Common parametrized surfaces in 3D.¶
AUTHORS:
- Joris Vankerschaver (2012-06-16)
-
class
sage.geometry.riemannian_manifolds.surface3d_generators.
SurfaceGenerators
¶ A class consisting of generators for several common parametrized surfaces in 3D.
-
static
Catenoid
(c=1, name='Catenoid')¶ Return a catenoid surface, with parametric representation
\[\begin{split}\begin{aligned} x(u, v) & = c \cosh(v/c) \cos(u); \\ y(u, v) & = c \cosh(v/c) \sin(u); \\ z(u, v) & = v. \end{aligned}\end{split}\]INPUT:
c
– surface parameter.name
– string. Name of the surface.
For more information, see Wikipedia article Catenoid.
EXAMPLES:
sage: cat = surfaces.Catenoid(); cat Parametrized surface ('Catenoid') with equation (cos(u)*cosh(v), cosh(v)*sin(u), v) sage: cat.plot() Graphics3d Object
-
static
Crosscap
(r=1, name='Crosscap')¶ Return a crosscap surface, with parametrization
\[\begin{split}\begin{aligned} x(u, v) & = r(1 + \cos(v)) \cos(u); \\ y(u, v) & = r(1 + \cos(v)) \sin(u); \\ z(u, v) & = - r\tanh(u - \pi) \sin(v). \end{aligned}\end{split}\]INPUT:
r
– surface parameter.name
– string. Name of the surface.
For more information, see Wikipedia article Cross-cap.
EXAMPLES:
sage: crosscap = surfaces.Crosscap(); crosscap Parametrized surface ('Crosscap') with equation ((cos(v) + 1)*cos(u), (cos(v) + 1)*sin(u), -sin(v)*tanh(-pi + u)) sage: crosscap.plot() Graphics3d Object
-
static
Dini
(a=1, b=1, name="Dini's surface")¶ Return Dini’s surface, with parametrization
\[\begin{split}\begin{aligned} x(u, v) & = a \cos(u)\sin(v); \\ y(u, v) & = a \sin(u)\sin(v); \\ z(u, v) & = u + \log(\tan(v/2)) + \cos(v). \end{aligned}\end{split}\]INPUT:
a, b
– surface parameters.name
– string. Name of the surface.
For more information, see Wikipedia article Dini’s_surface.
EXAMPLES:
sage: dini = surfaces.Dini(a=3, b=4); dini Parametrized surface ('Dini's surface') with equation (3*cos(u)*sin(v), 3*sin(u)*sin(v), 4*u + 3*cos(v) + 3*log(tan(1/2*v))) sage: dini.plot() Graphics3d Object
-
static
Ellipsoid
(center=(0, 0, 0), axes=(1, 1, 1), name='Ellipsoid')¶ Return an ellipsoid centered at
center
whose semi-principal axes have lengths given by the components ofaxes
. The parametrization of the ellipsoid is given by\[\begin{split}\begin{aligned} x(u, v) & = x_0 + a \cos(u) \cos(v); \\ y(u, v) & = y_0 + b \sin(u) \cos(v); \\ z(u, v) & = z_0 + c \sin(v). \end{aligned}\end{split}\]INPUT:
center
– 3-tuple. Coordinates of the center of the ellipsoid.axes
– 3-tuple. Lengths of the semi-principal axes.name
– string. Name of the ellipsoid.
For more information, see Wikipedia article Ellipsoid.
EXAMPLES:
sage: ell = surfaces.Ellipsoid(axes=(1, 2, 3)); ell Parametrized surface ('Ellipsoid') with equation (cos(u)*cos(v), 2*cos(v)*sin(u), 3*sin(v)) sage: ell.plot() Graphics3d Object
-
static
Enneper
(name="Enneper's surface")¶ Return Enneper’s surface, with parametrization
\[\begin{split}\begin{aligned} x(u, v) & = u(1 - u^2/3 + v^2)/3; \\ y(u, v) & = -v(1 - v^2/3 + u^2)/3; \\ z(u, v) & = (u^2 - v^2)/3. \end{aligned}\end{split}\]INPUT:
name
– string. Name of the surface.
For more information, see Wikipedia article Enneper_surface.
EXAMPLES:
sage: enn = surfaces.Enneper(); enn Parametrized surface ('Enneper's surface') with equation (-1/9*(u^2 - 3*v^2 - 3)*u, -1/9*(3*u^2 - v^2 + 3)*v, 1/3*u^2 - 1/3*v^2) sage: enn.plot() Graphics3d Object
-
static
Helicoid
(h=1, name='Helicoid')¶ Return a helicoid surface, with parametrization
\[\begin{split}\begin{aligned} x(\rho, \theta) & = \rho \cos(\theta); \\ y(\rho, \theta) & = \rho \sin(\theta); \\ z(\rho, \theta) & = h\theta/(2\pi). \end{aligned}\end{split}\]INPUT:
h
– distance along the z-axis between two successive turns of the helicoid.name
– string. Name of the surface.
For more information, see Wikipedia article Helicoid.
EXAMPLES:
sage: helicoid = surfaces.Helicoid(h=2); helicoid Parametrized surface ('Helicoid') with equation (rho*cos(theta), rho*sin(theta), theta/pi) sage: helicoid.plot() Graphics3d Object
-
static
Klein
(r=1, name='Klein bottle')¶ Return the Klein bottle, in the figure-8 parametrization given by
\[\begin{split}\begin{aligned} x(u, v) & = (r + \cos(u/2)\cos(v) - \sin(u/2)\sin(2v)) \cos(u); \\ y(u, v) & = (r + \cos(u/2)\cos(v) - \sin(u/2)\sin(2v)) \sin(u); \\ z(u, v) & = \sin(u/2)\cos(v) + \cos(u/2)\sin(2v). \end{aligned}\end{split}\]INPUT:
r
– radius of the “figure-8” circle.name
– string. Name of the surface.
For more information, see Wikipedia article Klein_bottle.
EXAMPLES:
sage: klein = surfaces.Klein(); klein Parametrized surface ('Klein bottle') with equation (-(sin(1/2*u)*sin(2*v) - cos(1/2*u)*sin(v) - 1)*cos(u), -(sin(1/2*u)*sin(2*v) - cos(1/2*u)*sin(v) - 1)*sin(u), cos(1/2*u)*sin(2*v) + sin(1/2*u)*sin(v)) sage: klein.plot() Graphics3d Object
-
static
MonkeySaddle
(name='Monkey saddle')¶ Return a monkey saddle surface, with equation
\[z = x^3 - 3xy^2.\]INPUT:
name
– string. Name of the surface.
For more information, see Wikipedia article Monkey_saddle.
EXAMPLES:
sage: saddle = surfaces.MonkeySaddle(); saddle Parametrized surface ('Monkey saddle') with equation (u, v, u^3 - 3*u*v^2) sage: saddle.plot() Graphics3d Object
-
static
Paraboloid
(a=1, b=1, c=1, elliptic=True, name=None)¶ Return a paraboloid with equation
\[\frac{z}{c} = \pm \frac{x^2}{a^2} + \frac{y^2}{b^2}\]When the plus sign is selected, the paraboloid is elliptic. Otherwise the surface is a hyperbolic paraboloid.
INPUT:
a
,b
,c
– Surface parameters.elliptic
(default: True) – whether to create an elliptic or hyperbolic paraboloid.name
– string. Name of the surface.
For more information, see Wikipedia article Paraboloid.
EXAMPLES:
sage: epar = surfaces.Paraboloid(1, 3, 2); epar Parametrized surface ('Elliptic paraboloid') with equation (u, v, 2*u^2 + 2/9*v^2) sage: epar.plot() Graphics3d Object sage: hpar = surfaces.Paraboloid(2, 3, 1, elliptic=False); hpar Parametrized surface ('Hyperbolic paraboloid') with equation (u, v, -1/4*u^2 + 1/9*v^2) sage: hpar.plot() Graphics3d Object
-
static
Sphere
(center=(0, 0, 0), R=1, name='Sphere')¶ Return a sphere of radius
R
centered atcenter
.INPUT:
center
– 3-tuple, center of the sphere.R
– Radius of the sphere.name
– string. Name of the surface.
For more information, see Wikipedia article Sphere.
EXAMPLES:
sage: sphere = surfaces.Sphere(center=(0, 1, -1), R=2); sphere Parametrized surface ('Sphere') with equation (2*cos(u)*cos(v), 2*cos(v)*sin(u) + 1, 2*sin(v) - 1) sage: sphere.plot() Graphics3d Object
Note that the radius of the sphere can be negative. The surface thus obtained is equal to the sphere (or part thereof) with positive radius, whose coordinate functions have been multiplied by -1. Compare for instant the first octant of the unit sphere with positive radius:
sage: octant1 = surfaces.Sphere(R=1); octant1 Parametrized surface ('Sphere') with equation (cos(u)*cos(v), cos(v)*sin(u), sin(v)) sage: octant1.plot((0, pi/2), (0, pi/2)) Graphics3d Object
with the first octant of the unit sphere with negative radius:
sage: octant2 = surfaces.Sphere(R=-1); octant2 Parametrized surface ('Sphere') with equation (-cos(u)*cos(v), -cos(v)*sin(u), -sin(v)) sage: octant2.plot((0, pi/2), (0, pi/2)) Graphics3d Object
-
static
Torus
(r=2, R=3, name='Torus')¶ Return a torus obtained by revolving a circle of radius
r
around a coplanar axisR
units away from the center of the circle. The parametrization used is\[\begin{split}\begin{aligned} x(u, v) & = (R + r \cos(v)) \cos(u); \\ y(u, v) & = (R + r \cos(v)) \sin(u); \\ z(u, v) & = r \sin(v). \end{aligned}\end{split}\]INPUT:
r
,R
– Minor and major radius of the torus.name
– string. Name of the surface.
For more information, see Wikipedia article Torus.
EXAMPLES:
sage: torus = surfaces.Torus(); torus Parametrized surface ('Torus') with equation ((2*cos(v) + 3)*cos(u), (2*cos(v) + 3)*sin(u), 2*sin(v)) sage: torus.plot() Graphics3d Object
-
static
WhitneyUmbrella
(name="Whitney's umbrella")¶ Return Whitney’s umbrella, with parametric representation
\[x(u, v) = uv, \quad y(u, v) = u, \quad z(u, v) = v^2.\]INPUT:
name
– string. Name of the surface.
For more information, see Wikipedia article Whitney_umbrella.
EXAMPLES:
sage: whitney = surfaces.WhitneyUmbrella(); whitney Parametrized surface ('Whitney's umbrella') with equation (u*v, u, v^2) sage: whitney.plot() Graphics3d Object
-
static