Field of Arbitrary Precision Complex Numbers¶
AUTHORS:
- William Stein (2006-01-26): complete rewrite
- Niles Johnson (2010-08): trac ticket #3893:
random_element()
should pass on*args
and**kwds
. - Travis Scrimshaw (2012-10-18): Added documentation for full coverage.
-
sage.rings.complex_field.
ComplexField
(prec=53, names=None)¶ Return the complex field with real and imaginary parts having prec bits of precision.
EXAMPLES:
sage: ComplexField() Complex Field with 53 bits of precision sage: ComplexField(100) Complex Field with 100 bits of precision sage: ComplexField(100).base_ring() Real Field with 100 bits of precision sage: i = ComplexField(200).gen() sage: i^2 -1.0000000000000000000000000000000000000000000000000000000000
-
class
sage.rings.complex_field.
ComplexField_class
(prec=53)¶ Bases:
sage.rings.ring.Field
An approximation to the field of complex numbers using floating point numbers with any specified precision. Answers derived from calculations in this approximation may differ from what they would be if those calculations were performed in the true field of complex numbers. This is due to the rounding errors inherent to finite precision calculations.
EXAMPLES:
sage: C = ComplexField(); C Complex Field with 53 bits of precision sage: Q = RationalField() sage: C(1/3) 0.333333333333333 sage: C(1/3, 2) 0.333333333333333 + 2.00000000000000*I sage: C(RR.pi()) 3.14159265358979 sage: C(RR.log2(), RR.pi()) 0.693147180559945 + 3.14159265358979*I
We can also coerce rational numbers and integers into C, but coercing a polynomial will raise an exception:
sage: Q = RationalField() sage: C(1/3) 0.333333333333333 sage: S = PolynomialRing(Q, 'x') sage: C(S.gen()) Traceback (most recent call last): ... TypeError: unable to coerce to a ComplexNumber: <type 'sage.rings.polynomial.polynomial_rational_flint.Polynomial_rational_flint'>
This illustrates precision:
sage: CC = ComplexField(10); CC(1/3, 2/3) 0.33 + 0.67*I sage: CC Complex Field with 10 bits of precision sage: CC = ComplexField(100); CC Complex Field with 100 bits of precision sage: z = CC(1/3, 2/3); z 0.33333333333333333333333333333 + 0.66666666666666666666666666667*I
We can load and save complex numbers and the complex field:
sage: loads(z.dumps()) == z True sage: loads(CC.dumps()) == CC True sage: k = ComplexField(100) sage: loads(dumps(k)) == k True
This illustrates basic properties of a complex field:
sage: CC = ComplexField(200) sage: CC.is_field() True sage: CC.characteristic() 0 sage: CC.precision() 200 sage: CC.variable_name() 'I' sage: CC == ComplexField(200) True sage: CC == ComplexField(53) False sage: CC == 1.1 False
-
algebraic_closure
()¶ Return the algebraic closure of
self
(which is itself).EXAMPLES:
sage: CC Complex Field with 53 bits of precision sage: CC.algebraic_closure() Complex Field with 53 bits of precision sage: CC = ComplexField(1000) sage: CC.algebraic_closure() is CC True
-
characteristic
()¶ Return the characteristic of \(\CC\), which is 0.
EXAMPLES:
sage: ComplexField().characteristic() 0
-
construction
()¶ Returns the functorial construction of
self
, namely the algebraic closure of the real field with the same precision.EXAMPLES:
sage: c, S = CC.construction(); S Real Field with 53 bits of precision sage: CC == c(S) True
-
gen
(n=0)¶ Return the generator of the complex field.
EXAMPLES:
sage: ComplexField().gen(0) 1.00000000000000*I
-
is_exact
()¶ Return whether or not this field is exact, which is always
False
.EXAMPLES:
sage: ComplexField().is_exact() False
-
ngens
()¶ The number of generators of this complex field as an \(\RR\)-algebra.
There is one generator, namely
sqrt(-1)
.EXAMPLES:
sage: ComplexField().ngens() 1
-
pi
()¶ Returns \(\pi\) as a complex number.
EXAMPLES:
sage: ComplexField().pi() 3.14159265358979 sage: ComplexField(100).pi() 3.1415926535897932384626433833
-
prec
()¶ Return the precision of this complex field.
EXAMPLES:
sage: ComplexField().prec() 53 sage: ComplexField(15).prec() 15
-
precision
()¶ Return the precision of this complex field.
EXAMPLES:
sage: ComplexField().prec() 53 sage: ComplexField(15).prec() 15
-
random_element
(component_max=1, *args, **kwds)¶ Returns a uniformly distributed random number inside a square centered on the origin (by default, the square \([-1,1] \times [-1,1]\)).
Passes additional arguments and keywords to underlying real field.
EXAMPLES:
sage: [CC.random_element() for _ in range(5)] [0.153636193785613 - 0.502987375247518*I, 0.609589964322241 - 0.948854594338216*I, 0.968393085385764 - 0.148483595843485*I, -0.908976099636549 + 0.126219184235123*I, 0.461226845462901 - 0.0420335212948924*I] sage: CC6 = ComplexField(6) sage: [CC6.random_element(2^-20) for _ in range(5)] [-5.4e-7 - 3.3e-7*I, 2.1e-7 + 8.0e-7*I, -4.8e-7 - 8.6e-7*I, -6.0e-8 + 2.7e-7*I, 6.0e-8 + 1.8e-7*I] sage: [CC6.random_element(pi^20) for _ in range(5)] [6.7e8 - 5.4e8*I, -9.4e8 + 5.0e9*I, 1.2e9 - 2.7e8*I, -2.3e9 - 4.0e9*I, 7.7e9 + 1.2e9*I]
Passes extra positional or keyword arguments through:
sage: [CC.random_element(distribution='1/n') for _ in range(5)] [-0.900931453455899 - 0.932172283929307*I, 0.327862582226912 + 0.828104487111727*I, 0.246299162813240 + 0.588214960163442*I, 0.892970599589521 - 0.266744694790704*I, 0.878458776600692 - 0.905641181799996*I]
-
scientific_notation
(status=None)¶ Set or return the scientific notation printing flag.
If this flag is
True
then complex numbers with this space as parent print using scientific notation.EXAMPLES:
sage: C = ComplexField() sage: C((0.025, 2)) 0.0250000000000000 + 2.00000000000000*I sage: C.scientific_notation(True) sage: C((0.025, 2)) 2.50000000000000e-2 + 2.00000000000000e0*I sage: C.scientific_notation(False) sage: C((0.025, 2)) 0.0250000000000000 + 2.00000000000000*I
-
to_prec
(prec)¶ Returns the complex field to the specified precision.
EXAMPLES:
sage: CC.to_prec(10) Complex Field with 10 bits of precision sage: CC.to_prec(100) Complex Field with 100 bits of precision
-
zeta
(n=2)¶ Return a primitive \(n\)-th root of unity.
INPUT:
n
- an integer (default: 2)
OUTPUT: a complex \(n\)-th root of unity.
EXAMPLES:
sage: C = ComplexField() sage: C.zeta(2) -1.00000000000000 sage: C.zeta(5) 0.309016994374947 + 0.951056516295154*I
-
-
sage.rings.complex_field.
is_ComplexField
(x)¶ Check if
x
is acomplex field
.EXAMPLES:
sage: from sage.rings.complex_field import is_ComplexField as is_CF sage: is_CF(ComplexField()) True sage: is_CF(ComplexField(12)) True sage: is_CF(CC) True
-
sage.rings.complex_field.
late_import
()¶ Import the objects/modules after build (when needed).