.5 >> (-mpfr_get_exp_min()+1) 0.000000000000000
-
sage.rings.real_mpfr.
mpfr_get_exp_min_min
()¶ Get the minimal value allowed for
mpfr_set_exp_min()
.EXAMPLES:
sage: from sage.rings.real_mpfr import mpfr_get_exp_min_min, mpfr_set_exp_min sage: mpfr_get_exp_min_min() -1073741823 # 32-bit -4611686018427387903 # 64-bit
This is really the minimal value allowed:
sage: mpfr_set_exp_min(mpfr_get_exp_min_min() - 1) Traceback (most recent call last): ... OverflowError: bad value for mpfr_set_exp_min()
-
sage.rings.real_mpfr.
mpfr_prec_max
()¶
-
sage.rings.real_mpfr.
mpfr_prec_min
()¶ Return the mpfr variable
MPFR_PREC_MIN
.EXAMPLES:
sage: from sage.rings.real_mpfr import mpfr_prec_min sage: mpfr_prec_min() 1 sage: R = RealField(2) sage: R(2) + R(1) 3.0 sage: R(4) + R(1) 4.0 sage: R = RealField(0) Traceback (most recent call last): ... ValueError: prec (=0) must be >= 1 and <= 2147483391
-
sage.rings.real_mpfr.
mpfr_set_exp_max
(e)¶ Set the maximal exponent for MPFR numbers.
EXAMPLES:
sage: from sage.rings.real_mpfr import mpfr_get_exp_max, mpfr_set_exp_max sage: old = mpfr_get_exp_max() sage: mpfr_set_exp_max(1000) sage: 0.5 << 1000 5.35754303593134e300 sage: 0.5 << 1001 +infinity sage: mpfr_set_exp_max(old) sage: 0.5 << 1001 1.07150860718627e301
-
sage.rings.real_mpfr.
mpfr_set_exp_min
(e)¶ Set the minimal exponent for MPFR numbers.
EXAMPLES:
sage: from sage.rings.real_mpfr import mpfr_get_exp_min, mpfr_set_exp_min sage: old = mpfr_get_exp_min() sage: mpfr_set_exp_min(-1000) sage: 0.5 >> 1000 4.66631809251609e-302 sage: 0.5 >> 1001 0.000000000000000 sage: mpfr_set_exp_min(old) sage: 0.5 >> 1001 2.33315904625805e-302