The references for Sage, sorted alphabetically by citation key.
REFERENCES:
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
A
[Ab1995] | Julian R. Abel,
On the Existence of Balanced Incomplete Block Designs and Transversal Designs,
PhD Thesis,
University of New South Wales,
1995 |
[AB2007] | M. Aschenbrenner, C. Hillar,
Finite generation of symmetric ideals.
Trans. Amer. Math. Soc. 359 (2007), no. 11, 5171–5192. |
[AB2008] | M. Aschenbrenner, C. Hillar,
An Algorithm for Finding Symmetric Groebner Bases in Infinite
Dimensional Rings. arXiv 0801.4439. |
[ABBR2012] | A. Abad, R. Barrio, F. Blesa, M. Rodriguez. Algorithm 924.
ACM Transactions on Mathematical Software, 39 no. 1 (2012), 1-28. |
[ABZ2007] | R. Aharoni and E. Berger and R. Ziv.
Independent systems of representatives in weighted graphs.
Combinatorica vol 27, num 3, p253–267, 2007.
doi:10.1007/s00493-007-2086-y. |
[AC1994] | R.J.R. Abel and Y.W. Cheng,
Some new MOLS of order 2np for p a prime power,
The Australasian Journal of Combinatorics, vol 10 (1994) |
[ACFLSS04] | F. N. Abu-Khzam, R. L. Collins, M. R. Fellows, M. A. Langston,
W. H. Suters, and C. T. Symons: Kernelization Algorithm for the
Vertex Cover Problem: Theory and Experiments. SIAM
ALENEX/ANALCO 2004: 62-69. |
[ACHRS2008] | L. Addario-Berry, M. Chudnovsky, F. Havet, B. Reed, P. Seymour,
Bisimplicial vertices in even-hole-free graphs.
Journal of Combinatorial Theory, Series B, vol 98, n.6,
pp 1119-1164, 2008. doi:10.1016/j.jctb.2007.12.006. |
[ADKF1970] | V. Arlazarov, E. Dinic, M. Kronrod,
and I. Faradzev. ‘On Economical Construction of the
Transitive Closure of a Directed Graph.’
Dokl. Akad. Nauk. SSSR No. 194 (in Russian), English
Translation in Soviet Math Dokl. No. 11, 1970. |
[ADKLPY2014] | M. R. Albrecht, B. Driessen, E. B. Kavun, G. Leander, C. Paar,
and T. Yalcin, Block ciphers - focus on the linear layer
(feat. PRIDE); in CRYPTO, (2014), pp. 57-76. |
[ABBS2013] | J.-C Aval, A. Boussicault, M. Bouvel, M. Silimbani,
Combinatorics of non-ambiguous trees,
arXiv 1305.3716 |
[AD2010] | Arett, Danielle and Doree, Suzanne,
Coloring and counting on the Hanoi graphs.
Mathematics Magazine, Volume 83, Number 3, June 2010, pages 200-9.
doi:10.4169/002557010X494841. |
[AE1993] | A. Apostolico, A. Ehrenfeucht, Efficient detection of
quasiperiodicities in strings,
Theoret. Comput. Sci. 119 (1993) 247–265. |
[AGHJLPR2017] | Benjamin Assarf, Ewgenij Gawrilow, Katrin Herr, Michael Joswig,
Benjamin Lorenz, Andreas Paffenholz, and Thomas Rehn,
Computing convex hulls and counting integer points with
polymake, Math. Program. Comput. 9 (2017), no. 1, 1–38,
doi:10.1007/s12532-016-0104-z |
[AguSot05] | Marcelo Aguiar and Frank Sottile,
Structure of the Malvenuto-Reutenauer Hopf algebra of
permutations,
Advances in Mathematics, Volume 191, Issue 2, 1 March 2005,
pp. 225–275,
arXiv math/0203282v2. |
[AHK2015] | Karim Adiprasito, June Huh, and Eric Katz. Hodge theory
for combinatorial geometries. arXiv 1511.02888. |
[AHMP2008] | J.-P. Aumasson, L. Henzen, W. Meier, and R. C-W Phan,
Sha-3 proposal blake; in Submission to NIST, (2008). |
[AHU1974] | A. Aho, J. Hopcroft, and J. Ullman. ‘Chapter 6: Matrix
Multiplication and Related Operations.’ The Design and
Analysis of Computer Algorithms. Addison-Wesley, 1974. |
[AIKMMNT2001] | K. Aoki, T. Ichikawa, M. Kanda, M. Matsui, S. Moriai,
J. Nakajima, and T. Tokita,
Camellia: A 128-bit block cipher suitable for multiple
platforms - Design and analysis; in SAC, (2000), pp. 39-56. |
[Aj1996] | M. Ajtai. Generating hard instances of lattice problems
(extended abstract). STOC, pp. 99–108, ACM, 1996. |
[AK1994] | S. Ariki and K. Koike.
A Hecke algebra of \((\mathbb{Z}/r\mathbb{Z})\wr\mathfrak{S}_n\)
and construction of its irreducible representations.
Adv. Math. 106 (1994), 216–243,
MathSciNet MR1279219 |
[AJL2011] | S. Ariki, N. Jacon, and C. Lecouvey.
The modular branching rule for affine Hecke algebras of type A.
Adv. Math. 228:481-526, 2011. |
[Aki1980] | J. Akiyama. and G. Exoo and F. Harary. Covering and packing in
graphs. III: Cyclic and acyclic invariants. Mathematical Institute
of the Slovak Academy of Sciences. Mathematica Slovaca vol 30, n 4,
pages 405–417, 1980 |
[Al1947] | A. A. Albert, A Structure Theory for Jordan
Algebras. Annals of Mathematics, Second Series, Vol. 48,
No. 3 (Jul., 1947), pp. 546–567. |
[AL1978] | A. O. L. Atkin and Wen-Ch’ing Winnie Li, Twists of
newforms and pseudo-eigenvalues of \(W\)-operators.
Inventiones math. 48 (1978), 221-243. |
[AL2015] | M. Aguiar and A. Lauve, The characteristic polynomial of
the Adams operators on graded connected Hopf
algebras. Algebra Number Theory, v.9, 2015, n.3, 2015. |
[AM1969] | M. F. Atiyah and I. G. Macdonald, “Introduction to commutative
algebra”, Addison-Wesley, 1969. |
[AM1974] | J. F. Adams and H. R. Margolis, “Sub-Hopf-algebras of the
Steenrod algebra,” Proc. Cambridge Philos. Soc. 76 (1974),
45-52. |
[AM2000] | S. Ariki and A. Mathas.
The number of simple modules of the Hecke algebras of type G(r,1,n).
Math. Z. 233 (2000), no. 3, 601–623.
MathSciNet MR1750939 |
[AMOZ2006] | Asahiro, Y. and Miyano, E. and Ono, H. and Zenmyo, K.,
Graph orientation algorithms to minimize the maximum outdegree.
Proceedings of the 12th Computing: The Australasian Theory
Symposium, Volume 51, page 20.
Australian Computer Society, Inc. 2006. |
[Ap1997] | T. Apostol, Modular functions and Dirichlet series in
number theory, Springer, 1997 (2nd ed), section 3.7–3.9. |
[APR2001] | George E. Andrews, Peter Paule, Axel Riese,
MacMahon’s partition analysis: the Omega package,
European J. Combin. 22 (2001), no. 7, 887–904. |
[Ar2006] | D. Armstrong. Generalized noncrossing partitions and
combinatorics of Coxeter groups. Mem. Amer. Math. Soc., 2006. |
[AR2012] | D. Armstrong and B. Rhoades. “The Shi arrangement and the
Ish arrangement”. Transactions of the American
Mathematical Society 364 (2012),
1509-1528. arXiv 1009.1655 |
[Ariki1996] | S. Ariki. On the decomposition numbers of the Hecke
algebra of \(G(m,1,n)\). J. Math. Kyoto Univ. 36 (1996),
no. 4, 789–808. MathSciNet MR1443748 |
[Ariki2001] | S. Ariki. On the classification of simple modules for
cyclotomic Hecke algebras of type \(G(m,1,n)\) and Kleshchev
multipartitions. Osaka J. Math. 38 (2001), 827–837.
MathSciNet MR1864465 |
[Arn2002] | P. Arnoux, Sturmian sequences, in Substitutions in Dynamics,
N. Pytheas Fogg (Ed.), Arithmetics, and Combinatorics (Lecture
Notes in Mathematics, Vol. 1794), 2002. |
[AS1964] | M. Abramowitz and I. A. Stegun, Handbook of Mathematical
Functions, National Bureau of Standards Applied
Mathematics Series, 55. 1964. See also
http://www.math.sfu.ca/~cbm/aands/. |
[As2008] | Sami Assaf. A combinatorial realization of Schur-Weyl
duality via crystal graphs and dual equivalence
graphs. FPSAC 2008, 141-152, Discrete
Math. Theor. Comput. Sci. Proc., AJ, Assoc. Discrete
Math. Theor. Comput. Sci., (2008). arXiv 0804.1587v1 |
[AO2018] | Sami Assaf and Ezgi Kantarci Oguz. A local characterization
of crystals for the quantum queer superalgebra.
Preprint (2018). arXiv 1803.06317 |
[As2008b] | Sami Assaf. Dual equivalence graphs and a
combinatorial proof of LLT and Macdonald positivity.
(2008). arXiv 1005.3759v5. |
[AS2011] | R.B.J.T Allenby and A. Slomson, “How to count”, CRC Press (2011) |
[ASD1971] | A. O. L. Atkin and H. P. F. Swinnerton-Dyer, “Modular
forms on noncongruence subgroups”, Proc. Symp. Pure
Math., Combinatorics (T. S. Motzkin, ed.), vol. 19, AMS,
Providence 1971 |
[Ath1996] | C. A. Athanasiadis,
Characteristic polynomials of subspace arrangements and finite fields.
Advances in Mathematics, 122(2):193-233, 1996. |
[Av2000] | D. Avis, A revised implementation of the reverse search
vertex enumeration algorithm. Polytopes-combinatorics and
computation. Birkhauser Basel, 2000. |
[Ava2007] | J.-C. Aval. Keys and alternating sign matrices.
Sem. Lothar. Combin. 59 (2007/10), Art. B59f, 13 pp. |
[Ava2017] | R. Avanzi,
The QARMA block cipher family; in ToSC, (2017.1), pp. 4-44. |
[AY1983] | I. A. Aizenberg and A. P. Yuzhakov. Integral
representations and residues in multidimensional complex
analysis. Translations of Mathematical Monographs,
58. American Mathematical Society, Providence,
RI. (1983). x+283 pp. ISBN: 0-8218-4511-X. |
[AZZ2005] | V. Anne, L.Q. Zamboni, I. Zorca, Palindromes and Pseudo-
Palindromes in Episturmian and Pseudo-Palindromic
Infinite Words, in : S. Brlek, C. Reutenauer (Eds.),
Words 2005, Publications du LaCIM, Vol. 36 (2005)
91–100. |
B
[Ba1994] | Kaushik Basu. The Traveler’s Dilemma: Paradoxes of
Rationality in Game Theory. The American Economic Review
(1994): 391-395. |
[BaSt1990] | Margaret M. Bayer and Bernd Sturmfels. Lawrence polytopes.
Canadian J. Math.42 (1990), 62–79. |
[BAK1998] | E. Biham, R. J. Anderson, and L. R. Knudsen,
Serpent: A new block cipher proposal; in FSE, (1998), pp. 222-238. |
[Bar1970] | Barnette, “Diagrams and Schlegel diagrams”, in
Combinatorial Structures and Their Applications,
Proc. Calgary Internat. Conference 1969, New York, 1970,
Gordon and Breach. |
[Bat1991] | V. V. Batyrev, On the classification of smooth projective
toric varieties, Tohoku Math. J. 43 (1991), 569-585 |
[Bat1994] | Victor V. Batyrev,
“Dual polyhedra and mirror symmetry for Calabi-Yau
hypersurfaces in toric varieties”,
J. Algebraic Geom. 3 (1994), no. 3, 493-535.
arXiv alg-geom/9310003v1 |
[BB1997] | Mladen Bestvina and Noel Brady. Morse theory and
finiteness properties of groups. Invent. Math. 129
(1997). No. 3,
445-470. www.math.ou.edu/~nbrady/papers/morse.ps. |
[BB2005] | A. Björner, F. Brenti. Combinatorics of Coxeter
groups. New York: Springer, 2005. |
[BB2009] | Tomas J. Boothby and Robert W. Bradshaw. Bitslicing and
the Method of Four Russians Over Larger Finite
Fields. arXiv 0901.1413, 2009. |
[BB2013] | Gavin Brown, Jaroslaw Buczynski:
Maps of toric varieties in Cox coordinates,
arXiv 1004.4924 |
[BBBCDGLLLMPPSW2019] | D. Bellizia, F. Berti, O. Bronchain, G. Cassiers,
S. Duval, C. Guo, G. Leander, G. Leurent, I. Levi,
C. Momin, O. Pereira, T. Peters, F. Standeart, F. Wiemer.
“Spook: Sponge-Based Leakage-Resilient AuthenticatedEncryption with a Masked Tweakable Block Cipher”
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/spec-doc/Spook-spec.pdf |
[BeBo2009] | Olivier Bernardi and Nicolas Bonichon, Intervals in Catalan
lattices and realizers of triangulations, JCTA 116 (2009) |
[BBGL2008] | A. Blondin Massé, S. Brlek, A. Garon, and S. Labbé,
Combinatorial properties of f -palindromes in the
Thue-Morse sequence. Pure Math. Appl.,
19(2-3):39–52, 2008. |
[BBISHAR2015] | S. Banik, A. Bogdanov, T. Isobe, K. Shibutani, H. Hiwatari,
T. Akishita, and F. Regazzoni,
Midori: A block cipher for low energy; in ASIACRYPT, (2015), pp. 411-436. |
[BBKMW2013] | B. Bilgin, A. Bogdanov, M, Knezevic, F. Mendel, and Q. Wang,
Fides: Lightweight authenticated cipher with side-channel resistance
for constrained hardware; in CHES, (2013), pp. 142-158. |
[BBLSW1999] | Babson, Björner, Linusson, Shareshian, and Welker,
Complexes of not i-connected graphs, Topology 38
(1999), 271-299 |
[BBMF2008] | N. Bonichon, M. Bousquet-Mélou, E. Fusy.
Baxter permutations and plane bipolar orientations.
Séminaire Lotharingien de combinatoire 61A, article B61Ah, 2008. |
[BPPSST2017] | Banik, Pandey, Peyrin, Sasaki, Sim, and Todo,
GIFT : A Small Present Towards Reaching the Limit of Lightweight
Encryption. Cryptographic Hardware and Embedded Systems - CHES 2017,
2017. |
[BPW2006] | J. Buchmann, A. Pychkine, R.-P. Weinmann Block Ciphers
Sensitive to Groebner Basis Attacks in Topics in
Cryptology – CT RSA‘06; LNCS 3860; pp. 313–331;
Springer Verlag 2006; pre-print available at
http://eprint.iacr.org/2005/200 |
[BBS1982] | L. Blum, M. Blum, and M. Shub. Comparison of Two
Pseudo-Random Number Generators. Advances in Cryptology:
Proceedings of Crypto ‘82, pp.61–78, 1982. |
[BBS1986] | L. Blum, M. Blum, and M. Shub. A Simple Unpredictable
Pseudo-Random Number Generator. SIAM Journal on
Computing, 15(2):364–383, 1986. |
[BIANCO] | L. Bianco, P. Dell‘Olmo, S. Giordani
An Optimal Algorithm to Find the Jump Number of Partially Ordered Sets
Computational Optimization and Applications,
1997, Volume 8, Issue 2, pp 197–210,
doi:10.1023/A:1008625405476 |
[BC1977] | R. E. Bixby, W. H. Cunningham, Matroids, Graphs, and
3-Connectivity. In Graph theory and related topics
(Proc. Conf., Univ. Waterloo, Waterloo, ON, 1977), 91-103 |
[BC2003] | A. Biryukov and C. D. Canniere Block Ciphers and Systems
of Quadratic Equations; in Proceedings of Fast Software
Encryption 2003; LNCS 2887; pp. 274-289,
Springer-Verlag 2003. |
[BC2018] | Patrick Brosnan and Timothy Y. Chow.
Unit interval orders and the dot action on the cohomology
of regular semisimple Hessenberg varieties. Advances in
Mathematics 329 (2018): 955-1001. doi:10.1016/j.aim.2018.02.020,
arXiv 1511.00773v1. |
[BCCCNSY2010] | Charles Bouillaguet, Hsieh-Chung Chen, Chen-Mou
Cheng, Tung Chou, Ruben Niederhagen, Adi Shamir, and
Bo-Yin Yang. Fast exhaustive search for
polynomial systems in GF(2). In Stefan Mangard and
François-Xavier Standaert, editors, CHES, volume 6225
of Lecture Notes in Computer Science, pages
203–218. Springer, 2010. pre-print available at
http://eprint.iacr.org/2010/313.pdf |
[BCCM2015] | M. Borassi, D. Coudert, P. Crescenzi, and A. Marino.
On Computing the Hyperbolicity of Real-World Graphs. Proceedings
of the 23rd European Symposium on Algorithms (ESA 2015),
doi:10.1007/978-3-662-48350-3_19. |
[BCdlOG2000] | Volker Braun, Philip Candelas, Xendia de la Ossa,
Antonella Grassi, Toric Calabi-Yau Fourfolds, Duality
Between N=1 Theories and Divisors that Contribute to the
Superpotential, arXiv hep-th/0001208 |
[BCGKKKLNPRRTY2012] | J. Borghoff, A. Canteaut, T. Güneysu, E. B. Kavun, M. Knezevic,
L. R. Knudsen, G. Leander, V. Nikov, C. Paar, C. Rechberger,
P. Rombouts, S. S. Thomsen, and T. Yalcin,
PRINCE - A low-latency block cipher for pervasive computing
applications; in ASIACRYPT, (2012), pp. 208-225. |
[BCHOPSY2017] | G. Benkart, L. Colmenarejo, P. E. Harris, R. Orellana, G. Panova,
A. Schilling, M. Yip. A minimaj-preserving crystal on ordered
multiset partitions.
Advances in Applied Math. 95 (2018) 96-115,
doi:10.1016/j.aam.2017.11.006. arXiv 1707.08709v2. |
[BCJ2007] | Gregory V. Bard, and Nicolas T. Courtois, and Chris
Jefferson. Efficient Methods for Conversion and
Solution of Sparse Systems of Low-Degree Multivariate
Polynomials over GF(2) via SAT-Solvers. Cryptology
ePrint Archive: Report 2007/024. available at
http://eprint.iacr.org/2007/024 |
[BCM15] | Michele Borassi, Pierluigi Crescenzi, and Andrea Marino,
Fast and Simple Computation of Top-k Closeness Centralities.
arXiv 1507.01490. |
[BCN1989] | Andries E. Brouwer, Arjeh M. Cohen, and Arnold Neumaier.
Distance-Regular Graphs, Springer, 1989. |
[BdJ2008] | Besser, Amnon, and Rob de Jeu. “Li^(p)-Service? An Algorithm
for Computing p-Adic Polylogarithms.” Mathematics of Computation
(2008): 1105-1134. |
[BD1989] | R. J. Bradford and J. H. Davenport, Effective tests for
cyclotomic polynomials, Symbolic and Algebraic
Computation (1989), pp. 244–251,
doi:10.1007/3-540-51084-2_22 |
[BD2004] | M. Becker and A. Desoky.
A study of the DVD content scrambling system (CSS) algorithm; in
Proceedings of ISSPIT, (2004), pp. 353-356. |
[BDLV2006] | S. Brlek, S. Dulucq, A. Ladouceur, L. Vuillon, Combinatorial
properties of smooth infinite words, Theoret. Comput. Sci. 352
(2006) 306–317. |
[BDP2013] | Thomas Brüstle, Grégoire Dupont, Matthieu Pérotin
On Maximal Green Sequences
arXiv 1205.2050 |
[BDMW2010] | K. A. Browning, J. F. Dillon, M. T. McQuistan, and A. J. Wolfe,
An APN permutation in dimension six; in Finite Fields: Theory
and Applications - FQ9, volume 518 of Contemporary Mathematics,
pages 33–42. AMS, 2010. |
[BdVO2012] | Christopher Bowman, Maud De Visscher, Rosa Orellana.
The partition algebra and the Kronecker coefficients.
arXiv 1210.5579v6. |
[BeCoMe] | Frits Beukers, Henri Cohen, Anton Mellit,
Finite hypergeometric functions,
arXiv 1505.02900 |
[Bel2011] | Belarusian State University,
Information technologies. Data protection. Cryptograpic algorithms for
encryption and integrity control; in STB 34.101.31-2011, (2011). |
[Bel1927] | E.T. Bell, “Partition Polynomials”,
Annals of Mathematics,
Second Series, Vol. 29, No. 1/4 (1927 - 1928), pp. 38-46 |
[Ber2007] | Jean Berstel. Sturmian and episturmian words (a survey of
some recent results). In S. Bozapalidis and G. Rahonis,
editors, CAI 2007,volume 4728 of Lecture Notes in
Computer Science, pages 23-47. Springer-Verlag, 2007. |
[Ber2008] | W. Bertram : Differential Geometry, Lie Groups and
Symmetric Spaces over General Base Fields and Rings,
Memoirs of the American Mathematical Society, vol. 192
(2008); doi:10.1090/memo/0900; arXiv math/0502168 |
[BerZab05] | Nantel Bergeron, Mike Zabrocki,
The Hopf algebras of symmetric functions and quasisymmetric
functions in non-commutative variables are free and cofree,
J. of Algebra and its Applications (8)(2009), No 4, pp. 581–600,
doi:10.1142/S0219498809003485,
arXiv math/0509265v3. |
[BeukersHeckman] | F. Beukers and G. Heckman,
Monodromy for the hypergeometric function \({}_n F_{n-1}\),
Invent. Math. 95 (1989) |
[BF1999] | Thomas Britz, Sergey Fomin,
Finite posets and Ferrers shapes,
Advances in Mathematics 158, pp. 86-127 (2001),
arXiv math/9912126 (the arXiv version has fewer errors). |
[BF2001] | Boucheron, S. and Fernandez de la Vega, W.,
On the Independence Number of Random Interval Graphs,
Combinatorics, Probability and Computing v10, issue 05,
Pages 385–396,
Cambridge Univ Press, 2001.
doi:10.1017/S0963548301004813. |
[BF2005] | R.L. Burden and J.D. Faires. Numerical Analysis.
8th edition, Thomson Brooks/Cole, 2005. |
[BFS2004] | Magali Bardet, Jean-Charles Faugère, and Bruno Salvy, On
the complexity of Groebner basis computation of
semi-regular overdetermined algebraic equations.
Proc. International Conference on Polynomial System
Solving (ICPSS), pp. 71-75, 2004. |
[BFSS2006] | A. Bostan, P. Flajolet, B. Salvy and E. Schost, Fast
Computation of special resultants, Journal of Symbolic
Computation 41 (2006), 1-29 |
[BFZ2005] | A. Berenstein, S. Fomin, and A. Zelevinsky, Cluster
algebras. III. Upper bounds and double Bruhat cells,
Duke Math. J. 126 (2005), no. 1, 1–52. |
[BG1972] | A. Berman and P. Gaiha. A generalization of irreducible
monotonicity. Linear Algebra and its Applications, 5:29-38,
1972. |
[BG1980] | R. L. Bishop and S. L. Goldberg, Tensor analysis on
Manifolds, Dover (New York) (1980) |
[BG1985] | M. Blum and S. Goldwasser. An Efficient Probabilistic
Public-Key Encryption Scheme Which Hides All Partial
Information. In Proceedings of CRYPTO 84 on Advances in
Cryptology, pp. 289–299, Springer, 1985. |
[BG1988] | M. Berger & B. Gostiaux : Differential Geometry:
Manifolds, Curves and Surfaces, Springer (New York)
(1988); doi:10.1007/978-1-4612-1033-7 |
[Bil2011] | N. Billerey. Critères d’irréductibilité pour les
représentations des courbes elliptiques. Int. J. Number
Theory, 7 (2011); doi:10.1142/S1793042111004538 |
[BH1994] | S. Billey, M. Haiman. Schubert polynomials for the
classical groups. J. Amer. Math. Soc., 1994. |
[BH2017] | Georgia Benkart and Tom Halverson. Partition algebras
\(\mathsf{P}_k(n)\) with \(2k > n\) and the fundamental theorems
of invariant theory for the symmetric group \(\mathsf{S}_n\).
Preprint (2017). arXiv 1707.1410 |
[BHS2008] | Robert Bradshaw, David Harvey and William
Stein. strassen_window_multiply_c. strassen.pyx, Sage
3.0, 2008. http://www.sagemath.org |
[BHNR2004] | S. Brlek, S. Hamel, M. Nivat, C. Reutenauer, On the
Palindromic Complexity of Infinite Words,
in J. Berstel, J. Karhumaki, D. Perrin, Eds,
Combinatorics on Words with Applications, International
Journal of Foundation of Computer Science, Vol. 15,
No. 2 (2004) 293–306. |
[BHZ2005] | N. Bergeron, C. Hohlweg, and M. Zabrocki, Posets
related to the Connectivity Set of Coxeter Groups.
arXiv math/0509271v3 |
[Big1999] | Stephen J. Bigelow. The Burau representation is not
faithful for \(n = 5\). Geom. Topol., 3:397–404, 1999. |
[Big2003] | Stephen J. Bigelow, The Lawrence-Krammer representation,
Geometric Topology, 2001 Georgia International Topology
Conference, AMS/IP Studies in Advanced Mathematics 35
(2003). arXiv math/0204057v1 |
[Bir1975] | J. Birman. Braids, Links, and Mapping Class Groups,
Princeton University Press, 1975 |
[BjWe2005] | A. Björner and V. Welker, Segre and Rees products of posets,
with ring-theoretic applications, J. Pure Appl. Algebra
198 (2005), 43-55 |
[BJKLMPSSS2016] | C. Beierle, J. Jean, S. Kölbl, G. Leander, A. Moradi,
T. Peyrin, Y. Sasaki, P. Sasdrich, and S. M. Sim,
The SKINNY family of block ciphers and its low-latency
variant MANTIS; in CRYPTO, (2016), pp. 123-153. |
[BK1992] | U. Brehm and W. Kuhnel, 15-vertex triangulations of an
8-manifold, Math. Annalen 294 (1992), no. 1, 167-193. |
[BK2001] | W. Bruns and R. Koch, Computing the integral closure of an
affine semigroup. Uni. Iaggelonicae Acta Math. 39, (2001),
59-70 |
[BK2008] | J. Brundan and A. Kleshchev.
Blocks of cyclotomic Hecke algebras and Khovanov-Lauda algebras.
Invent. Math. 178 (2009), no. 3, 451–484.
MathSciNet MR2551762 |
[BK2009] | J. Brundan and A. Kleshchev.
Graded decomposition numbers for cyclotomic Hecke algebras.
Adv. Math. 222 (2009), 1883–1942.
MathSciNet MR2562768 |
[BK2017] | Pascal Baseilhac and Stefan Kolb. Braid group action
and root vectors for the \(q\)-Onsager algebra.
Preprint, (2017) arXiv 1706.08747. |
[BKK2000] | Georgia Benkart, Seok-Jin Kang, Masaki Kashiwara.
Crystal bases for the quantum superalgebra \(U_q(\mathfrak{gl}(m,n))\),
J. Amer. Math. Soc. 13 (2000), no. 2, 295-331. |
[BKLPPRSV2007] | A. Bogdanov, L. Knudsen, G. Leander, C. Paar, A. Poschmann,
M. Robshaw, Y. Seurin, C. Vikkelsoe. PRESENT: An Ultra-Lightweight
Block Cipher; in Proceedings of CHES 2007; LNCS 7427; pp. 450-466;
Springer Verlag 2007; available at
doi:10.1007/978-1-4419-5906-5_605 |
[BKW2011] | J. Brundan, A. Kleshchev, and W. Wang,
Graded Specht modules,
J. Reine Angew. Math., 655 (2011), 61-87.
MathSciNet MR2806105 |
[BMP2007] | S. Brlek, G. Melançon, G. Paquin, Properties of the
extremal infinite smooth words, Discrete
Math. Theor. Comput. Sci. 9 (2007) 33–49. |
[BMPS2018] | Jonah Blasiak, Jennifer Morse, Anna Pun, and Daniel Summers.
Catalan functions and k-schur positivity
arXiv 1804.03701 |
[BL2000] | Anders Björner and Frank H. Lutz, “Simplicial manifolds,
bistellar flips and a 16-vertex triangulation of the
Poincaré homology 3-sphere”, Experiment. Math. 9 (2000),
no. 2, 275-289. |
[BL2003] | S. Brlek, A. Ladouceur, A note on differentiable palindromes,
Theoret. Comput. Sci. 302 (2003) 167–178. |
[BL2008] | Corentin Boissy and Erwan Lanneau, Dynamics and geometry
of the Rauzy-Veech induction for quadratic differentials
(arXiv 0710.5614) to appear in Ergodic Theory and
Dynamical Systems. |
[BraLea2008] | C. Bracken and Gregor Leander: New families of functions
with differential uniformity of 4, Proceedings of the Conference
BFCA, Copenhagen, 2008. |
[BLRS2009] | J. Berstel, A. Lauve, C. Reutenauer, F. Saliola,
Combinatorics on words: Christoffel words and
repetitions in words, CRM Monograph Series, 27. American
Mathematical Society, Providence, RI, 2009. xii+147
pp. ISBN: 978-0-8218-4480-9 |
[BLS1999] | A. Brandstadt, VB Le and JP Spinrad.
Graph classes: a survey.
SIAM Monographs on Discrete Mathematics and Applications, 1999. |
[BLV1999] | Bernhard Beckermann, George Labahn, and Gilles Villard. “Shifted
normal forms of polynomial matrices”. In ISSAC‘99, pages 189-196.
ACM, 1999. https://doi.org/10.1145/309831.309929 . |
[BM1940] | Becker, M. F., and Saunders MacLane. The minimum number of
generators for inseparable algebraic extensions. Bulletin of the
American Mathematical Society 46, no. 2 (1940): 182-186. |
[BM1977] | R. S. Boyer, J. S. Moore, A fast string searching
algorithm, Communications of the ACM 20 (1977) 762–772. |
[BM2008] | John Adrian Bondy and U.S.R. Murty, “Graph theory”, Volume
244 of Graduate Texts in Mathematics, 2nd edition, Springer, 2008. |
[BM2003] | Bazzi and Mitter, {it Some constructions of codes from
group actions}, (preprint March 2003, available on
Mitter’s MIT website). |
[BM2012] | N. Bruin and A. Molnar, Minimal models for rational
functions in a dynamical setting,
LMS Journal of Computation and Mathematics, Volume 15
(2012), pp 400-417. |
[BMBFLR2008] | A. Blondin-Massé, S. Brlek, A. Frosini, S. Labbé,
S. Rinaldi, Reconstructing words from a fixed
palindromic length sequence, Proc. TCS 2008, 5th IFIP
International Conference on Theoretical Computer
Science (September 8-10 2008, Milano, Italia). |
[BMBL2008] | A. Blondin-Massé, S. Brlek, S. Labbé, Palindromic
lacunas of the Thue-Morse word, Proc. GASCOM 2008 (June
16-20 2008, Bibbiena, Arezzo-Italia), 53–67. |
[BMS2006] | Bugeaud, Mignotte, and Siksek. “Classical and modular
approaches to exponential Diophantine
equations: I. Fibonacci and Lucas perfect powers.” Annals
of Math, 2006. |
[BMSS2006] | Alin Bostan, Bruno Salvy, Francois Morain, Eric Schost. Fast
algorithms for computing isogenies between elliptic
curves. [Research Report] 2006, pp.28. <inria-00091441> |
[BN2010] | D. Bump and M. Nakasuji.
Integration on \(p\)-adic groups and crystal bases.
Proc. Amer. Math. Soc. 138(5), pp. 1595–1605. |
[BN2008] | Victor V. Batyrev and Benjamin Nill. Combinatorial aspects
of mirror symmetry. In Integer points in polyhedra —
geometry, number theory, representation theory, algebra,
optimization, statistics, volume 452 of Contemp. Math.,
pages 35–66. Amer. Math. Soc., Providence,
RI, 2008. arXiv math/0703456v2. |
[Bo2009] | Bosch, S., Algebra, Springer 2009 |
[Bor1993] | Lev A. Borisov,
“Towards the mirror symmetry for Calabi-Yau complete
intersections in Gorenstein Fano toric varieties”, 1993.
arXiv alg-geom/9310001v1 |
[BOR2009] | Emmanuel Briand, Rosa Orellana, Mercedes Rosas.
The stability of the Kronecker products of Schur
functions.
arXiv 0907.4652v2. |
[Bou1989] | N. Bourbaki. Lie Groups and Lie Algebras. Chapters 1-3.
Springer. 1989. |
[BP1982] | H. Beker and F. Piper. Cipher Systems: The Protection of
Communications. John Wiley and Sons, 1982. |
[BP1993] | Dominique Bernardi and Bernadette Perrin-Riou,
Variante \(p\)-adique de la conjecture de Birch et
Swinnerton-Dyer (le cas supersingulier),
C. R. Acad. Sci. Paris, Sér I. Math., 317 (1993), no. 3,
227-232. |
[BP1994] | A. Berman and R. J. Plemmons. Nonnegative Matrices in the
Mathematical Sciences. SIAM, Philadelphia, 1994. |
[BP2000] | V. M. Bukhshtaber and T. E. Panov, “Moment-angle
complexes and combinatorics of simplicial manifolds,”
Uspekhi Mat. Nauk 55 (2000), 171–172. |
[BP2015] | P. Butera and M. Pernici “Sums of permanental minors
using Grassmann algebra”, International Journal of Graph
Theory and its Applications, 1 (2015),
83–96. arXiv 1406.5337 |
[BPRS2009] | J. Bastian, T. Prellberg, M. Rubey, C. Stump, Counting the
number of elements in the mutation classes of \(\tilde{A}_n\)-quivers;
arXiv 0906.0487 |
[BPS2008] | Lubomira Balkova, Edita Pelantova, and Wolfgang Steiner.
Sequences with constant number of return
words. Monatsh. Math, 155 (2008) 251-263. |
[BPU2016] | Alex Biryukov, Léo Perrin, Aleksei Udovenko,
Reverse-Engineering the S-Box of Streebog, Kuznyechik and STRIBOBr1; in
EuroCrypt‘16, pp. 372-402. |
[Bra2011] | Volker Braun,
Toric Elliptic Fibrations and F-Theory Compactifications,
arXiv 1110.4883 |
[Bre1997] | T. Breuer “Integral bases for subfields of cyclotomic
fields” AAECC 8, 279–289 (1997). |
[Bre2008] | A. Bretscher and D. G. Corneil and M. Habib and C. Paul (2008), “A
simple Linear Time LexBFS Cograph Recognition Algorithm”, SIAM
Journal on Discrete Mathematics, 22 (4): 1277–1296,
doi:10.1137/060664690. |
[Bro2011] | Francis Brown, Multiple zeta values and periods: From
moduli spaces to Feynman integrals, in Contemporary Mathematics
vol 539, pages 27-52, 2011. |
[Bro2016] | A.E. Brouwer,
Personal communication, 2016. |
[Br1910] | Bruckner, “Uber die Ableitung der allgemeinen Polytope und
die nach Isomorphismus verschiedenen Typen der allgemeinen
Achtzelle (Oktatope)”, Verhand. Konik. Akad. Wetenschap,
Erste Sectie, 10 (1910) |
[BR2000a] | P. Barreto and V. Rijmen,
The ANUBIS Block Cipher; in
First Open NESSIE Workshop, (2000). |
[BR2000b] | P. Barreto and V. Rijmen,
The Khazad legacy-level Block Cipher; in
First Open NESSIE Workshop, (2000). |
[BR2000c] | P. Barreto and V. Rijmen,
The Whirlpool hashing function; in
First Open NESSIE Workshop, (2000). |
[BRS2015] | A. Boussicault, S. Rinaldi et S. Socci.
The number of directed k-convex polyominoes
27th Annual International Conference on Formal Power Series and
Algebraic Combinatorics (FPSAC 2015), 2015.
arXiv 1501.00872 |
[Bru1998] | J. Brundan. Modular branching rules and the Mullineux map
for Hecke algebras of type \(A\).
Proc. London Math. Soc. (3) 77 (1998), 551–581.
MathSciNet MR1643413 |
[Bruin-Molnar] | N. Bruin and A. Molnar, Minimal models for rational
functions in a dynamical setting,
LMS Journal of Computation and Mathematics, Volume 15 (2012),
pp 400-417. |
[BS1996] | Eric Bach, Jeffrey Shallit. Algorithmic Number Theory,
Vol. 1: Efficient Algorithms. MIT Press, 1996. ISBN
978-0262024051. |
[BS2012] | Jonathan Bloom and Dan Saracino, Modified growth
diagrams, permutation pivots, and the BWX map \(Phi^*\),
Journal of Combinatorial Theory, Series A Volume 119,
Number 6 (2012), pp. 1280-1298. |
[BSS2009] | David Bremner, Mathieu Dutour Sikiric, Achill Schuermann:
Polyhedral representation conversion up to symmetries,
Proceedings of the 2006 CRM workshop on polyhedral
computation, AMS/CRM Lecture Notes, 48 (2009),
45-71. arXiv math/0702239 |
[BSV2010] | M. Bolt, S. Snoeyink, E. Van Andel. “Visual
representation of the Riemann map and Ahlfors map via the
Kerzman-Stein equation”. Involve 3-4 (2010), 405-420. |
[BDLGZ2009] | M. Bucci et al. A. De Luca, A. Glen, L. Q. Zamboni,
A connection between palindromic and factor complexity
using return words,” Advances in Applied Mathematics
42 (2009) 60-74. |
[BUVO2007] | Johannes Buchmann, Ullrich Vollmer: Binary Quadratic Forms,
An Algorithmic Approach, Algorithms and Computation in Mathematics,
Volume 20, Springer (2007) |
[BW1993] | Thomas Becker and Volker Weispfenning. Groebner Bases - A
Computational Approach To Commutative Algebra. Springer,
New York, 1993. |
[BW1996] | Anders Björner and Michelle L. Wachs. Shellable nonpure
complexes and posets. I. Trans. of
Amer. Math. Soc. 348 No. 4. (1996) |
[BZ01] | A. Berenstein, A. Zelevinsky
Tensor product multiplicities, canonical bases
and totally positive varieties
Invent. Math. 143 No. 1. (2002), 77-128. |
[BZ2003] | Vladimir Batagelj and Matjaz Zaversnik. An `O(m)`
Algorithm for Cores Decomposition of
Networks. 2003. arXiv cs/0310049v1. |
C
[dCa2007] | C. de Canniere: Analysis and Design of Symmetric Encryption
Algorithms, PhD Thesis, 2007. |
[Can1990] | J. Canny. Generalised characteristic polynomials.
J. Symbolic Comput. Vol. 9, No. 3, 1990, 241–250. |
[Car1972] | R. W. Carter. Simple groups of Lie type, volume 28 of
Pure and Applied Mathematics. John Wiley and Sons, 1972. |
[CS1996] | G. Call and J. Silverman. Computing the Canonical Height on
K3 Surfaces. Mathematics of Comp. , 65 (1996), 259-290. |
[CB2007] | Nicolas Courtois, Gregory V. Bard: Algebraic Cryptanalysis
of the Data Encryption Standard, In 11-th IMA Conference,
Cirencester, UK, 18-20 December 2007, Springer
LNCS 4887. See also http://eprint.iacr.org/2006/402/. |
[CC1982] | Chottin and R. Cori, Une preuve combinatoire de la
rationalité d’une série génératrice associée
aux arbres, RAIRO, Inf. Théor. 16, 113–128 (1982) |
[CC2013] | Mahir Bilen Can and Yonah Cherniavsky.
Omitting parentheses from the cyclic notation. (2013).
arXiv 1308.0936v2. |
[CCLSV2005] | M. Chudnovsky, G. Cornuejols, X. Liu, P. Seymour, K. Vuskovic.
Recognizing berge graphs.
Combinatorica vol 25 (2005), n 2, pages 143–186.
doi:10.1007/s00493-005-0012-8. |
[CD1996] | Charles Colbourn and Jeffrey Dinitz,
Making the MOLS table,
Computational and constructive design theory,
vol 368, pages 67-134,
1996 |
[CD2007] | Adrian Clingher and Charles F. Doran,
“Modular invariants for lattice polarized K3 surfaces”,
Michigan Math. J. 55 (2007), no. 2, 355-393.
arXiv math/0602146v1 [math.AG] |
[CDL2015] | A. Canteaut, Sebastien Duval, Gaetan Leurent
Construction of Lightweight S-Boxes using Feistel and
MISTY Structures; in Proceedings of SAC 2015; LNCS 9566;
pp. 373-393; Springer-Verlag 2015; available at
http://eprint.iacr.org/2015/711.pdf |
[CE2003] | Henry Cohn and Noam Elkies, New upper bounds on sphere
packings I, Ann. Math. 157 (2003), 689–714. |
[CES2003] | Brian Conrad, Bas Edixhoven, William Stein
\(J_1(p)\) Has Connected Fibers
Documenta Math. 8 (2003) 331–408 |
[CEW2011] | Georgios Chalkiadakis, Edith Elkind, and Michael
Wooldridge. Computational Aspects of Cooperative Game
Theory. Morgan & Claypool Publishers, (2011). ISBN
9781608456529, doi:10.2200/S00355ED1V01Y201107AIM016. |
[CFL1958] | K.-T. Chen, R.H. Fox, R.C. Lyndon, Free differential calculus,
IV. The quotient groups of the lower central series, Ann. of Math.
68 (1958) 81–95. |
[CFZ2000] | J. Cassaigne, S. Ferenczi, L.Q. Zamboni, Imbalances in
Arnoux-Rauzy sequences, Ann. Inst. Fourier (Grenoble)
50 (2000) 1265–1276. |
[CFZ2002] | Chapoton, Fomin, Zelevinsky - Polytopal realizations of
generalized associahedra, arXiv math/0202004. |
[CGHLM2013] | P. Crescenzi, R. Grossi, M. Habib, L. Lanzi, A. Marino.
On computing the diameter of real-world undirected graphs.
Theor. Comput. Sci. 514: 84-95 (2013).
doi:10.1016/j.tcs.2012.09.018. |
[CGILM2010] | P. Crescenzi, R. Grossi, C. Imbrenda, L. Lanzi, and A. Marino.
Finding the Diameter in Real-World Graphs: Experimentally
Turning a Lower Bound into an Upper Bound. Proceedings of 18th
Annual European Symposium on Algorithms. Lecture Notes in
Computer Science, vol. 6346, 302-313. Springer (2010).
doi:10.1007/978-3-642-15775-2_26. |
[CGW2013] | Daniel Cabarcas, Florian Göpfert, and Patrick
Weiden. Provably Secure LWE-Encryption with Uniform
Secret. Cryptology ePrint Archive, Report 2013/164. 2013.
2013/164. http://eprint.iacr.org/2013/164 |
[CGMRV16] | A. Conte, R. Grossi, A. Marino, R. Rizzi, L. Versari,
“Directing Road Networks by Listing Strong Orientations.”,
Combinatorial Algorithms, Proceedings of 27th International Workshop,
IWOCA 2016, August 17-19, 2016, pages 83–95. |
[Ch2012] | Cho-Ho Chu. Jordan Structures in Geometry and
Analysis. Cambridge University Press, New
York. 2012. IBSN 978-1-107-01617-0. |
[Cha92] | Chameni-Nembua C. and Monjardet B.
Les Treillis Pseudocomplémentés Finis
Europ. J. Combinatorics (1992) 13, 89-107. |
[Cha18] | Frédéric Chapoton, Some properties of a new partial
order on Dyck paths, 2018, arXiv 1809.10981 |
[Cha22005] | B. Cha. Vanishing of some cohomology goups and bounds
for the Shafarevich-Tate groups of elliptic
curves. J. Number Theory, 111:154-178, 2005. |
[Cha2008] | Frédéric Chapoton.
Sur le nombre d’intervalles dans les treillis de Tamari.
Sém. Lothar. Combin. (2008).
arXiv math/0602368v1. |
[ChLi] | F. Chapoton and M. Livernet, Pre-Lie algebras and the rooted trees
operad, International Math. Research Notices (2001) no 8, pages 395-408.
Preprint: arXiv math/0002069v2. |
[CHPSS18] | C. Cid, T. Huang, T. Peyrin, Y. Sasaki, L. Song.
Boomerang Connectivity Table: A New Cryptanalysis Tool (2018)
IACR Transactions on Symmetric Cryptology. Vol 2017, Issue 4.
pre-print available at https://eprint.iacr.org/2018/161.pdf |
[CK1999] | David A. Cox and Sheldon Katz. Mirror symmetry and
algebraic geometry, volume 68 of Mathematical Surveys
and Monographs. American Mathematical Society,
Providence, RI, 1999. |
[CK2008] | Derek G. Corneil and Richard M. Krueger, A Unified View
of Graph Searching, SIAM Jounal on Discrete Mathematics,
22(4), 1259–-1276, 2008.
doi:10.1137/050623498 |
[CK2001] | M. Casella and W. Kühnel, “A triangulated K3 surface with
the minimum number of vertices”, Topology 40 (2001),
753–772. |
[CKS1999] | Felipe Cucker, Pascal Koiran, and Stephen Smale. A polynomial-time
algorithm for diophantine equations in one variable, J. Symbolic
Computation 27 (1), 21-29, 1999. |
[CL1996] | Chartrand, G. and Lesniak, L.: Graphs and Digraphs.
Chapman and Hall/CRC, 1996. |
[CL2002] | Chung, Fan and Lu, L. Connected components in random
graphs with given expected degree sequences.
Ann. Combinatorics (6), 2002 pp. 125-145.
doi:10.1007/PL00012580. |
[CL2013] | Maria Chlouveraki and Sofia Lambropoulou. The
Yokonuma-Hecke algebras and the HOMFLYPT
polynomial. (2015) arXiv 1204.1871v4. |
[Cle1872] | Alfred Clebsch, Theorie der binären algebraischen Formen,
Teubner, 1872. |
[CLG1997] | Frank Celler and C. R. Leedham-Green,
Calculating the Order of an Invertible Matrix, 1997 |
[CLRS2001] | Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest
and Clifford Stein, Section 22.4: Topological sort,
Introduction to Algorithms (2nd ed.), MIT Press and
McGraw-Hill, 2001, 549-552, ISBN 0-262-03293-7. |
[CLO2005] | D. Cox, J. Little, D. O’Shea. Using Algebraic Geometry.
Springer, 2005. |
[CLS2011] | David A. Cox, John Little, and Hal Schenck. Toric
Varieties. Volume 124 of Graduate Studies in
Mathematics. American Mathematical Society, Providence,
RI, 2011. |
[CMO2011] | C. Chun, D. Mayhew, J. Oxley, A chain theorem for
internally 4-connected binary matroids. J. Combin. Theory
Ser. B 101 (2011), 141-189. |
[CMO2012] | C. Chun, D. Mayhew, J. Oxley, Towards a splitter
theorem for internally 4-connected binary
matroids. J. Combin. Theory Ser. B 102 (2012), 688-700. |
[CMR2006] | C. Cid, S. Murphy, and M. Robshaw, Algebraic Aspects
of the Advanced Encryption Standard; Springer Verlag
2006 |
[Co1984] | J. Conway, Hexacode and tetracode - MINIMOG and
MOG. Computational group theory, ed. M. Atkinson,
Academic Press, 1984. |
[Co1999] | John Conway, Neil Sloan. Sphere Packings, Lattices and Groups,
Springer Verlag 1999. |
[Coh1993] | Henri Cohen. A Course in Computational Algebraic Number
Theory. Graduate Texts in Mathematics 138. Springer, 1993. |
[Coh2000] | Henri Cohen, Advanced topics in computational number
theory, Graduate Texts in Mathematics, vol. 193,
Springer-Verlag, New York, 2000. |
[Coh2007I] | Henri Cohen, Number Theory, Vol. I: Tools and
Diophantine Equations. GTM 239, Springer, 2007. |
[Coh2007] | Henri Cohen, Number Theory,
Volume II. Graduate Texts in Mathematics 240. Springer, 2007. |
[Coj2005] | Alina Carmen Cojocaru,
On the surjectivity of the Galois representations
associated to non-CM elliptic curves.
With an appendix by Ernst Kani.
Canad. Math. Bull. 48 (2005), no. 1, 16–31. |
[Col2004] | Pierre Colmez, Invariant \(\mathcal{L}\) et derivees de
valeurs propres de Frobenius, preprint, 2004. |
[Com2019] | Camille Combe, Réalisation cubique du poset des
intervalles de Tamari, preprint arXiv 1904.00658 |
[CP2001] | John Crisp and Luis Paris. The solution to a conjecture
of Tits on the subgroup generated by the squares of the
generators of an Artin group. Invent. Math. 145
(2001). No 1, 19-36. arXiv math/0003133. |
[CP2005] | A. Cossidente and T. Penttila,
Hemisystems on the Hermitian surface,
Journal of London Math. Soc. 72(2005), 731–741.
doi:10.1112/S0024610705006964. |
[CP2012] | Grégory Châtel, Viviane Pons.
Counting smaller trees in the Tamari order,
arXiv 1212.0751v1. |
[CP2015] | Grégory Châtel and Viviane Pons.
Counting smaller elements in the tamari and m-tamari lattices.
Journal of Combinatorial Theory, Series A. (2015). arXiv 1311.3922. |
[CPdA2014] | Maria Chlouveraki and Loïc Poulain
d’Andecy. Representation theory of the Yokonuma-Hecke
algebra. (2014) arXiv 1302.6225v2. |
[CPS2006] | J.E. Cremona, M. Prickett and S. Siksek, Height Difference
Bounds For Elliptic Curves over Number Fields, Journal of Number
Theory 116(1) (2006), pages 42-68. |
[CR1962] | Curtis, Charles W.; Reiner, Irving “Representation theory
of finite groups and associative algebras.” Pure and
Applied Mathematics, Vol. XI Interscience Publishers, a
division of John Wiley & Sons, New York-London 1962, pp
545–547 |
[Cre1997] | J. E. Cremona, Algorithms for Modular Elliptic
Curves. Cambridge University Press, 1997. |
[Cre2003] | Cressman, Ross. Evolutionary dynamics and extensive form
games. MIT Press, 2003. |
[Cro1983] | M. Crochemore, Recherche linéaire d’un carré dans un mot,
C. R. Acad. Sci. Paris Sér. I Math. 296 (1983) 14
781–784. |
[CRS2016] | Dean Crnković, Sanja Rukavina, and Andrea Švob. Strongly regular
graphs from orthogonal groups \(O^+(6,2)\) and \(O^-(6,2)\).
arXiv 1609.07133 |
[CRST2006] | M. Chudnovsky, N. Robertson, P. Seymour, R. Thomas.
The strong perfect graph theorem.
Annals of Mathematics, vol 164, number 1, pages 51–230, 2006. |
[CRV2018] | Xavier Caruso, David Roe and Tristan Vaccon.
ZpL: a p-adic precision package, (2018) arXiv 1802.08532. |
[CRV2014] | Xavier Caruso, David Roe and Tristan Vaccon.
Tracking p-adic precision,
LMS J. Comput. Math. 17 (2014), 274-294. |
[CS1986] | J. Conway and N. Sloane. Lexicographic codes:
error-correcting codes from game theory, IEEE
Trans. Infor. Theory 32 (1986) 337-348. |
[CS1999] | J.H. Conway and N.J.A. Sloane, Sphere packings, lattices
and groups, 3rd. ed., Grundlehren der Mathematischen
Wissenschaften, vol. 290, Springer-Verlag, New York, 1999. |
[CS2003] | John E. Cremona and Michael Stoll. On The Reduction Theory of Binary Forms.
Journal für die reine und angewandte Mathematik, 565 (2003), 79-99. |
[CS2006] | J. E. Cremona, and S. Siksek, Computing a Lower Bound for the
Canonical Height on Elliptic Curves over \(\QQ\), ANTS VII
Proceedings: F.Hess, S.Pauli and M.Pohst (eds.), ANTS VII, Lecture
Notes in Computer Science 4076 (2006), pages 275-286. |
[CST2010] | Tullio Ceccherini-Silberstein, Fabio Scarabotti,
Filippo Tolli.
Representation Theory of the Symmetric Groups: The
Okounkov-Vershik Approach, Character Formulas, and Partition
Algebras. CUP 2010. |
[CT2013] | J. E. Cremona and T. Thongjunthug, The Complex AGM, periods of
elliptic curves over $CC$ and complex elliptic logarithms.
Journal of Number Theory Volume 133, Issue 8, August 2013, pages
2813-2841. |
[CTTL2014] | C. Carlet, Deng Tang, Xiaohu Tang, and Qunying Liao: New
Construction of Differentially 4-Uniform Bijections, Inscrypt,
pp. 22-38, 2013. |
[Cu1984] | R. Curtis, The Steiner system \(S(5,6,12)\), the Mathieu
group \(M_{12}\), and the kitten. Computational group
theory, ed. M. Atkinson, Academic Press, 1984. |
[Cun1986] | W. H. Cunningham, Improved Bounds for Matroid Partition
and Intersection Algorithms. SIAM Journal on Computing
1986 15:4, 948-957. |
[CW2005] | J. E. Cremona and M. Watkins. Computing isogenies of elliptic
curves. preprint, 2005. |
D
[Dat2007] | Basudeb Datta, “Minimal triangulations of
manifolds”, J. Indian Inst. Sci. 87 (2007), no. 4,
429-449. |
[Dav1997] | B.A. Davey, H.A. Priestley,
Introduction to Lattices and Order,
Cambridge University Press, 1997. |
[DCW2016] | Dan-Cohen, Ishai, and Stefan Wewers. “Mixed Tate motives and the
unit equation.” International Mathematics Research Notices
2016.17 (2016): 5291-5354. |
[DD1991] | R. Dipper and S. Donkin. Quantum \(GL_n\).
Proc. London Math. Soc. (3) 63 (1991), no. 1, pp. 165-211. |
[DD2010] | Tim Dokchitser and Vladimir Dokchitser,
On the Birch-Swinnerton-Dyer quotients modulo squares,
Ann. Math. (2) 172 (2010), 567-596. |
[DDLL2013] | Léo Ducas, Alain Durmus, Tancrède Lepoint and Vadim
Lyubashevsky. Lattice Signatures and Bimodal
Gaussians; in Advances in Cryptology – CRYPTO 2013;
Lecture Notes in Computer Science Volume 8042, 2013, pp
40-56 http://www.di.ens.fr/~lyubash/papers/bimodal.pdf |
[Dec1998] | W. Decker and T. de Jong. Groebner Bases and Invariant
Theory in Groebner Bases and Applications. London
Mathematical Society Lecture Note Series No. 251. (1998)
61–89. |
[DEMS2016] | C. Dobraunig, M. Eichlseder, F. Mendel, and M. Schläffer,
Ascon v1.2; in CAESAR Competition, (2016). |
[De1973] | P. Delsarte, An algebraic approach to the association
schemes of coding theory, Philips Res. Rep., Suppl.,
vol. 10, 1973. |
[De1970] | M. Demazure
Sous-groupes algébriques de rang maximum du groupe de Cremona.
Ann. Sci. Ecole Norm. Sup. 1970, 3, 507–588. |
[De1974] | M. Demazure, Désingularisation des variétés de Schubert,
Ann. E. N. S., Vol. 6, (1974), p. 163-172 |
[Deh2011] | P. Dehornoy, Le problème d’isotopie des tresses, in
Leçons mathématiques de Bordeaux, vol. 4, pages 259-300,
Cassini (2011). |
[deG2000] | Willem A. de Graaf. Lie Algebras: Theory and Algorithms.
North-Holland Mathematical Library. (2000).
Elsevier Science B.V. |
[deG2005] | Willem A. de Graaf.
Constructing homomorphisms between Verma modules.
Journal of Lie Theory. 15 (2005) pp. 415-428. |
[Dej1972] | F. Dejean. Sur un théorème de Thue. J. Combinatorial Theory
Ser. A 13:90–99, 1972. |
[Den2012] | Tom Denton. Canonical Decompositions of Affine Permutations,
Affine Codes, and Split \(k\)-Schur Functions. Electronic Journal of
Combinatorics, 2012. |
[Deo1987a] | V. Deodhar, A splitting criterion for the Bruhat
orderings on Coxeter groups. Comm. Algebra,
15:1889-1894, 1987. |
[Deo1987b] | V.V. Deodhar, On some geometric aspects of Bruhat
orderings II. The parabolic analogue of Kazhdan-Lusztig
polynomials, J. Alg. 111 (1987) 483-506. |
[DerZak1980] | Nachum Dershowitz and Schmuel Zaks,
Enumerations of ordered trees,
Discrete Mathematics (1980), 31: 9-28. |
[Dev2005] | Devaney, Robert L. An Introduction to Chaotic Dynamical Systems.
Boulder: Westview, 2005, 331. |
[DeVi1984] | M.-P. Delest, and G. Viennot, Algebraic Languages and
Polyominoes Enumeration. Theoret. Comput. Sci. 34, 169-206, 1984. |
[DFMS1996] | Philipppe Di Francesco, Pierre Mathieu, and David Sénéchal.
Conformal Field Theory. Graduate Texts in Contemporary
Physics, Springer, 1996. |
[DG1982] | Louise Dolan and Michael Grady.
Conserved charges from self-duality,
Phys. Rev. D(3) 25 (1982), no. 6, 1587-1604. |
[DG1994] | S. Dulucq and O. Guibert. Mots de piles, tableaux
standards et permutations de Baxter, proceedings of
Formal Power Series and Algebraic Combinatorics, 1994. |
[DHSW2003] | Dumas, Heckenbach, Saunders, Welker, “Computing
simplicial homology based on efficient Smith normal form
algorithms,” in “Algebra, geometry, and software
systems” (2003), 177-206. |
[DI1989] | Dan Gusfield and Robert W. Irving. The stable marriage
problem: structure and algorithms. Vol. 54. Cambridge:
MIT press, 1989. |
[DI1995] | F. Diamond and J. Im, Modular forms and modular curves.
In: V. Kumar Murty (ed.), Seminar on Fermat’s Last Theorem
(Toronto, 1993-1994), 39-133. CMS Conference
Proceedings 17. American Mathematical Society, 1995. |
[DJM1998] | R. Dipper, G. James and A. Mathas
Cyclotomic q-Schur algebras, Math. Z, 229 (1998), 385-416.
MathSciNet MR1658581 |
[DJP2001] | X. Droubay, J. Justin, G. Pirillo, Episturmian words
and some constructions of de Luca and Rauzy,
Theoret. Comput. Sci. 255 (2001) 539–553. |
[DK2013] | John R. Doyle and David Krumm, Computing algebraic
numbers of bounded height, arXiv 1111.4963v4 (2013). |
[DLMF-Bessel] | F. W. J. Olver and L. C. Maximon: 10. Bessel
Functions, in NIST Digital Library of Mathematical
Functions. https://dlmf.nist.gov/10 |
[DLMF-Error] | N. M. Temme: 7. Error Functions, Dawson’s and Fresnel
Integrals, in NIST Digital Library of Mathematical
Functions. https://dlmf.nist.gov/7 |
[DLMF-Struve] | R. B. Paris: 11. Struve and Related Functions, in
NIST Digital Library of Mathematical
Functions. https://dlmf.nist.gov/11 |
[DLRS2010] | De Loera, Rambau and Santos, “Triangulations: Structures
for Algorithms and Applications”, Algorithms and
Computation in Mathematics, Volume 25, Springer, 2011. |
[DN1990] | Claude Danthony and Arnaldo Nogueira, Measured foliations
on nonorientable surfaces, Annales scientifiques de
l’École Normale Supérieure, Sér. 4, 23, no. 3 (1990) p
469-494 |
[Dob1999a] | H. Dobbertin: Almost perfect nonlinear power functions
on GF(2^n): the Niho case. Information and Computation, 151 (1-2),
pp. 57-72, 1999. |
[Dob1999b] | H. Dobbertin: Almost perfect nonlinear power functions
on GF(2^n): the Welch case. IEEE Transactions on Information
Theory, 45 (4), pp. 1271-1275, 1999. |
[DPV2001] | J. Daemen, M. Peeters, and G. Van Assche,
Bitslice ciphers and power analysis attacks; in FSE, (2000), pp. 134-149. |
[DP2008] | Jean-Guillaume Dumas and Clement Pernet. Memory efficient
scheduling of Strassen-Winograd’s matrix multiplication
algorithm. arXiv 0707.2347v1, 2008. |
[DPVAR2000] | J. Daemen, M. Peeters, G. Van Assche, and V. Rijmen,
Nessie proposal: NOEKEON; in First Open NESSIE Workshop, (2000). |
[DR2002] | Joan Daemen, Vincent Rijmen. The Design of
Rijndael. Springer-Verlag Berlin Heidelberg, 2002. |
[DS1994] | J. Dalbec and B. Sturmfels. Invariant methods in discrete and computational geometry,
chapter Introduction to Chow forms, pages 37-58. Springer Netherlands, 1994. |
[Du2001] | I. Duursma, “From weight enumerators to zeta functions”, in
Discrete Applied Mathematics, vol. 111, no. 1-2,
pp. 55-73, 2001. |
[Du2003] | I. Duursma, “Extremal weight enumerators and
ultraspherical polynomials”, Discrete Mathematics 268
(2003), 103–127. |
[Du2004] | I. Duursma, “Combinatorics of the two-variable zeta function”,
Finite fields and applications, 109-136, Lecture Notes in
Comput. Sci., 2948, Springer, Berlin, 2004. |
[Du2009] | Du Ye. On the Complexity of Deciding Degeneracy in
Games. arXiv 0905.3012v1 (2009) |
[Du2010] | J. J. Duistermaat,
Discrete integrable systems. QRT maps and elliptic surfaces.
Springer Monographs in Mathematics. Berlin: Springer. xxii, 627 p., 2010 |
[Du2018] | O. Dunkelman, Efficient Construction of the Boomerang
Connection Table (preprint); in Cryptology ePrint Archive,
(2018), 631. |
[Dur1998] | F. Durand, A characterization of substitutive sequences
using return words, Discrete Math. 179 (1998) 89-101. |
[Duv1983] | J.-P. Duval, Factorizing words over an ordered alphabet,
J. Algorithms 4 (1983) 363–381. |
[DW2007] | I. Dynnikov and B. Wiest, On the complexity of
braids, J. Europ. Math. Soc. 9 (2007) |
[Dy1993] | M. J. Dyer. Hecke algebras and shellings of Bruhat
intervals. Compositio Mathematica, 1993, 89(1): 91-115. |
E
[Early2017] | Nick Early. Canonical bases for permutohedral plates.
Preprint (2017). arXiv 1712.08520v3. |
[Ed1974] | A. R. Edmonds, ‘Angular Momentum in Quantum Mechanics’,
Princeton University Press (1974) |
[EDI2014] | EDITH COHEN,DANIEL DELLING,THOMAS PAJOR and RENATO F. WERNECK
Computing Classic Closeness Centrality, at Scale
In Proceedings of the second ACM conference on Online social networks (COSN ‘14)
doi:10.1145/2660460.2660465 |
[Ega1981] | Yoshimi Egawa, Characterization of H(n, q) by the parameters,
Journal of Combinatorial Theory, Series A, Volume 31, Issue 2,
1981, Pages 108-125, ISSN 0097-3165,:doi:\(10.1016/0097-3165(81)90007-8\).
(http://www.sciencedirect.com/science/article/pii/0097316581900078) |
[EGHLSVY] | Pavel Etingof, Oleg Golberg, Sebastian Hensel, Tiankai
Liu, Alex Schwendner, Dmitry Vaintrob, Elena Yudovina,
“Introduction to representation theory”,
arXiv 0901.0827v5. |
[EKLP1992] | N. Elkies, G. Kuperberg, M. Larsen, J. Propp,
Alternating-Sign Matrices and Domino Tilings, Journal of Algebraic
Combinatorics, volume 1 (1992), p. 111-132. |
[EP2013] | David Einstein, James Propp. Combinatorial,
piecewise-linear, and birational homomesy for products of
two chains. arXiv 1310.5294v1. |
[Eri1995] | H. Erikson. Computational and Combinatorial Aspects
of Coxeter Groups. Thesis, 1995. |
[ER1959] | Paul ErdH{o}s and Alfr’ed R’enyi. “On Random Graphs”,
Publicationes Mathematicae. 6: 290–297, 1959. |
[ERH2015] | Jorge Espanoza and Steen Ryom-Hansen. Cell structures
for the Yokonuma-Hecke algebra and the algebra of braids
and ties. (2015) arXiv 1506.00715. |
[ESSS2011] | D. Engels, M.-J. O. Saarinen, P. Schweitzer, and E. M. Smith,
The Hummingbird-2 lightweight authenticated encryption algorithm; in
RFIDSec, (2011), pp. 19-31. |
[ETS2006a] | ETSI/Sage,
Specification of the 3GPP Confidentiality and Integrity Algorithms
UEA2 & UIA2; in Document 5: Design and Evaluation Report, (2006). |
[ETS2011] | ETSI/Sage,
Specification of the 3GPP Confidentiality and Integrity Algorithms
128-EEA3 & 128-EIA3; in Document 4: Design and Evaluation Report, (2011). |
[Ewa1996] | Ewald, “Combinatorial Convexity and Algebraic Geometry”,
vol. 168 of Graduate Texts in Mathematics, Springer, 1996 |
[EZ1950] | S. Eilenberg and J. Zilber, “Semi-Simplicial Complexes
and Singular Homology”, Ann. Math. (2) 51 (1950), 499-513. |
[EPW14] | Ben Elias, Nicholas Proudfoot, and Max Wakefield.
The Kazhdan-Lusztig polynomial of a matroid. 2014.
arXiv 1412.7408. |
F
[Fayers2010] | Matthew Fayers. An LLT-type algorithm for computing
higher-level canonical bases. J. Pure Appl. Algebra
214 (2010), no. 12, 2186-2198. arXiv 0908.1749v3. |
[Fedorov2015] | Roman Fedorov, Variations of Hodge structures for hypergeometric
differential operators and parabolic Higgs bundles,
arXiv 1505.01704 |
[Feng2014] | Gang Feng, Finding k shortest simple paths in directed
graphs: A node classification algorithm. Networks, 64(1),
6–17, 2014. doi:10.1002/net.21552 |
[Fe2012] | Hans L. Fetter, “A Polyhedron Full of Surprises”,
Mathematics Magazine 85 (2012), no. 5, 334-342. |
[Fed2015] | Federal Agency on Technical Regulation and Metrology (GOST),
GOST R 34.12-2015, (2015) |
[Feingold2004] | Alex J. Feingold. Fusion rules for affine Kac-Moody algebras.
Contemp. Math., 343 (2004), pp. 53-96.
arXiv math/0212387 |
[Feu2009] | T. Feulner. The Automorphism Groups of Linear Codes and
Canonical Representatives of Their Semilinear Isometry
Classes. Advances in Mathematics of Communications 3 (4),
pp. 363-383, Nov 2009 |
[Feu2013] | Feulner, Thomas, “Eine kanonische Form zur Darstellung
aequivalenter Codes – Computergestuetzte Berechnung und
ihre Anwendung in der Codierungstheorie, Kryptographie
und Geometrie”, Dissertation, University of
Bayreuth, 2013. |
[FH2015] | J. A. de Faria, B. Hutz. Combinatorics of Cycle Lengths on
Wehler K3 Surfaces over finite fields. New Zealand Journal
of Mathematics 45 (2015), 19–31. |
[FIV2012] | H. Fournier, A. Ismail, and A. Vigneron. Computing the Gromov
hyperbolicity of a discrete metric space. 2012.
arXiv 1210.3323. |
[FM2014] | Cameron Franc and Marc Masdeu, “Computing fundamental
domains for the Bruhat-Tits tree for GL_2(Qp), p-adic
automorphic forms, and the canonical embedding of Shimura
curves”. LMS Journal of Computation and Mathematics
(2014), volume 17, issue 01, pp. 1-23. |
[FMV2014] | Xander Faber, Michelle Manes, and Bianca Viray. Computing
Conjugating Sets and Automorphism Groups of Rational Functions.
Journal of Algebra, 423 (2014), 1161-1190. |
[Fog2002] | N. Pytheas Fogg, Substitutions in Dynamics, Arithmetics,
and Combinatorics, Lecture Notes in Mathematics 1794,
Springer Verlag. V. Berthé, S. Ferenczi, C. Mauduit
and A. Siegel, Eds. (2002). |
[Fom1994] | Sergey V. Fomin, “Duality of graded graphs”. Journal of
Algebraic Combinatorics Volume 3, Number 4 (1994),
pp. 357-404. |
[Fom1995] | Sergey V. Fomin, “Schensted algorithms for dual graded
graphs”. Journal of Algebraic Combinatorics Volume 4,
Number 1 (1995), pp. 5-45. |
[FOS2009] | G. Fourier, M. Okado, A. Schilling.
Kirillov-Reshetikhin crystals for nonexceptional types.
Advances in Mathematics. 222 (2009). Issue 3. 1080-1116.
arXiv 0810.5067. |
[FOS2010] | G. Fourier, M. Okado, A. Schilling. Perfectness of
Kirillov-Reshetikhin crystals for nonexceptional types.
Contemp. Math. 506 (2010) 127-143 ( arXiv 0811.1604 ) |
[FP1996] | Komei Fukuda, Alain Prodon: Double Description Method
Revisited, Combinatorics and Computer Science, volume 1120
of Lecture Notes in Computer Science, page
91-111. Springer (1996) |
[FPR2015] | Wenjie Fang and Louis-François Préville-Ratelle,
From generalized Tamari intervals to non-separable planar maps.
arXiv 1511.05937 |
[FR1985] | Friedl, Katalin, and Lajos Rónyai. “Polynomial time
solutions of some problems of computational
algebra”. Proceedings of the seventeenth annual ACM
symposium on Theory of computing. ACM, 1985. |
[Fra2011] | Cameron Franc,
“Nearly rigid analytic modular forms and their values at CM points”,
Ph.D. thesis, McGill University, 2011. |
[FRT1990] | Faddeev, Reshetikhin and Takhtajan.
Quantization of Lie Groups and Lie Algebras.
Leningrad Math. J. vol. 1 (1990), no. 1. |
[FST2012] | A. Felikson, M. Shapiro, and P. Tumarkin, Cluster Algebras of
Finite Mutation Type Via Unfoldings, Int Math Res Notices (2012)
2012 (8): 1768-1804. |
[Ful1989] | W. Fulton. Algebraic curves: an introduction to algebraic geometry. Addison-Wesley,
Redwood City CA (1989). |
[Ful1993] | Wiliam Fulton, Introduction to Toric Varieties,
Princeton University Press, 1993. |
[Ful1997] | William Fulton,
Young Tableaux.
Cambridge University Press, 1997. |
[FV2002] | I. Fagnot, L. Vuillon, Generalized balances in Sturmian
words, Discrete Applied Mathematics 121 (2002), 83–101. |
[FY2004] | Eva Maria Feichtner and Sergey Yuzvinsky. Chow rings of
toric varieties defined by atomic lattices. Inventiones
Mathematicae. 155 (2004), no. 3, pp. 515-536. |
[FZ2007] | S. Fomin and A. Zelevinsky, Cluster algebras IV. Coefficients,
Compos. Math. 143 (2007), no. 1, 112-164. |
G
[Ga02] | Shuhong Gao, A new algorithm for decoding Reed-Solomon
Codes, January 31, 2002 |
[Gallai] | T. Gallai, Elementare Relationen bezueglich der
Glieder und trennenden Punkte von Graphen, Magyar
Tud. Akad. Mat. Kutato Int. Kozl. 9 (1964) 235-236 |
[Gambit] | Richard D. McKelvey, Andrew M. McLennan, and
Theodore L. Turocy, Gambit: Software Tools for Game
Theory, Version 13.1.2.. http://www.gambit-project.org
(2014). |
[Gans1981] | Emden R. Gansner,
The Hillman-Grassl Correspondence and the
Enumeration of Reverse Plane Partitions,
Journal of Combinatorial Theory, Series A
30 (1981), pp. 71–89.
doi:10.1016/0097-3165(81)90041-8 |
[Gar2015] | V. Garg Introduction to Lattice Theory with Computer
Science Applications (2015), Wiley. |
[GDR1999] | R. González-Díaz and P. Réal, A combinatorial method
for computing Steenrod squares in J. Pure Appl. Algebra
139 (1999), 89-108. |
[GDR2003] | R. González-Díaz and P. Réal, Computation of cohomology
operations on finite simplicial complexes in Homology,
Homotopy and Applications 5 (2003), 83-93. |
[GGD2011] | E. Girondo, G. Gonzalez-Diez, Introduction to Compact
Riemann surfaces and Dessins d’enfant, (2011)
London Mathematical Society, Student Text 79. |
[GGNS2013] | B. Gerard, V. Grosso, M. Naya-Plasencia, and F.-X. Standaert,
Block ciphers that are easier to mask: How far can we go?; in
CHES, (2013), pp. 383-399. |
[GGOR2003] | V. Ginzberg, N. Guay, E. Opdam, R. Rouquier.
On the category \(\mathcal{O}\) for rational Cherednik algebras.
Invent. Math. 154 (2003). arXiv math/0212036. |
[GHJ2016] | Ewgenij Gawrilow, Simon Hampe, and Michael Joswig, The polymake XML
file format, Mathematical software – ICMS 2016. 5th international
congress, Berlin, Germany, July 11–14, 2016. Proceedings, Berlin:
Springer, 2016, pp. 403–410,
https://doi.org/10.1007/978-3-319-42432-3_50, ISBN
978-3-319-42431-6/pbk. |
[GHJV1994] | E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design
Patterns: Elements of Reusable Object-Oriented
Software. Addison-Wesley (1994). ISBN 0-201-63361-2. |
[Gil1959] | Edgar Nelson Gilbert. “Random Graphs”, Annals of Mathematical
Statistics. 30 (4): 1141–1144, 1959. |
[Gir2012] | Samuele Giraudo,
Algebraic and combinatorial structures on pairs of twin binary trees,
arXiv 1204.4776v1. |
[GJ1997] | Ewgenij Gawrilow and Michael Joswig, polymake: a framework for
analyzing convex polytopes, Polytopes—combinatorics and
computation (Oberwolfach, 1997), DMV Sem., vol. 29, Birkhäuser,
Basel, 2000, pp. 43–73. |
[GJ2006] | Ewgenij Gawrilow and Michael Joswig, Flexible object hierarchies in
polymake (extended abstract), Mathematical software—ICMS 2006,
Lecture Notes in Comput. Sci., vol. 4151, Springer, Berlin, 2006,
pp. 219–221, https://doi.org/10.1007/11832225_20 |
[GJ2007] | A. Glen, J. Justin, Episturmian words: a survey, Preprint,
2007, arXiv 0801.1655. |
[GJK+2014] | Dimitar Grantcharov, Ji Hye Jung, Seok-Jin Kang, Masaki Kashiwara,
Myungho Kim. Crystal bases for the quantum queer superalgebra and
semistandard decomposition tableaux.; Trans. Amer. Math. Soc.,
366(1): 457-489, 2014. arXiv 1103.1456v2. |
[GJPST2009] | G. Grigorov, A. Jorza, S. Patrikis, W. Stein, C. Tarniţǎ. Computational
verification of the Birch and Swinnerton-Dyer
conjecture for individual elliptic curves.
Math. Comp. 78 (2009), no. 268, 2397–2425. |
[GK1982] | Daniel H. Greene and Donald E. Knuth (1982), “2.1.1 Constant
coefficients - A) Homogeneous equations”, Mathematics for the Analysis
of Algorithms (2nd ed.), Birkhauser, p. 17. |
[GK2013] | Roland Grinis and Alexander Kasprzyk, Normal forms of
convex lattice polytopes, arXiv 1301.6641 |
[GKZ1994] | Gelfand, I. M.; Kapranov, M. M.; and
Zelevinsky, A. V. “Discriminants, Resultants and
Multidimensional Determinants” Birkhauser 1994 |
[GL1996] | G. Golub and C. van Loan. Matrix Computations. 3rd
edition, Johns Hopkins Univ. Press, 1996. |
[GrLe1996] | J. Graham and G.I. Lehrer
Cellular algebras. Invent. Math. 123 (1996), 1–34.
MathSciNet MR1376244 |
[GLR2008] | A. Glen, F. Levé, G. Richomme, Quasiperiodic and Lyndon
episturmian words, Preprint, 2008, arXiv 0805.0730. |
[GLSV2014] | V. Grosso, G. Leurent, F.-X. Standaert, and K. Varici:
LS-Designs: Bitslice Encryption for Efficient Masked
Software Implementations, in FSE, 2014. |
[GLSVJGK2014] | V. Grosso, G. Leurent, F.-X. Standaert, K. Varici,
F. D. A. Journault, L. Gaspar, and S. Kerckhof,
SCREAM & iSCREAM Side-Channel Resistant Authenticated Encryption
with Masking; in CAESAR Competition, (2014). |
[GM2002] | Daniel Goldstein and Andrew Mayer. On the equidistribution
of Hecke points. Forum Mathematicum, 15:2, pp. 165–189,
De Gruyter, 2003. |
[GMN2008] | Jordi Guardia, Jesus Montes, Enric Nart. Newton polygons of higher
order in algebraic number theory (2008). arXiv 0807.2620 |
[GNL2011] | Z. Gong, S. Nikova, and Y. W. Law,
KLEIN: A new family of lightweight block ciphers; in
RFIDSec, (2011), p. 1-18. |
[Go1967] | Solomon Golomb, Shift register sequences, Aegean Park
Press, Laguna Hills, Ca, 1967 |
[God1968] | R. Godement: Algebra, Hermann (Paris) / Houghton Mifflin
(Boston) (1968) |
[God1993] | Chris Godsil (1993): Algebraic Combinatorics. |
[Gol1968] | R. Gold: Maximal recursive sequences with 3-valued recursive
crosscorrelation functions. IEEE Transactions on Information
Theory, 14, pp. 154-156, 1968. |
[Gor1980] | Daniel Gorenstein, Finite Groups (New York: Chelsea
Publishing, 1980) |
[Gor2009] | Alexey G. Gorinov, “Combinatorics of double cosets and
fundamental domains for the subgroups of the modular
group”, preprint arXiv 0901.1340 |
[GP2012] | Eddy Godelle and Luis Paris.
Basic questions on Artin-Tits groups. A. Björner et al. (eds)
Configuration spaces, CRM series. (2012) pp. 299–311.
Edizioni della Normale, Pisa.
doi:10.1007/978-88-7642-431-1_13 |
[GR2001] | Chris Godsil and Gordon Royle, Algebraic Graph Theory. Graduate
Texts in Mathematics, Springer, 2001. |
[Gr2006] | Matthew Greenberg,
“Heegner points and rigid analytic modular forms”,
Ph.D. Thesis, McGill University, 2006. |
[Gr2007] | J. Green, Polynomial representations of \(GL_n\), Springer
Verlag, 2007. |
[GriRei18] | Darij Grinberg, Victor Reiner,
Hopf Algebras in Combinatorics,
arXiv 1409.8356v5. |
[Gri2005] | G. Grigorov, Kato’s Euler System and the Main Conjecture,
Harvard Ph.D. Thesis (2005). |
[GroLar1] | R. Grossman and R. G. Larson, Hopf-algebraic structure of
families of trees, J. Algebra 126 (1) (1989), 184-210.
Preprint: arXiv 0711.3877v1 |
[GrS1967] | Grunbaum and Sreedharan, “An enumeration of simplicial
4-polytopes with 8 vertices”, J. Comb. Th. 2,
437-465 (1967) |
[GS1999] | Venkatesan Guruswami and Madhu Sudan, Improved Decoding of
Reed-Solomon Codes and Algebraic-Geometric Codes, 1999 |
[Go1993] | David M. Goldschmidt.
Group characters, symmetric functions, and the Hecke algebras.
AMS 1993. |
[GT1996] | P. Gianni and B. Trager. “Square-free algorithms in
positive characteristic”. Applicable Algebra in Engineering,
Communication and Computing, 7(1), 1-14 (1996) |
[GT2014] | M.S. Gowda and J. Tao. On the bilinearity rank of a
proper cone and Lyapunov-like
transformations. Mathematical Programming, 147 (2014)
155-170. |
[Gut2001] | Carsten Gutwenger and Petra Mutzel. A Linear Time Implementation
of SPQR-Trees, International Symposium on Graph Drawing,
(2001) 77-90 |
[GW1999] | Frederick M. Goodman and Hans Wenzl. Crystal bases of quantum
affine algebras and affine Kazhdan-Lusztig polyonmials.
Int. Math. Res. Notices 5 (1999), 251-275.
arXiv math/9807014v1. |
[GW2014] | G. Gratzer and F. Wehrung,
Lattice Theory: Special Topics and Applications Vol. 1,
Springer, 2014. |
[GYLL1993] | I. Gutman, Y.-N. Yeh, S.-L. Lee, and Y.-L. Luo. Some recent
results in the theory of the Wiener number. Indian Journal of
Chemistry, 32A:651–661, 1993. |
[GZ1983] | Greene; Zaslavsky, “On the Interpretation of Whitney
Numbers Through Arrangements of Hyperplanes, Zonotopes,
Non-Radon Partitions, and Orientations of
Graphs”. Transactions of the American Mathematical
Society, Vol. 280, No. 1. (Nov., 1983), pp. 97-126. |
[GZ1986] | B. Gross and D. Zagier, Heegner points and
derivatives of L-series. Invent. Math. 84 (1986), no. 2, 225-320. |
H
[Hai1989] | M.D. Haiman, On mixed insertion, symmetry, and shifted
Young tableaux. Journal of Combinatorial Theory, Series
A Volume 50, Number 2 (1989), pp. 196-225. |
[Har1962] | Frank Harary. The determinant of the adjacency matrix of a graph.
SIAM Review 4 (1962), pp. 202-210.
doi:10.1137/1004057 |
[Har1969] | Frank Harary, Graph Theory,
Addison-Wesley, 1969. |
[Har1977] | R. Hartshorne. Algebraic Geometry. Springer-Verlag, New York, 1977. |
[Har1994] | Frank Harary. Graph Theory. Reading, MA: Addison-Wesley, 1994. |
[HarPri] | F. Harary and G. Prins. The block-cutpoint-tree of
a graph. Publ. Math. Debrecen 13 1966 103-107. |
[Hat2002] | Allen Hatcher, “Algebraic Topology”, Cambridge University
Press (2002). |
[HC2006] | Mark van Hoeij and John Cremona, Solving Conics over
function fields. J. Théor. Nombres Bordeaux, 2006. |
[Hes2002] | Florian Hess, “Computing Riemann-Roch spaces in algebraic
function fields and related topics,” J. Symbolic
Comput. 33 (2002), no. 4, 425–445. |
[Hes2002b] | Florian Hess, “An algorithm for computing Weierstrass points,”
International Algorithmic Number Theory Symposium (pp. 357-371).
Springer Berlin Heidelberg, 2002. |
[HH2012] | Victoria Horan and Glenn Hurlbert,
Overlap Cycles for Steiner Quadruple Systems,
2012, arXiv 1204.3215 |
[HHL2009] | T. Huang, L. Huang, M.I. Lin,
On a class of strongly regular designs and quasi-semisymmetric
designs.
In: Recent Developments in Algebra and Related Areas, ALM vol. 8,
pp. 129–153. International Press, Somerville (2009). |
[Hig2008] | N. J. Higham, “Functions of matrices: theory and computation”,
Society for Industrial and Applied Mathematics (2008). |
[HJ2004] | Tom Hoeholdt and Joern Justesen, A Course In
Error-Correcting Codes, EMS, 2004 |
[HK2002a] | Holme, P. and Kim, B.J. Growing scale-free networks
with tunable clustering, Phys. Rev. E (2002). vol 65, no 2, 026107.
doi:10.1103/PhysRevE.65.026107. |
[HKOTY1999] | G. Hatayama, A. Kuniba, M. Okado, T. Tagaki, and Y. Yamada,
Remarks on fermionic formula. Contemp. Math., 248 (1999). |
[HL1999] | L. Heath and N. Loehr (1999). New algorithms for
generating Conway polynomials over finite fields.
Proceedings of the tenth annual ACM-SIAM symposium on
discrete algorithms, pp. 429-437. |
[HL2008] | J. Hong and H. Lee.
Young tableaux and crystal \(B(\infty)\) for finite simple Lie algebras.
J. Algebra 320, pp. 3680–3693, 2008. |
[HL2014] | Thomas Hamilton and David Loeffler, “Congruence testing
for odd modular subgroups”, LMS J. Comput. Math. 17
(2014), no. 1, 206-208, doi:10.1112/S1461157013000338. |
[Hli2006] | Petr Hlineny, “Equivalence-free exhaustive generation of
matroid representations”, Discrete Applied Mathematics
154 (2006), pp. 1210-1222. |
[HLT1993] | F. Harary, E. Loukakis, C. Tsouros,
The geodetic number of a graph.
Mathematical and computer modelling,
vol. 17 n11 pp.89–95, 1993.
doi:10.1016/0895-7177(93)90259-2. |
[HLY2002] | Yi Hu, Chien-Hao Liu, and Shing-Tung Yau. Toric morphisms
and fibrations of toric Calabi-Yau
hypersurfaces. Adv. Theor. Math. Phys.,
6(3):457-506, 2002. arXiv math/0010082v2 [math.AG]. |
[HoDaCG17] | Toth, Csaba D., Joseph O’Rourke, and Jacob E. Goodman.
Handbook of Discrete and Computational Geometry (3rd Edition).
Chapman and Hall/CRC, 2017. |
[Hoc] | Winfried Hochstaettler, “About the Tic-Tac-Toe Matroid”,
preprint. |
[Hopcroft1973] | J. E. Hopcroft and R. E. Tarjan. Dividing a Graph into
Triconnected Components, SIAM J. Comput., 2(3), 135–158 |
[HilGra1976] | A. P. Hillman, R. M. Grassl,
Reverse plane partitions and tableau hook numbers,
Journal of Combinatorial Theory, Series A 21 (1976),
pp. 216–221.
doi:10.1016/0097-3165(76)90065-0 |
[HK2002] | Introduction to Quantum Groups and Crystal Bases.
Jin Hong and Seok-Jin Kang. 2002. Volume 42.
Graduate Studies in Mathematics. American Mathematical Society. |
[HNT2005] | Florent Hivert, Jean-Christophe Novelli, and Jean-Yves Thibon.
The algebra of binary search trees,
arXiv math/0401089v2. |
[HP2003] | W. C. Huffman, V. Pless, Fundamentals of Error-Correcting
Codes, Cambridge Univ. Press, 2003. |
[HP2016] | S. Hopkins, D. Perkinson. “Bigraphical
Arrangements”. Transactions of the American Mathematical
Society 368 (2016), 709-725. arXiv 1212.4398 |
[HPS2008] | J. Hoffstein, J. Pipher, and J.H. Silverman. An
Introduction to Mathematical
Cryptography. Springer, 2008. |
[HPS2017] | Graham Hawkes, Kirill Paramonov, and Anne Schilling.
Crystal analysis of type \(C\) Stanley symmetric functions.
Electronic J. Comb. 24(3) (2017) #P3.51. arXiv 1704.00889. |
[Hor1972] | E. Horowitz, “Algorithms for Rational Function Arithmetic
Operations”, Annual ACM Symposium on Theory of Computing, Proceedings of
the Fourth Annual ACM Symposium on Theory of Computing, pp. 108–118, 1972 |
[HR2016] | Clemens Heuberger and Roswitha Rissner, “Computing
\(J\)-Ideals of a Matrix Over a Principal Ideal Domain”,
arXiv 1611.10308, 2016. |
[HRS1993] | C. D. Hodgson, I. Rivin and W. D. Smith.
A characterization of convex hyperbolic polyhedra
and of convex polyhedra inscribed in the sphere.
Bulletin of the American Mathematical Society
27.2 (1992): 246-251. |
[HRS2016] | J. Haglund, B. Rhoades, M. Shimozono. Ordered set partitions,
generalized coinvariant algebras, and the Delta Conjecture.
Preprint, arXiv 1609.07575. |
[HRW2015] | J. Haglund, J. B. Remmel, A. T. Wilson. The Delta Conjecture.
Preprint, arXiv 1509.07058. |
[HS1968] | Donald G. Higman and Charles C. Sims.
A simple group of order 44,352,000.
Mathematische Zeitschrift 105(2): 110-113, 1968.
doi:10.1007/BF01110435. |
[HS2018] | B. Hutz, M. Stoll. “Smallest representatives of
\(SL(2,\ZZ)\)-orbits of binary forms and endomorphisms of P1”,
arXiv 1805.08579, 2018. |
[Hsu1996] | Tim Hsu, “Identifying congruence subgroups of the modular
group”, Proc. AMS 124, no. 5, 1351-1359 (1996) |
[Hsu1997] | Tim Hsu, “Permutation techniques for coset
representations of modular subgroups”, in L. Schneps
(ed.), Geometric Galois Actions II: Dessins d’Enfants,
Mapping Class Groups and Moduli, volume 243 of LMS
Lect. Notes, 67-77, Cambridge Univ. Press (1997) |
[HST2001] | Matthew D. Horton, H. M. Stark, and Audrey A. Terras,
What are zeta functions of graphs and what are they good for?,
in Quantum graphs and their applications, 173-189,
Contemp. Math., Vol. 415. |
[HSV2006] | Hess, Smart, Vercauteren, “The Eta Pairing Revisited”,
IEEE Trans. Information Theory, 52(10): 4595-4602, 2006. |
[Hutz2007] | B. Hutz. Arithmetic Dynamics on Varieties of dimension greater
than one. PhD Thesis, Brown University 2007 |
[Hutz2009] | B. Hutz. Good reduction of periodic points, Illinois Journal of
Mathematics 53 (Winter 2009), no. 4, 1109-1126. |
[Hutz2015] | B. Hutz. Determination of all rational preperiodic points
for morphisms of PN. Mathematics of Computation, 84:291 (2015), 289-308. |
[Huy2005] | D. Huybrechts : Complex Geometry, Springer (Berlin)
(2005). |
[HZ1999] | C. Holton, L. Q. Zamboni, Descendants of primitive
substitutions, Theory Comput. Syst. 32 (1999) 133-157. |
I
[IEEEP1363] | IEEE P1363 / D13 (Draft Version 13). Standard
Specifications for Public Key Cryptography Annex A
(Informative). Number-Theoretic Background. Section
A.2.4 |
[IJ1960] | Igusa, Jun-ichi. Arithmetic variety of moduli for genus two.
Ann. of Math. (2) 72 1960 612–649. |
[II1983] | M. Imase and M. Itoh. “A design for directed graphs with minimum
diameter”, IEEE Trans. Comput., vol. C-32, pp. 782-784, 1983. |
[IK2010] | Kenji Iohara and Yoshiyuki Koga.
Representation Theory of the Virasoro Algebra.
Springer, (2010). |
[IK2003] | Yury Ionin and Hadi Kharaghani.
New families of strongly regular graphs.
Journal of Combinatorial Designs, 11(3):208–217, 2003.
doi:10.1002/jcd.10038 |
[ILS2012] | Giuseppe F. Italiano, Luigi Laura, and Federico
Santaroni. Finding strong bridges and strong
articulation points in linear time. Theoretical Computer
Science, 447, 74–84 (2012).
doi:10.1016/j.tcs.2011.11.011 |
[IR1990] | K. Ireland and M. Rosen, A Classical Introduction to
Modern Number Theory, Springer-Verlag, GTM volume
84, 1990. |
[ISSK2009] | M. Izadi, B. Sadeghiyan, S. S. Sadeghian, H. A. Khanooki,
MIBS: A new lightweight block cipher; in
CANS, (2009), pp. 334-348. |
[Ive2012] | S. Iveson,
Tableaux on `k + 1`-cores, reduced words for affine
permutations, and `k`-Schur expansions,
Operators on \(k\)-tableaux and the \(k\)-Littlewood-Richardson
rule for a special case,
UC Berkeley: Mathematics, Ph.D. Thesis,
https://escholarship.org/uc/item/7pd1v1b5 |
[Iwa1964] | N. Iwahori, On the structure of a Hecke ring of a
Chevalley group over a finite
field, J. Fac. Sci. Univ. Tokyo Sect. I, 10 (1964),
215–236 (1964). MathSciNet MR0165016 |
[Iwa1972] | K. Iwasawa, Lectures on p-adic L-functions, Princeton
University Press, 1972. |
J
[Ja1971] | N. Jacobson. Exceptional Lie Algebras. Marcel Dekker,
Inc. New York. 1971. IBSN No. 0-8247-1326-5. |
[Jet2008] | D. Jetchev. Global divisibility of Heegner points and
Tamagawa numbers. Compos. Math. 144 (2008), no. 4, 811–826. |
[JK1981] | Gordon James, Adalbert Kerber,
The Representation Theory of the Symmetric Group,
Encyclopedia of Mathematics and its Applications, vol. 16,
Addison-Wesley 1981. |
[JK2002] | Zvonimir Jankoa and Hadi Kharaghani. A Block Negacyclic Bush-Type
Hadamard Matrix and Two Strongly Regular Graphs.
J. Combin. Theory Ser. A 98 (2002), no. 1, 118–126.
doi:10.1006/jcta.2001.3231 |
[JKT2001] | Zvonimir Janko, Hadi Kharaghani, and Vladimir D. Tonchev.
The existence of a Bush-type Hadamard matrix of order 324
and two new infinite classes of symmetric designs.
Des. Codes Cryptogr. 24(2):225–232, 2001.
doi:10.1023/A:1011212922844 |
[JL2009] | Nicolas Jacon and Cedric Lecouvey.
Kashiwara and Zelevinsky involutions in affine type A.
Pac. J. Math. 243(2):287-311 (2009). |
[JL2016] | M. Jones and L. Lapointe. Pieri rules for Schur
functions in superspace. Preprint, arXiv 1608.08577 |
[JMP2009] | Michael Joswig, Benjamin Müller, and Andreas Paffenholz, polymake
and lattice polytopes, 21st International Conference on Formal
Power Series and Algebraic Combinatorics (FPSAC 2009), Discrete
Math. Theor. Comput. Sci. Proc., AK, Assoc. Discrete
Math. Theor. Comput. Sci., Nancy, 2009, pp. 491–502 |
[JNSV2016] | Claude-Pierre Jeannerod, Vincent Neiger, Eric Schost, and Gilles
Villard. Fast Computation of Minimal Interpolation Bases in Popov
Form for Arbitrary Shifts. In Proceedings ISSAC 2016 (pages
295-302). https://doi.org/10.1145/2930889.2930928 |
[Joh1980] | D. Johnson, “Spin structures and quadratic forms on surfaces”,
J. London Math. Soc (2), 22, 1980, 365-373 |
[Joh1990] | D.L. Johnson. Presentations of Groups. Cambridge
University Press. (1990). |
[JRJ94] | Jourdan, Guy-Vincent; Rampon, Jean-Xavier; Jard, Claude
(1994), “Computing on-line the lattice of maximal antichains
of posets”, Order 11 (3) p. 197-210, doi:10.1007/BF02115811 |
[Joy2004] | D. Joyner, Toric codes over finite fields, Applicable
Algebra in Engineering, Communication and Computing, 15,
(2004), p. 63-79. |
[Joy2006] | D. Joyner, On quadratic residue codes and hyperelliptic
curves, (preprint 2006) |
[JP2002] | J. Justin, G. Pirillo, Episturmian words and episturmian
morphisms, Theoret. Comput. Sci. 276 (2002) 281–313. |
[JPdA15] | N. Jacon and L. Poulain d’Andecy. An isomorphism theorem
for Yokonuma-Hecke algebras and applications to link
invariants. (2015) arXiv 1501.06389v3. |
[JV2000] | J. Justin, L. Vuillon, Return words in Sturmian and
episturmian words, Theor. Inform. Appl. 34 (2000)
343–356. |
K
[Ka1990] | Victor G. Kac. Infinite-dimensional Lie Algebras. Third
edition. Cambridge University Press, Cambridge, 1990. |
[Kal1992] | B. Kaliski,
The MD2 message-digest algorithm; in
RFS 1319, (1992). |
[Ka1993] | Masaki Kashiwara, The crystal base and Littelmann’s
refined Demazure character formula, Duke Math. J. 71
(1993), no. 3, 839–858. |
[Ka2003] | M. Kashiwara.
Realizations of Crystals.
Combinatorial and geometric representation theory (Seoul, 2001),
Contemp. Math. 325, Amer. Math. Soc., pp. 133–139, 2003. |
[Kai1980] | Thomas Kailath. “Linear Systems”, Prentice-Hall, 1980. |
[Kal1980] | T. Kaliath, “Linear Systems”, Prentice-Hall, 1980,
383–386. |
[Kam2007] | Joel Kamnitzer,
The crystal structure on the set of Mirković-Vilonen polytopes,
Adv. Math. 215 (2007), 66-93. |
[Kam2010] | Joel Kamnitzer, Mirković-Vilonen cycles and polytopes,
Ann. Math. (2) 171 (2010), 731-777. |
[Kan1958] | D. M. Kan, A combinatorial definition of homotopy
groups, Ann. Math. (2) 67 (1958), 282-312. |
[Kar1993] | Vahid Karimipour.
Representations of the coordinate ring of \(GL_q(n)\).
(1993). arXiv hep-th/9306058. |
[Kas1971] | T. Kasami: The weight enumerators for several classes of
subcodes of the second order binary Reed-Muller codes.
Information and Control, 18, pp. 369-394, 1971. |
[Kat1991] | Nicholas M. Katz, Exponential sums and differential equations,
Princeton University Press, Princeton NJ, 1991. |
[Kat2004] | Kayuza Kato, \(p\)-adic Hodge theory and values of zeta
functions of modular forms, Cohomologies \(p\)-adiques et
applications arithmétiques III, Astérisque vol 295, SMF,
Paris, 2004. |
[Kau1968] | W. H. Kautz. “Bounds on directed (d, k) graphs”. Theory of
cellular logic networks and machines, AFCRL-68-0668, SRI Project
7258, Final Rep., pp. 20-28, 1968. |
[Kaw2009] | Kawahira, Tomoki. An algorithm to draw external rays of the
Mandelbrot set, Nagoya University, 23 Apr. 2009.
math.titech.ac.jp/~kawahira/programs/mandel-exray.pdf |
[KB1983] | W. Kühnel and T. F. Banchoff, “The 9-vertex complex
projective plane”, Math. Intelligencer 5 (1983), no. 3,
11-22. |
[KB1995] | A. N. Kirillov, A. D. Berenstein,
Groups generated by involutions, Gelfand–Tsetlin patterns,
and combinatorics of Young tableaux,
Algebra i Analiz, 1995, Volume 7, Issue 1, pp. 92–152.
http://math.uoregon.edu/~arkadiy/bk1.pdf |
[Ke1991] | A. Kerber. Algebraic combinatorics via finite group
actions, 2.2 p. 70. BI-Wissenschaftsverlag,
Mannheim, 1991. |
[Ke2008] | B. Keller, Cluster algebras, quiver representations
and triangulated categories, arXiv 0807.1960. |
[Ked2001] | Kedlaya, K., Counting points on hyperelliptic curves using
Monsky-Washnitzer cohomology, J. Ramanujan Math. Soc. 16 (2001) no
4, 323-338 |
[KK1995] | Victor Klee and Peter Kleinschmidt,
Convex polytopes and related complexes., in R. L. Graham,
M. Grötschel, L Lovász, Handbook of combinatorics,
Vol. 1, Chapter 18, 1995 |
[KKMMNN1992] | S-J. Kang, M. Kashiwara, K. C. Misra, T. Miwa, T. Nakashima,
and A. Nakayashiki. Affine crystals and vertex models.
Int. J. Mod. Phys. A, 7 (suppl. 1A), (1992) pp. 449-484. |
[KKPSSSYYLLCHH2004] | D. Kwon, J. Kim, S. Park, S. H. Sung, Y. Sohn,
J. H. Song, Y. Yeom, E-J. Yoon, S. Lee, J. Lee,
S. Chee, D. Han, and J. Hong,
New block cipher: ARIA; in ICISC, (2004), pp. 432-445. |
[KKS2007] | S.-J. Kang, J.-A. Kim, and D.-U. Shin.
Modified Nakajima Monomials and the Crystal \(B(\infty)\).
J. Algebra 308, pp. 524–535, 2007. |
[KL1990] | P. Kleidman and M. Liebeck. The subgroup structure of
the finite classical groups. Cambridge University Press, 1990. |
[KL2008] | Chris Kurth and Ling Long, “Computations with finite index
subgroups of \({\rm PSL}_2(\ZZ)\) using Farey symbols”,
Advances in algebra and combinatorics, 225–242, World
Sci. Publ., Hackensack, NJ, 2008. Preprint version:
arXiv 0710.1835 |
[Kle1995] | A. Kleshchev. Branching rules for modular representations of
symmetric groups. I. J. Algebra 178 (1995), 493–511. |
[Kle1996] | A. Kleshchev, Branching rules for modular representations of symmetric groups III:
Some corollaries and a problem of Mullineux, J. London Math. Soc. 54 (1996) 25–38.
MathSciNet MR1395065 |
[Kle2009] | A. Kleshchev.
Representation theory of symmetric groups and related Hecke algebras.
Bull. Amer. Math. Soc. 47 (2010), 419–481. arXiv 0909.4844. |
[KLLRSY2014] | E. B. Kavun, M. M. Lauridsen, G. Leander, C. Rechberger,
P. Schwabe, and T. Yalcin, Prost v1; CAESAR Competition, (2014). |
[KLPR2010] | L. R. Knudsen, G. Leander, A. Poschmann, and M. J. B. Robshaw,
PRINTcipher: A block cipher for IC-printing; in
CHES, (2010), pp. 16-32. |
[KLRS2016] | S.-J. Kang, K.-H. Lee, H. Ryu, and B. Salisbury.
A combinatorial description of the affine Gindikin-Karpelevich
formula of type \(A_n^{(1)}\). Lie Algebras, Lie Superalgebras,
Vertex Algebras and Related Topics, Proc. Sympos. Pure Math.,
vol. 92, Amer. Math. Soc., Providence, RI, 2016, pp. 145–165. |
[KLS2013] | Allen Knutson, Thomas Lam, and David Speyer.
Positroid Varieties: Juggling and Geometry
Compositio Mathematica, 149 (2013), no. 10.
arXiv 1111.3660. |
[KM1994] | S.-J. Kang and K. C. Misra.
Crystal bases and tensor product decompositions of \(U_q(G_2)\)-modules.
J. Algebra 163, pp. 675–691, 1994. |
[KMAUTOM2000] | Masayuki Kanda, Shiho Moriai, Kazumaro Aoki, Hiroki Ueda,
Youichi Takashima, Kazuo Ohta, and Tsutomu Matsumoto,
E2 - a new 128-bit block cipher; in IEICE Transactions on
Fundamentals of Electronics, Communications and Computer Sciences,
E83-A(1):48–59, 12 2000. |
[KMM2004] | Tomasz Kaczynski, Konstantin Mischaikow, and Marian
Mrozek, “Computational Homology”, Springer-Verlag (2004). |
[KMN2012] | On the trace of the antipode and higher
indicators. Yevgenia Kashina and Susan Montgomery and
Richard Ng. Israel J. Math., v.188, 2012. |
[KMOY2007] | M. Kashiwara, K. C. Misra, M. Okado, D. Yamada.
Perfect crystals for \(U_q(D_4^{(3)})\), J. Algebra. 317 (2007). |
[KMR2012] | A. Kleshchev, A. Mathas, and A. Ram, Universal Specht
modules for cyclotomic Hecke algebras,
Proc. London Math. Soc. (2012) 105 (6): 1245-1289.
arXiv 1102.3519v1 |
[KN1963] | S. Kobayashi & K. Nomizu : Foundations of Differential
Geometry, vol. 1, Interscience Publishers (New York)
(1963). |
[KN1994] | M. Kashiwara and T. Nakashima.
Crystal graphs for representations of the \(q\)-analogue of
classical Lie algebras.
J. Algebra 165, no. 2, pp. 295–345, 1994. |
[KNS2011] | Atsuo Kuniba and Tomoki Nakanishi and Junji Suzuki,
\(T\)-systems and \(Y\)-systems in integrable systems.
J. Phys. A, 44 (2011), no. 10. |
[Knu2005] | Lars R. Knudsen, SMASH - A Cryptographic Hash Function; in
FSE‘05, (2005), pp. 228-242. |
[Kob1993] | Neal Koblitz, Introduction to Elliptic Curves and
Modular Forms. Springer GTM 97, 1993. |
[Koe1999] | Wolfram Koepf: Effcient Computation of Chebyshev
Polynomials in Computer Algebra Systems: A Practical
Guide. John Wiley, Chichester (1999): 79-99. |
[Koh1996] | Kohel, “Endomorphism Rings of Elliptic Curves over Finite
Fields”, UC Berkeley PhD thesis 1996. |
[Koh2000] | David Kohel, Hecke Module Structure of Quaternions, in
Class Field Theory — Its Centenary and Prospect (Tokyo,
1998), Advanced Studies in Pure Mathematics, 30,
177-196, 2000. |
[Koh2004] | E. Kohler. Recognizing graphs without asteroidal triples.
Journal of Discrete Algorithms 2(4):439-452, Dec. 2004,
doi:10.1016/j.jda.2004.04.005. |
[Kol1991] | V. A. Kolyvagin. On the structure of Shafarevich-Tate
groups. Algebraic geometry, 94–121, Lecture Notes in Math., 1479,
Springer, Berlin, 1991. |
[Kos1985] | J.-L. Koszul, Crochet de Schouten-Nijenhuis et
cohomologie, in Élie Cartan et les mathématiques
d’aujourd’hui, Astérisque hors série (1985), p. 257 |
[KP2002] | Volker Kaibel and Marc E. Pfetsch, “Computing the Face
Lattice of a Polytope from its Vertex-Facet Incidences”,
Computational Geometry: Theory and Applications, Volume
23, Issue 3 (November 2002), 281-290. Available at
http://portal.acm.org/citation.cfm?id=763203 and free of
charge at arXiv math/0106043 |
[KP2011] | Manuel Kauers and Peter Paule. The Concrete Tetrahedron.
Springer-Verlag, 2011. |
[KP2002b] | James Kuzmanovich; Andrey Pavlichenkov, Finite
Groups of Matrices Whose Entries Are Integers, The American
Mathematical Monthly, Vol. 109, No. 2. (2002) pp. 173-186 |
[Kra2006] | Christian Krattenthaler. Growth diagrams, and
increasing and decreasing chains in fillings of Ferrers
shapes. Advances in Applied Mathematics Volume 37,
Number 3 (2006), pp. 404-431. |
[Kr1971] | D. Kraines, “On excess in the Milnor basis,” Bull. London
Math. Soc. 3 (1971), 363-365. |
[Kr2016] | Stefan Kranich, An epsilon-delta bound for plane algebraic curves
and its use for certified homotopy continuation of systems of plane
algebraic curves, arXiv 1505.03432 |
[KR2001b] | P.L. Krapivsky and S. Redner. “Organization of Growing Random
Networks”, Phys. Rev. E vol. 63 (2001), p. 066123. |
[KR2005] | P.L. Krapivsky and S. Redner. “Network Growth by Copying”,
Phys. Rev. E vol. 71 (2005), p. 036118. |
[Kra1989] | Kraus, Alain, Quelques remarques à propos des invariants
(c_4), (c_6) et (Delta) d’une courbe elliptique, Acta
Arith. 54 (1989), 75-80. |
[KRG1996] | S. Klavzar, A. Rajapakse, and I. Gutman. The Szeged and the
Wiener index of graphs. Applied Mathematics Letters, 9(5):45–49,
1996. doi:10.1016/0893-9659(96)00071-7. |
[KS] | Sheldon Katz and Stein Arild Stromme, “Schubert”,
A Maple package for intersection theory and enumerative geometry. |
[KS1998] | Maximilian Kreuzer and Harald Skarke, Classification of
Reflexive Polyhedra in Three Dimensions,
arXiv hep-th/9805190 |
[KS2002] | A. Khare and U. Sukhatme. “Cyclic Identities Involving
Jacobi Elliptic Functions”,
preprint 2002. arXiv math-ph/0201004 |
[KS2006] | Atsuo Kuniba and Reiho Sakamoto,
The Bethe ansatz in a periodic box-ball system and the
ultradiscrete Riemann theta function, J. Stat. Mech.,
P09005 (2006). |
[KS2010] | J.-A. Kim and D.-U. Shin.
Generalized Young walls and crystal bases for quantum affine
algebra of type \(A\). Proc. Amer. Math. Soc. 138 (2010), no. 11,
3877–3889. |
[KS2019] | J. Kliem and C. Stump.
A face iterator for polyhedra and more general finite locally
branched lattices.
Preprint (2019): arXiv 1905.01945. |
[KT1986] | N. Kerzman and M. R. Trummer. “Numerical Conformal
Mapping via the Szego kernel”. Journal of Computational
and Applied Mathematics, 14(1-2): 111–123, 1986. |
[KT2013] | K. Tsukazaki, Explicit Isogenies of Elliptic Curves,
PhD thesis, University of Warwick, 2013. |
[KTT2006] | A. Kuniba, T. Takagi, and A. Takenouchi,
Bethe ansatz and inverse scattering transform in a periodic
box-ball system, Nuclear Phys. B 747, no. 3 (2006), 354–397. |
[Kuh1987] | W. Kühnel, “Minimal triangulations of Kummer varieties”,
Abh. Math. Sem. Univ. Hamburg 57 (1987), 7-20. |
[Kuh1995] | Kuhnel, “Tight Polyhedral Submanifolds and Tight
Triangulations” Lecture Notes in Mathematics Volume 1612,
1995 |
[Kul1991] | Ravi Kulkarni, “An arithmetic geometric method in the
study of the subgroups of the modular group”, American
Journal of Mathematics 113 (1991), no 6, 1053-1133 |
[KV2003] | Kim, Jeong Han and Vu, Van H. Generating random regular
graphs. Proc. 35th ACM Symp. on Thy. of Comp. 2003, pp
213-222. ACM Press, San Diego, CA, USA.
doi:10.1145/780542.780576. |
[Kwon2012] | Jae-Hoon Kwon. Crystal bases of \(q\)-deformed Kac Modules
over the Quantum Superalgebra \(U_q(\mathfrak{gl}(m|n))\).
International Mathematics Research Notices. Vol. 2014, No. 2,
pp. 512-550 (2012) |
[KX1998] | S. König and C. Xi.
On the structure of cellular algebras.
Algebras and modules, II (Geiranger, 1996), 365–386,
CMS Conf. Proc., 24, Amer. Math. Soc., Providence, RI, 1998.
MathSciNet MR1648638 |
[KZ2003] | M. Kontsevich, A. Zorich “Connected components of the
moduli space of Abelian differentials with prescripebd
singularities” Invent. math. 153, 631-678 (2003) |
L
[Lab2008] | S. Labbé, Propriétés combinatoires des \(f\)-palindromes,
Mémoire de maîtrise en Mathématiques, Montréal, UQAM,
2008, 109 pages. |
[Lam2004] | Thomas Lam, Growth diagrams, domino insertion and
sign-imbalance. Journal of Combinatorial Theory,
Series A Volume 107, Number 1 (2004), pp. 87-115. |
[Lam2005] | T. Lam, Affine Stanley symmetric functions,
Amer. J. Math. 128 (2006), no. 6, 1553–1586. |
[Lam2008] | T. Lam. Schubert polynomials for the affine
Grassmannian. J. Amer. Math. Soc., 2008. |
[Lan2008] | E. Lanneau “Connected components of the strata of the
moduli spaces of quadratic differentials”, Annales
sci. de l’ENS, serie 4, fascicule 1, 41, 1-56 (2008) |
[Lasc] | A. Lascoux. Chern and Yang through ice.
Preprint. |
[Lau2011] | Alan G.B. Lauder, “Computations with classical and p-adic
modular forms”, LMS J. of Comput. Math. 14 (2011),
214-231. |
[Laz1992] | Daniel Lazard, Solving Zero-dimensional Algebraic
Systems, in Journal of Symbolic Computation (1992)
vol. 13, pp. 117-131 |
[Laz2004] | Robert Lazarsfeld:
Positivity in algebraic geometry II;
Positivity for Vector Bundles, and Multiplier Ideals,
Modern Surveys in Mathematics volume 49 (2004). |
[LB1962] | C. G. Lekkerkerker, J. Ch. Boland. Representation of a finite
graph by a set of intervals on the real line. Fundamenta
Mathematicae, 51:45-64, 1962; doi:10.4064/fm-51-1-45-64. |
[LB1988] | Lee, P.J., Brickell, E.F. An observation on the security of
McEliece’s public-key cryptosystem. EuroCrypt 1988. LNCS, vol. 330, pp.
275–280. |
[LdB1982] | A. Liberato de Brito, ‘FORTRAN program for the integral
of three spherical harmonics’, Comput. Phys. Commun.,
Volume 25, pp. 81-85 (1982) |
[Lee1996] | Marc van Leeuwen. The Robinson-Schensted and
Sch”utzenberger algorithms, an elementary approach.
Electronic Journal of Combinatorics 3, no. 2 (1996):
Research Paper 15, approx. 32 pp. (electronic) |
[Lei2013] | Tom Leinster, The magnitude of metric spaces.
Doc. Math. 18 (2013), 857-905. |
[Lev2014] | Lionel Levine. Threshold state and a conjecture of
Poghosyan, Poghosyan, Priezzhev and Ruelle,
Communications in Mathematical Physics. |
[Lew2000] | Robert Edward Lewand. Cryptological Mathematics. The
Mathematical Association of America, 2000. |
[Li1995] | Peter Littelmann, Crystal graphs and Young
tableaux, J. Algebra 175 (1995), no. 1, 65–87. |
[Li1995b] | P. Littelmann, Paths and root operators in representation
theory. Ann. of Math. (2) 142 (1995), no. 3, 499-525. |
[Lic1977] | A. Lichnerowicz, Les variétés de Poisson et leurs
algèbres de Lie associées, Journal of Differential
Geometry 12, 253 (1977); doi:10.4310/jdg/1214433987 |
[Lic1997] | William B. Raymond Lickorish. An Introduction to Knot
Theory, volume 175 of Graduate Texts in
Mathematics. Springer-Verlag, New York, 1997. ISBN
0-387-98254-X |
[Lim2001] | C. H. Lim,
A Revised Version of CRYPTON: CRYPTON V1.0; in FSE‘01, pp. 31–45. |
[Lin1999] | J. van Lint, Introduction to coding theory, 3rd ed.,
Springer-Verlag GTM, 86, 1999. |
[Liv1993] | Charles Livingston, Knot Theory, Carus Mathematical
Monographs, number 24. |
[Liv2006] | M. Livernet, A rigidity theorem for pre-Lie algebras, J. Pure Appl.
Algebra 207 (2006), no 1, pages 1-18.
Preprint: arXiv math/0504296v2. |
[LLM2003] | A. Lascoux, L. Lapointe, and J. Morse. Tableau atoms and a new
Macdonald positivity conjecture. Duke Math Journal, 116 (1),
2003. arXiv math/0008073 |
[LLM2014] | Lee, Li, Mills, A combinatorial formula for certain
elements in the upper cluster algebra, arXiv 1409.8177 |
[LLMS2006] | T. Lam, L. Lapointe, J. Morse, M. Shimozono,
Affine insertion and Pieri rules for the affine Grassmannian,
Memoirs of the AMS, 208 (2010), no. 977, arXiv math.CO/0609110 |
[LLMSSZ2013] | Thomas Lam, Luc Lapointe, Jennifer Morse, Anne
Schilling, Mark Shimozono and Mike Zabrocki.
k-Schur functions and affine Schubert calculus, 2013.
arXiv 1301.3569. |
[LLT1996] | Alain Lascoux, Bernard Leclerc, and Jean-Yves Thibon.
Hecke algebras at roots of unity and crystal bases of
quantum affine algebras. Comm. Math. Phys.
181 (1996), pp 205-263.
MathSciNet MR1410572 |
[LLWC2011] | Chien-Hung Lin, Jia-Jie Liu, Yue-Li Wang, William Chung-Kung Yen,
The Hub Number of Sierpinski-Like Graphs, Theory Comput Syst
(2011), vol 49, doi:10.1007/s00224-010-9286-3 |
[LLYCL2005] | H. J. Lee, S. J. Lee, J. H. Yoon, D. H. Cheon, and J. I. Lee,
The SEED Encryption Algorithm; in
RFC 4269, (2005). |
[LLZ2014] | K. Lee, L. Li, and A. Zelevinsky, Greedy elements in rank 2
cluster algebras, Selecta Math. 20 (2014), 57-82. |
[LM2004] | Lapointe, L. and Morse, J. ‘Order Ideals in Weak Subposets
of Young’s Lattice and Associated Unimodality Conjectures’. Ann.
Combin. (2004) |
[LM2006] | Vadim Lyubashevsky and Daniele Micciancio. Generalized
compact knapsacks are collision resistant. ICALP,
pp. 144–155, Springer, 2006. |
[LM2006b] | L. Lapointe, J. Morse. Tableaux on \(k+1\)-cores, reduced
words for affine permutations, and \(k\)-Schur expansions.
J. Combin. Theory Ser. A 112 (2005), no. 1, 44–81.
MR2167475 (2006j:05214) |
[LM2018] | A. Lauve, M. Mastnak. Bialgebra coverings and transfer
of structure. Preprint, arXiv 1803.02691. |
[LMR2010] | N. Linial, R. Meshulam and M. Rosenthal, “Sum complexes
– a new family of hypertrees”, Discrete & Computational
Geometry, 2010, Volume 44, Number 3, Pages 622-636 |
[LNSSS2013] | C. Lenart, S. Naito, D. Sagaki, A. Schilling, M. Shimozono,
A uniform model for Kirillov-Reshetikhin crystals. Extended abstract.
DMTCS proc, to appear ( arXiv 1211.6019 ) |
[Loe2007] | David Loeffler, Spectral expansions of overconvergent
modular functions, Int. Math. Res. Not 2007 (050).
arXiv math/0701168. |
[LOS2012] | C. Lecouvey, M. Okado, M. Shimozono.
“Affine crystals, one-dimensional sums and parabolic Lusztig
\(q\)-analogues”. Mathematische Zeitschrift. 271 (2012). Issue 3-4.
819-865. doi:10.1007/s00209-011-0892-9, arXiv 1002.3715. |
[Lot1983] | M. Lothaire, Combinatorics on Words, vol. 17 of
Encyclopedia of Mathematics and its Applications,
Addison-Wesley, Reading, Massachusetts (1983) |
[Lot1997] | M. Lothaire, Combinatorics on Words, Cambridge University
Press, (1997). |
[Lot2002] | M. Lothaire, Algebraic combinatorics on
words. Cambridge University Press (2002). |
[Lot2005] | M. Lothaire, Applied combinatorics on
words. Cambridge University Press (2005). |
[LP2007] | G. Leander and A. Poschmann,
On the Classification of 4 Bit S-boxes; in WAIFI, (2007), pp. 159-176. |
[LP2008] | C. Lenart and A. Postnikov. A combinatorial model for
crystals of Kac-Moody algebras. Trans. Amer. Math. Soc. 360 (2008),
4349-4381. |
[LP2011] | Richard Lindner and Chris Peikert. Better key sizes (and
attacks) for LWE-based encryption. in Proceeding of the
11th international conference on Topics in cryptology:
CT-RSA 2011. Springer 2011,
doi:10.1007/978-3-642-19074-2_21 |
[LPR2010] | Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On
Ideal Lattices and Learning with Errors over Rings. in
Advances in Cryptology –
EUROCRYPT 2010. Springer 2010. doi:10.1007/978-3-642-13190-5_1 |
[LR0102066] | Jean-Louis Loday and Maria O. Ronco.
Order structure on the algebra of permutations
and of planar binary trees.
arXiv math/0102066v1. |
[LS] | A. Lum, W. Stein. Verification of the Birch and
Swinnerton-Dyer Conjecture for Elliptic Curves with Complex
Multiplication (unpublished) |
[LS1990] | A. Lascoux, M.-P. Schutzenberger.
Keys and standard bases, invariant theory and tableaux.
IMA Volumes in Math and its Applications (D. Stanton, ED.).
Southend on Sea, UK, 19 (1990). 125-144. |
[LS2007] | Thomas Lam and Mark Shimozono. Dual graded graphs for
Kac-Moody algebras. Algebra & Number Theory 1.4 (2007)
pp. 451-488. |
[LSS2009] | T. Lam, A. Schilling, M. Shimozono. Schubert
polynomials for the affine Grassmannian of the symplectic
group. Mathematische Zeitschrift 264(4) (2010) 765-811
(arXiv 0710.2720) |
[LS2012] | K.-H. Lee and B. Salisbury.
Young tableaux, canonical bases, and the Gindikin-Karpelevich formula.
arXiv 1205.6006. |
[LS2017] | Xuan Liu and Travis Scrimshaw. A uniform approach to soliton
cellular automata using rigged configurations.
Preprint (2017) arXiv 1706.02443 |
[LSW2012] | Svante Linusson, John Shareshian and Michelle L. Wachs,
Rees products and lexicographic shellability,
J. Comb. 3 (2012), no. 3, 243-276. |
[LT2009] | G. I. Lehrer and D. E. Taylor. Unitary reflection
groups. Australian Mathematical Society Lecture
Series, 2009. |
[DeLuca2006] | A. De Luca, Pseudopalindrome closure operators in free
monoids, Theoret. Comput. Sci. 362 (2006) 282–300. |
[LT2018] | Zhiqiang Li, Shaobin Tan.
Verma modules for rank two Heisenberg-Virasoro algebra.
Preprint, (2018). arXiv 1807.07735. |
[Lut2005] | Frank H. Lutz, “Triangulated Manifolds with Few Vertices:
Combinatorial Manifolds”, preprint (2005),
arXiv math/0506372 |
[LTV1999] | Bernard Leclerc, Jean-Yves Thibon, and Eric Vasserot.
Zelevinsky’s involution at roots of unity.
J. Reine Angew. Math. 513:33-51 (1999). |
[LW2012] | David Loeffler and Jared Weinstein, On the computation of
local components of a newform, Mathematics of Computation
81 (2012) 1179-1200. doi:10.1090/S0025-5718-2011-02530-5 |
[LW2015] | T. Lawson and C. Wuthrich, Vanishing of some Galois
cohomology groups for elliptic curves, arXiv 1505.02940 |
[LY2001] | K. Lauter and T. Yang, “Computing genus 2 curves from
invariants on the Hilbert moduli space”, Journal of Number Theory 131
(2011), pages 936 - 958 |
[Lyo2003] | R. Lyons, Determinantal probability
measures. Publications Mathématiques de l’Institut des
Hautes Études Scientifiques 98(1) (2003), pp. 167-212. |
[LZ2004] | S. Lando and A. Zvonkine, “Graphs on surfaces and their
applications”, Springer-Verlag, 2004. |
[LZ2011] | Bin Li and Hechun Zhang.
Path realization of crystal \(B(\infty)\).
Front. Math. China, 6 (4), (2011) pp. 689–706.
doi:10.1007/s11464-010-0073-x |
M
[Mac1916] | F.S. Macaulay. The algebraic theory of modular systems
Cambridge university press, 1916. |
[Mac1995] | I. G. Macdonald, Symmetric functions and Hall
polynomials, second ed., The Clarendon Press, Oxford
University Press, New York, 1995, With contributions
by A. Zelevinsky, Oxford Science Publications. |
[Mar1980] | Jacques Martinet, Petits discriminants des corps de
nombres, Journ. Arithm. 1980, Cambridge Univ. Press,
1982, 151–193. |
[Mar2004] | S. Marcus, Quasiperiodic infinite words,
Bull. Eur. Assoc. Theor. Comput. Sci. 82 (2004) 170-174. |
[Mas1994] | James L. Massey,
SAFER K-64: A byte-oriented block-ciphering algorithm; in
FSE’93, Volume 809 of LNCS, pages 1-17.
Springer, Heidelberg, December 1994. |
[Mat1992] | O. Mathieu. Classification of Harish-Chandra
modules over the Virasoro Lie algebra.
Invent. Math. 107(2) (1992), pp. 225-234. |
[Mat1999] | A. Mathas.
Iwahori-Hecke algebras and Schur algebras of the symmetric group.
University Lecture Series, 15. American Mathematical Society,
Providence, RI, 1999. xiv+188 pp. ISBN: 0-8218-1926-7
MathSciNet MR1711316 |
[Mat2002] | Jiří Matousek, “Lectures on Discrete Geometry”, Springer,
2002 |
[Ma2009] | Sarah Mason, An Explicit Construction of Type A Demazure
Atoms, Journal of Algebraic Combinatorics, Vol. 29,
(2009), No. 3, p.295-313. arXiv 0707.4267 |
[Mac1936I] | Saunders MacLane, A construction for prime ideals as absolute
values of an algebraic field. Duke Mathematical Journal, 2(3)
(1936), 492-510. |
[Mac1936II] | Saunders MacLane, A construction for absolute values in
polynomial rings. Transactions of the American Mathematical
Society, 40(3)(1936), 363-395. |
[Mac1915] | Percy A. MacMahon, Combinatory Analysis,
Cambridge University Press (1915–1916).
(Reprinted: Chelsea, New York, 1960). |
[MAR2009] | H. Molina-Abril and P. Réal, Homology computation using
spanning trees in Progress in Pattern Recognition, Image
Analysis, Computer Vision, and Applications, Lecture
Notes in Computer Science, volume 5856, pp 272-278,
Springer, Berlin (2009). |
[Mark1992] | George Markowsky, Primes, irreducibles and
extremal lattices, Order 9 (1992), no. 3, 265-290.
doi:10.1007%2FBF00383950 |
[Mar1994] | George Markowsky.
Permutation lattices revisited.
Mathematical Social Sciences, 27 (1994), 59–72. |
[Mas1969] | James L. Massey, “Shift-Register Synthesis and BCH
Decoding.” IEEE Trans. on Information Theory, vol. 15(1),
pp. 122-127, Jan 1969. |
[Mat1978] | R. A. Mathon, Symmetric conference matrices of order `pq^2 + 1`,
Canad. J. Math. 30 (1978) 321-331, doi:10.4153/CJM-1978-029-1. |
[Mat2015] | A. Mathas. Cyclotomic quiver Hecke algebras of type A,
in “Modular representation theory of finite and p-adic groups”,
165–266, Lect. Notes Ser. Inst. Math. Sci. Natl. Univ. Singap.,
30, World Sci. Publ., Hackensack, NJ, 2015.
MathSciNet MR3495747 |
[May1964] | J. P. May, “The cohomology of restricted Lie algebras
and of Hopf algebras; application to the Steenrod
algebra.” Thesis, Princeton Univ., 1964. |
[May1967] | J. P. May, Simplicial Objects in Algebraic Topology,
University of Chicago Press (1967) |
[Maz1978] | B. Mazur. Modular curves and the Eisenstein ideal. Inst.
Hautes Études Sci. Publ. Math. No. 47 (1977), 33–186 (1978). |
[Maz1978b] | B. Mazur. Rational Isogenies of Prime Degree.
Inventiones mathematicae 44, 129-162 (1978). |
[MBRe2011] | Patricia Muldoon Brown and Margaret A. Readdy,
The Rees product of posets, J. Comb. 2 (2011), no. 2, 165-191 |
[McC1978] | K. McCrimmon. Jordan algebras and their
applications. Bull. Amer. Math. Soc. 84 1978. |
[McE1987] | Robert J. McEliece. Finite Fields for Computer
Scientists and Engineers. Kluwer Academic Publishers, 1987. |
[McK1998] | Brendan D. McKay, “Isomorph-Free Exhaustive generation”.
Journal of Algorithms, 26(2): 306-324, February 1998. |
[McM1992] | John McMillan. Games, strategies, and managers. Oxford
University Press. |
[Me1997] | G. Melançon, Factorizing infinite words using Maple,
MapleTech journal, vol. 4, no. 1, 1997, pp. 34-42. |
[MeNoTh11] | Frédéric Menous, Jean-Christophe Novelli, Jean-Yves Thibon,
Mould calculus, polyhedral cones, and characters of
combinatorial Hopf algebras,
Advances in Applied Mathematics, Volume 51, Issue 2, July 2013,
Pages 177–227,
doi:10.1016/j.aam.2013.02.003,
arXiv 1109.1634v2. |
[MF1999] | J.H. Mathews and K.D. Fink. Numerical Methods Using
MATLAB. 3rd edition, Prentice-Hall, 1999. |
[Mes1991] | Mestre, Jean-François. Construction de courbes de genre 2 à partir de
leurs modules. Effective methods in algebraic geometry (Castiglioncello,
1990), 313–334, Progr. Math., 94, Birkhauser Boston, Boston, MA, 1991. |
[Mil1958] | J. W. Milnor, The Steenrod algebra and its dual,
Ann. of Math. (2) 67 (1958), 150-171. |
[Mil1978] | S. Milne, A q-analog of restricted growth functions,
Dobinsky’s equality and Charlier
polynomials. Trans. Amer. Math. Soc., 245 (1978),
89-118. |
[Mil2004] | Victor S. Miller, “The Weil pairing, and its
efficient calculation”, J. Cryptol., 17(4):235-261, 2004 |
[Mil2017] | Arthur Milchior, (Quasi-)linear time algorithm to compute
LexDFS, LexUP and LexDown orderings. (2017)
arXiv 1701.00305 |
[MLH2008] | C. Magnien, M. Latapy, and M. Habib. Fast computation of
empirically tight bounds for the diameter of massive graphs.
ACM Journal of Experimental Algorithms 13 (2008).
doi:10.1145/1412228.1455266. |
[MMIB2012] | Y. Matsumoto, S. Moriyama, H. Imai, D. Bremner:
Matroid Enumeration for Incidence Geometry,
Discrete and Computational Geometry,
vol. 47, issue 1, pp. 17-43, 2012. |
[MMY2003] | Jean-Christophe Yoccoz, Stefano Marmi and Pierre Moussa
“On the cohomological equation for interval exchange
maps”, C. R. Acad. Sci. Paris, projet de Note, 2003
Systèmes dynamiques/Dynamical
Systems. arXiv math/0304469v1 |
[MM2015] | J. Matherne and G. Muller, Computing upper cluster algebras,
Int. Math. Res. Not. IMRN, 2015, 3121-3149. |
[MNO1994] | Alexander Molev, Maxim Nazarov, and Grigori Olshanski.
Yangians and classical Lie algebras. (1994)
arXiv hep-th/9409025 |
[Mol2007] | Alexander Ivanovich Molev.
Yangians and Classical Lie Algebras.
Mathematical Surveys and Monographs.
Providence, RI: American Mathematical Society. (2007) |
[Mol2015] | A. Molnar, Fractional Linear Minimal Models of Rational Functions,
M.Sc. Thesis. |
[Mon1998] | K. G. Monks, “Change of basis, monomial relations, and
\(P^s_t\) bases for the Steenrod algebra,” J. Pure
Appl. Algebra 125 (1998), no. 1-3, 235-260. |
[Mon2010] | T. Monteil, The asymptotic language of smooth curves, talk
at LaCIM2010. |
[MoPa1994] | P. Morton and P. Patel. The Galois theory of periodic points
of polynomial maps. Proc. London Math. Soc., 68 (1994), 225-263. |
[MR1989] | G. Melançon and C. Reutenauer.
Lyndon words, free algebras and shuffles,
Can. J. Math., Vol. XLI, No. 4, 1989, pp. 577-591. |
[MR2002] | S. Murphy, M. Robshaw Essential Algebraic Structure
Within the AES; in Advances in Cryptology - CRYPTO
2002; LNCS 2442; Springer Verlag 2002 |
[MR2016] | B. Malmskog, C. Rasmussen, “Picard curves over mathbb{Q}
with good reduction away from 3”. LMS Journal of Computation and
Mathematics 19 (2016), no. 2, 382-408.
doi:10.1112/S1461157016000413. |
[MS1977] | F. J. MacWilliams, N. J. A. Sloane, The Theory of Error-Correcting
Codes, North-Holland, Amsterdam, 1977 |
[MS2003] | T. Mulders, A. Storjohann, “On lattice reduction for
polynomial matrices”, J. Symbolic Comput. 35 (2003),
no. 4, 377–401 |
[MS2011] | G. Musiker and C. Stump, A compendium on the cluster algebra
and quiver package in sage, arXiv 1102.4844. |
[MSSY2001] | Mateescu, A., Salomaa, A., Salomaa, K. and Yu, S., A
sharpening of the Parikh mapping. Theoret. Informatics Appl. 35
(2001) 551-564. |
[MSZ2013] | Michael Maschler, Solan Eilon, and Zamir Shmuel. Game
Theory. Cambridge: Cambridge University Press,
(2013). ISBN 9781107005488. |
[MT1991] | Mazur, B., & Tate, J. (1991). The \(p\)-adic sigma
function. Duke Mathematical Journal, 62(3), 663-688. |
[MTT1986] | B. Mazur, J. Tate, and J. Teitelbaum, On \(p\)-adic
analogues of the conjectures of Birch and
Swinnerton-Dyer, Inventiones mathematicae 84, (1986),
1-48. |
[Mu1997] | Murty, M. Ram. Congruences between modular forms. In “Analytic
Number Theory” (ed. Y. Motohashi), London Math. Soc. Lecture Notes
247 (1997), 313-320, Cambridge Univ. Press. |
[Mul2004] | Siguna Muller, “On the Computation of Square Roots in
Finite Fields”, in Designs, Codes and Cryptography,
Volume 31, Issue 3 (March 2004) |
[Mur1983] | G. E. Murphy. The idempotents of the symmetric group
and Nakayama’s conjecture. J. Algebra 81 (1983). 258-265. |
[Muz2007] | M. Muzychuk.
A generalization of Wallis-Fon-Der-Flaass construction of strongly
regular graphs.
J. Algebraic Combin., 25(2):169–187, 2007.
doi:10.1007/s10801-006-0030-7. |
[MV2010] | D. Micciancio, P. Voulgaris. A Deterministic Single
Exponential Time Algorithm for Most Lattice Problems based
on Voronoi Cell Computations. Proceedings of the 42nd ACM
Symposium Theory of Computation, 2010. |
[MvOV1996] | A. J. Menezes, P. C. van Oorschot,
and S. A. Vanstone. Handbook of Applied
Cryptography. CRC Press, 1996. |
[MW1990] | Brendan D. McKay and Nicholas C. Worland. “Uniform Generation of
Random Regular Graphs of Moderate Degree”. Journal of Algorithms,
11(1):52-67, 1990.
doi:10.1016/0196-6774(90)90029-E. |
[MW1994] | Yiu-Kwong Man and Francis J. Wright. Fast Polynomial
Dispersion Computation and its Application to Indefinite
Summation. ISSAC 1994. |
[MW2009] | Meshulam and Wallach, “Homological connectivity of random
\(k\)-dimensional complexes”, preprint, math.CO/0609773. |
N
[Nas1950] | John Nash. Equilibrium points in n-person games.
Proceedings of the National Academy of Sciences 36.1
(1950): 48-49. |
[New2003] | Newman, M.E.J. The Structure and function of complex
networks, SIAM Review vol. 45, no. 2 (2003), pp. 167-256.
doi:10.1137/S003614450342480. |
[Nie2013] | Johan S. R. Nielsen, List Decoding of Algebraic Codes,
Ph.D. Thesis, Technical University of Denmark, 2013 |
[NW1978] | A. Nijenhuis and H. Wilf, Combinatorial Algorithms,
Academic Press (1978). |
[Nij1955] | A. Nijenhuis, Jacobi-type identities for bilinear
differential concomitants of certain tensor fields. I,
Indagationes Mathematicae (Proceedings) 58, 390 (1955). |
[Nik1977] | V. V. Nikulin, “Integral symmetric bilinear forms and some of their applications”
Izv. Akad. Nauk SSSR Ser. Mat., 1979, Volume 43, Issue 1, Pages 111–177. |
[Nil2005] | Benjamin Nill,
“Gorenstein toric Fano varieties”,
Manuscripta Math. 116 (2005), no. 2, 183-210.
arXiv math/0405448v1 [math.AG] |
[NN2007] | Nisan, Noam, et al., eds. Algorithmic game theory.
Cambridge University Press, 2007. |
[NO2003] | Sampo Niskanen and Patric R. J. Ostergard,
Cliquer User’s Guide, Version 1.0,
Communications Laboratory, Helsinki University of Technology,
Espoo, Finland, Tech. Rep. T48, 2003. |
[Nog1985] | Arnaldo Nogueira, “Almost all Interval Exchange
Transformations with Flips are Nonergodic” (Ergod. Th. &
Dyn. Systems, Vol 5., (1985), 257-271 |
[NoThWi08] | J.-C. Novelli, J.-Y. Thibon, L. K. Williams,
Combinatorial Hopf algebras, noncommutative Hall-Littlewood
functions, and permutation tableaux.
Advances in Mathematics, Volume 224, Issue 4, 10 July 2010,
pp. 1311–1348,
doi:10.1016/j.aim.2010.01.006,
arXiv 0804.0995v3. |
[NovThi06] | Jean-Christophe Novelli, Jean-Yves Thibon,
Polynomial realizations of some trialgebras, FPSAC 2006.
arXiv math/0605061v1. |
[NP2007] | Nikolopoulos, S.D. and Palios, L.,
Detecting holes and antiholes in graphs,
Algorithmica, 2007,
Vol. 47, number 2, pages 119–138,
doi:10.1007/s00453-006-1225-y,
http://www.cs.uoi.gr/~stavros/C-Papers/C-2004-SODA.pdf |
[NWS2002] | Newman, M.E.J., Watts, D.J. and Strogatz, S.H. Random
graph models of social networks. Proc. Nat. Acad. Sci. USA
99:1 (2002), 2566-2572. doi:10.1073/pnas.012582999 |
[NX2019] | E. M. d. Nascimento, J. A. M. Xexeo
“Name of Submission:FlexAEAD -A Lightweight Cipher withIntegrated Authentication”
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/spec-doc/FlexAEAD-spec.pdf |
[NZ1997] | T. Nakashima and A. Zelevinsky.
Polyhedral Realizations of Crystal Bases for Quantized Kac-Moody Algebras.
Adv. Math. 131, pp. 253–278, 1997. |
[NZ2012] | T. Nakanishi and A. Zelevinsky, On tropical dualities in
cluster algebras, Algebraic groups and quantum groups,
Contemp. Math., vol. 565, Amer. Math. Soc.,
Providence, RI, 2012, pp. 217-226. |
[Nze2007] | Janvier Nzeutchap. Binary Search Tree insertion, the
Hypoplactic insertion, and Dual Graded Graphs.
arXiv 0705.2689 (2007). |
O
[OGKRKGBDDP2015] | R. Oliynykov, I. Gorbenko, O. Kazymyrov, V. Ruzhentsev,
O. Kuznetsov, Y. Gorbenko, A. Boiko, O. Dyrda, V. Dolgov,
and A. Pushkaryov,
A new standard of ukraine: The kupyna hash function; in
Cryptology ePrint Archive, (2015), 885. |
[ONe1983] | B. O’Neill : Semi-Riemannian Geometry, Academic Press
(San Diego) (1983) |
[Onsager1944] | Lars Onsager. Crystal statistics. I. A two-dimensional
model with an order-disorder transition, Phys. Rev.
(2) 65 (1944), pp. 117-149. |
[Ore1933] | Oystein Ore.
Theory of Non-Commutative Polynomials
Annals of Mathematics, Second Series, Volume 34,
Issue 3 (Jul., 1933), 480-508. |
[Or2018b] | M. Orlitzky. Positive and Z-operators on closed convex cones.
Electronic Journal of Linear Algebra, 34:444-458, 2018,
doi:10.13001/1081-3810.3782. |
[OS2018] | Se-jin Oh and Travis Scrimshaw. Categorical relations between
Langlands dual quantum affine algebras: Exceptional cases.
Preprint: arXiv 1802.09253 (2018). |
[OSS2009] | Vitaly Osipov, Peter Sanders, Johannes Singler:
The Filter-Kruskal Minimum Spanning Tree Algorithm.
SIAM ALENEX, 2009: 52-61
doi:10.1137/1.9781611972894.5 |
[Oxl1992] | James Oxley, Matroid theory, Oxford University
Press, 1992. |
[Oxl2011] | James Oxley, Matroid Theory, Second Edition. Oxford
University Press, 2011. |
P
[Pak2002] | Igor Pak,
Hook length formula and geometric combinatorics,
Seminaire Lotharingien de Combinatoire, 46 (2001),
B46f,
https://eudml.org/doc/121696 |
[PALP] | Maximilian Kreuzer, Harald Skarke: “PALP: A Package for
Analyzing Lattice Polytopes with Applications to Toric
Geometry” omput.Phys.Commun. 157 (2004) 87-106
arXiv math/0204356 |
[Pana2002] | F. Panaite, Relating the Connes-Kreimer and
Grossman-Larson Hopf algebras built on rooted trees,
Lett. Math. Phys. 51 (2000), no. 3, pages 211-219.
Preprint: arXiv math/0003074v1 |
[Pau2006] | Sebastian Pauli, “Constructing Class Fields over Local
Fields”, Journal de Théorie des Nombres de Bordeaux,
Vol. 18, No. 3 (2006), pp. 627-652. |
[Pen2012] | R. Pendavingh, On the evaluation at \((-i, i)\) of the
Tutte polynomial of a binary matroid. Preprint:
arXiv 1203.0910 |
[Per2007] | Markus Perling,
Divisorial Cohomology Vanishing on Toric Varieties,
arXiv 0711.4836v2 |
[Pet2010] | Christiane Peters, Information-set decoding for linear codes over
\(GF(q)\), Proc. of PQCrypto 2010, pp. 81-94. |
[Pha2002] | R. C.-W. Phan. Mini advanced encryption standard
(mini-AES): a testbed for cryptanalysis
students. Cryptologia, 26(4):283–306, 2002. |
[Piz1980] | A. Pizer. An Algorithm for Computing Modular Forms on
\(\Gamma_0(N)\), J. Algebra 64 (1980), 340-390. |
[Platt1976] | C. R. Platt,
Planar lattices and planar graphs,
Journal of Combinatorial Theory Series B,
Vol 21, no. 1 (1976): 30-39. |
[Pol2003] | Robert Pollack, On the `p`-adic `L`-function of a modular form
at a supersingular prime, Duke Math. J. 118 (2003), no. 3, 523-558. |
[Pon2010] | S. Pon. Types B and D affine Stanley symmetric
functions, unpublished PhD Thesis, UC Davis, 2010. |
[Pons2013] | Viviane Pons,
Combinatoire algébrique liée aux ordres sur les permutations.
PhD Thesis. (2013). arXiv 1310.1805v1. |
[Pons2018] | Viviane Pons,
The Rise-Contact involution on Tamari intervals.
arXiv 1802.08335 |
[Pop1972] | V. M. Popov. “Invariant description of linear, time-invariant
controllable systems”. SIAM Journal on Control, 10(2):252-264,
1972. doi:10.1137/0310020 |
[Pos1988] | H. Postl. ‘Fast evaluation of Dickson Polynomials’ Contrib. to
General Algebra, Vol. 6 (1988) pp. 223-225 |
[Pos2005] | A. Postnikov, Affine approach to quantum Schubert
calculus, Duke Math. J. 128 (2005) 473-509 |
[PPW2013] | D. Perkinson, J. Perlman, and J. Wilmes.
Primer for the algebraic geometry of sandpiles.
Tropical and Non-Archimedean
Geometry, Contemp. Math., 605, Amer. Math. Soc.,
Providence, RI, 2013.
arXiv 1112.6163 |
[PR2003] | Perrin-Riou, Arithmétique des courbes elliptiques à
réduction supersingulière en `p`,
Experiment. Math. 12 (2003), no. 2, 155-186. |
[PR2015] | P. Pilarczyk and P. Réal, Computation of cubical
homology, cohomology, and (co)homological operations via
chain contraction, Adv. Comput. Math. 41 (2015), pp
253–275. |
[PRC2012] | G. Piret, T. Roche, and C. Carlet,
PICARO - a block cipher allowing efficient higher-order side-channel
resistance; in ACNS, (2012), pp. 311-328. |
[PeSt2011] | E. Pelantová, Š. Starosta, Infinite words rich and
almost rich in generalized palindromes, in: G. Mauri,
A. Leporati (Eds.), Developments in Language Theory,
volume 6795 of Lecture Notes in Computer Science,
Springer-Verlag, Berlin, Heidelberg, 2011, pp. 406–416 |
[PS2002] | Jim Pitman, Richard Stanley, A polytope related to
empirical distributions, plane trees, parking functions, and
the associahedron, J. Discrete Comput. Geom. (2002), 27:4, 603-634,
doi:10.1007/s00454-002-2776-6, arXiv math/9908029. |
[PS2011] | R. Pollack, and G. Stevens. Overconvergent modular
symbols and p-adic L-functions. Annales scientifiques de
l’École normale supérieure.
Vol. 44. No. 1. Elsevier, 2011. |
[PT2009] | S. Payne, J. A. Thas.
Finite generalized quadrangles.
European Mathematical Society,
2nd edition, 2009. |
[PvZ2010] | R. A. Pendavingh, S. H. M. van Zwam, Lifts of matroid
representations over partial fields, Journal of
Combinatorial Theory, Series B, Volume 100, Issue 1,
January 2010, Pages 36-67 |
[PZ2008] | J. H. Palmieri and J. J. Zhang, “Commutators in the
Steenrod algebra,” New York J. Math. 19 (2013), 23-37. |
[Pro2001] | James Propp.
The Many Faces of Alternating Sign Matrices,
Discrete Mathematics and Theoretical Computer Science 43 (2001): 58
arXiv math/0208125 |
[PW2013] | Robin Pemantle and Mark C. Wilson. Analytic
Combinatorics in Several Variables. Cambridge University
Press, 2013. |
[PWZ1997] | Marko Petkovsek, Herbert S. Wilf, Doron Zeilberger, A = B,
AK Peters, Ltd., Wellesley, MA, USA, 1997, pp. 73–100 |
[PZGH1999] | Petho A., Zimmer H.G., Gebel J. and Herrmann E.,
Computing all S-integral points on elliptic curves
Math. Proc. Camb. Phil. Soc. (1999), 127, 383-402 |
R
[Rai2012] | Alexander Raichev. Leinartas’s partial fraction
decomposition. arXiv 1206.4740. |
[Raj1987] | A. Rajan, Algorithmic applications of connectivity and
related topics in matroid theory. Ph.D. Thesis,
Northwestern university, 1987. |
[Ram1991] | Arun Ram,
A Frobenius formula for the characters of the Hecke algebras.
Invent. Math. 106 (1991), pp. 461-488. |
[Rau1979] | Gerard Rauzy, Échanges d’intervalles et transformations
induites, Acta Arith. 34, no. 3, 203-212, 1980 |
[Rea2009] | Nathan Reading, Noncrossing partitions and the shard
intersection order, DMTCS Proceedings of FPSAC 2009, 745–756 |
[Reg09] | Oded Regev. On Lattices, Learning with Errors, Random
Linear Codes, and Cryptography. in Journal of the ACM
56(6). ACM 2009, doi:10.1145/1060590.1060603 |
[Reg1958] | T. Regge, ‘Symmetry Properties of Clebsch-Gordan
Coefficients’, Nuovo Cimento, Volume 10, pp. 544 (1958) |
[Reg1959] | T. Regge, ‘Symmetry Properties of Racah Coefficients’,
Nuovo Cimento, Volume 11, pp. 116 (1959) |
[Reg2005] | Oded Regev. On lattices, learning with errors, random
linear codes, and cryptography. STOC, pp. 84–93,
ACM, 2005. |
[Reu1993] | C. Reutenauer. Free Lie Algebras. Number 7 in London
Math. Soc. Monogr. (N.S.). Oxford University
Press. (1993). |
[Rho69] | John Rhodes, Characters and complexity of finite semigroups
J. Combinatorial Theory, vol 6, 1969 |
[RH2003] | J. Rasch and A. C. H. Yu, ‘Efficient Storage Scheme for
Pre-calculated Wigner 3j, 6j and Gaunt Coefficients’,
SIAM J. Sci. Comput. Volume 25, Issue 4,
pp. 1416-1428 (2003) |
[RH2003b] | G. G. Rose and P. Hawkes,
Turing: A fast stream cipher; in FSE, (2003), pp. 290-306. |
[Rio1958] | J. Riordan, “An Introduction to Combinatorial Analysis”,
Dover Publ. (1958) |
[Ris2016] | Roswitha Rissner, “Null ideals of matrices over residue
class rings of principal ideal domains”. Linear Algebra
Appl., 494 (2016) 44–69. doi:10.1016/j.laa.2016.01.004. |
[RL1971] | J. Rokne, P. Lancaster. Complex interval arithmetic.
Communications of the ACM 14. 1971. |
[RMA2009] | P. Réal and H. Molina-Abril, Cell AT-models for digital
volumes in Torsello, Escolano, Brun (eds.), Graph-Based
Representations in Pattern Recognition, Lecture Notes in
Computer Science, volume 5534, pp. 314-3232, Springer,
Berlin (2009). |
[RNPA2011] | G. Rudolf, N. Noyan, D. Papp, and F. Alizadeh. Bilinear
optimality constraints for the cone of positive
polynomials. Mathematical Programming, Series B,
129 (2011) 5-31. |
[RPK1980] | S. M. Reddy, D. K. Pradhan, and J. Kuhl. “Directed graphs with
minimal diameter and maximal connectivity”, School Eng., Oakland
Univ., Rochester MI, Tech. Rep., July 1980. |
[RPK1983] | S. Reddy, P. Raghavan, and J. Kuhl. “A Class of Graphs for
Processor Interconnection”. IEEE International Conference on Parallel
Processing, pages 154-157, Los Alamitos, Ca., USA, August 1983. |
[Rob1991] | Tom Roby, “Applications and extensions of Fomin’s
generalization of the Robinson-Schensted correspondence
to differential posets”. Ph.D. Thesis, M.I.T.,
Cambridge, Massachusetts, 1991. |
[Roc1970] | R.T. Rockafellar, Convex Analysis. Princeton
University Press, Princeton, 1970. |
[Rog2018] | Baptiste Rognerud,
Exceptional and modern intervals of the Tamari lattice.
arXiv 1801.04097 |
[Ros1999] | K. Rosen Handbook of Discrete and Combinatorial
Mathematics (1999), Chapman and Hall. |
[Ros2002] | Rosenfeld, Vladimir Raphael, 2002: Enumerating De Bruijn
Sequences. Communications in Math. and in Computer Chem. |
[Rot2006] | Ron Roth, Introduction to Coding Theory, Cambridge
University Press, 2006 |
[RR1997] | Arun Ram and Jeffrey Remmel. Applications of the Frobenius
formulas and the characters of the symmetric group and the
Hecke algebras of type A. J. Algebraic Combin.
6 (1997), 59-87. |
[RSW2011] | Victor Reiner, Franco Saliola, Volkmar Welker.
Spectra of Symmetrized Shuffling Operators.
arXiv 1102.2460v2. |
[RT1975] | Read, R. C. and Tarjan, R. E. Bounds on Backtrack Algorithms for
Listing Cycles, Paths, and Spanning Trees.
Networks, Volume 5 (1975), numer 3, pages 237-252.
doi:10.1002/net.1975.5.3.237. |
[RTL76] | Donald J. Rose, Robert Endre Tarjan and George S. Lueker.
Algorithmic aspects of vertex elimination on graphs.
SIAM J. Comput., 5(2), 266–283 (1976). |
[Rub1991] | K. Rubin. The “main conjectures” of Iwasawa theory for
imaginary quadratic fields. Invent. Math. 103 (1991),
no. 1, 25–68. |
[Rud1958] | M. E. Rudin. An unshellable triangulation of a
tetrahedron. Bull. Amer. Math. Soc. 64 (1958), 90-91. |
[Rüt2014] | Julian Rüth, Models of Curves and Valuations. Open Access
Repositorium der Universität Ulm. Dissertation (2014).
doi:10.18725/OPARU-3275 |
[RV2007] | Fernando Rodriguez Villegas. Experimental Number Theory.
Oxford Graduate Texts in Mathematics 13, 2007. |
[RW2008] | Alexander Raichev and Mark C. Wilson. Asymptotics of
coefficients of multivariate generating functions:
improvements for smooth points, Electronic Journal of
Combinatorics, Vol. 15 (2008). R89 arXiv 0803.2914. |
[RW2012] | Alexander Raichev and Mark C. Wilson. Asymptotics of
coefficients of multivariate generating functions:
improvements for smooth points. Online Journal of
Analytic Combinatorics. Issue 6,
(2011). arXiv 1009.5715. |
S
[Saa2011] | M-J. O. Saarinen,
Cryptographic Analysis of All 4 x 4-Bit S-Boxes; in
SAC, (2011), pp. 118-133. |
[Sag1987] | Bruce E. Sagan. Shifted tableaux, Schur Q-functions,
and a conjecture of R. Stanley. Journal of
Combinatorial Theory, Series A Volume 45 (1987),
pp. 62-103. |
[Sag2001] | Bruce E. Sagan. The Symmetric Group,
2nd edition, New York 2001. |
[Sal1954] | G. Salmon: “A Treatise on Conic Sections”,
Chelsea Publishing Co., New York, 1954. |
[Sal1958] | G. Salmon: “A Treatise on the Analytic Geometry of Three
Dimensions”, Vol. I, Chelsea Publishing Company, New
York, 1958. |
[Sal1965] | G. Salmon: “A Treatise on the Analytic Geometry of Three
Dimensions”, Vol II, Chelsea Publishing Co., New
York, 1965. |
[Sal2014] | B. Salisbury.
The flush statistic on semistandard Young tableaux.
arXiv 1401.1185 |
[Sch1990] | Schnyder, Walter. Embedding Planar Graphs on the Grid.
Proc. 1st Annual ACM-SIAM Symposium on Discrete Algorithms,
San Francisco (1994), pp. 138-147. |
[Sch1996] | E. Schaefer. A simplified data encryption
algorithm. Cryptologia, 20(1):77–84, 1996. |
[Sch1999] | Gilles Schaeffer, Random Sampling of Large Planar Maps and Convex
Polyhedra, Annual ACM Symposium on Theory of Computing
(Atlanta, GA, 1999). doi:10.1145/301250.301448. |
[Sch2006] | Oliver Schiffmann. Lectures on Hall algebras,
preprint, 2006. arXiv 0611617v2. |
[Sch2008] | A. Schilling. “Combinatorial structure of
Kirillov-Reshetikhin crystals of type \(D_n(1)\), \(B_n(1)\), \(A_{2n-1}(2)\)”.
J. Algebra. 319 (2008). 2938-2962. arXiv 0704.2046. |
[Sch2013] | Schmidt, Jens M
“A Simple Test on 2-Vertex- and 2-Edge-Connectivity”,
Information Processing Letters, 113 (7): 241–244
doi:10.2307/2303897 |
[Sco1985] | R. Scott,
Wide-open encryption design offers flexible implementations; in
Cryptologia, (1985), pp. 75-91. |
[SE1962] | N. E. Steenrod and D. B. A. Epstein, Cohomology
operations, Ann. of Math. Stud. 50 (Princeton University
Press, 1962). |
[Ser1972] | Jean-Pierre Serre,
Propriétés galoisiennes des points d’ordre fini
des courbes elliptiques.
Invent. Math. 15 (1972), no. 4, 259–331. |
[Ser1987] | Jean-Pierre Serre,
Sur les représentations modulaires de degré
2 de \(\text{Gal}(\bar\QQ/\QQ)\).
Duke Math. J. 54 (1987), no. 1, 179–230. |
[Ser1985] | C. Series. The geometry of Markoff numbers. The
Mathematical Intelligencer, 7(3):20–29, 1985. |
[Ser2010] | F. Sergeraert, Triangulations of complex projective
spaces in Scientific contributions in honor of Mirian
Andrés Gómez, pp 507-519, Univ. La Rioja Serv. Publ., Logroño (2010). |
[SH1995] | C. P. Schnorr and H. H. Hörner. Attacking the
Chor-Rivest Cryptosystem by Improved Lattice
Reduction. Advances in Cryptology - EUROCRYPT ‘95. LNCS
Volume 921, 1995, pp 1-12. |
[SH1995b] | Bernd Sturmfels, Serkan Hosten:
GRIN: An implementation of Grobner bases for integer programming,
in “Integer Programming and Combinatorial Optimization”,
[E. Balas and J. Clausen, eds.],
Proceedings of the IV. IPCO Conference (Copenhagen, May 1995),
Springer Lecture Notes in Computer Science 920 (1995) 267-276. |
[SHET2018] | O. Seker, P. Heggernes, T. Ekim, and Z. Caner Taskin.
Generation of random chordal graphs using subtrees of a tree,
arXiv 1810.13326v1. |
[Shi2002] | M. Shimozono
Affine type A crystal structure on tensor products of rectangles,
Demazure characters, and nilpotent varieties,
J. Algebraic Combin. 15 (2002). no. 2. 151-187.
arXiv math.QA/9804039. |
[Shim2016] | Shimada, Ichiro, Connected components of the moduli of
elliptic K3 surfaces, arXiv 1610.04706. |
[Shi1971] | Goro Shimura, Introduction to the arithmetic theory of
automorphic functions. Publications of the Mathematical
Society of Japan and Princeton University Press, 1971. |
[Shr2004] | S. Shreve, Stochastic Calculus for Finance II:
Continuous-Time Models. New York: Springer, 2004 |
[SIHMAS2011] | K. Shibutani, T. Isobe, H. Hiwatari, A. Mitsuda, T. Akishita,
and T. Shirai, Piccolo: An ultra-lightweight block-cipher; in
CHES, (2011), pp. 342-457. |
[Sil1988] | Joseph H. Silverman, Computing heights on
elliptic curves. Mathematics of Computation, Vol. 51,
No. 183 (Jul., 1988), pp. 339-358. |
[Sil1994] | Joseph H. Silverman, Advanced topics in the arithmetic of
elliptic curves. GTM 151, Springer-Verlag, New York, 1994. |
[Sil2007] | Joseph H. Silverman. The Arithmetic of Dynamics Systems.
GTM 241, Springer-Verlag, New York, 2007. |
[Sil2009] | Joseph H. Silverman, The Arithmetic of Elliptic
Curves. Second edition. Graduate Texts in Mathematics, 106.
Springer, 2009. |
[SK2011] | J. Spreer and W. Kühnel, “Combinatorial properties of the
K3 surface: Simplicial blowups and slicings”, Experimental
Mathematics, Volume 20, Issue 2, 2011. |
[SKWWHF1998] | B. Schneier, J. Kelsey, D. Whiting, D. Wagner, C. Hall,
and N. Ferguson, Twofish: A 128-bit block cipher; in
AES Submission, (1998). |
[Sky2003] | Brian Skyrms. The stag hunt and the evolution of social
structure. Cambridge University Press, 2003. |
[SLB2008] | Shoham, Yoav, and Kevin Leyton-Brown. Multiagent
systems: Algorithmic, game-theoretic, and logical
foundations. Cambridge University Press, 2008. |
[SMMK2013] | T. Suzaki, K. Minematsu, S. Morioka, and E. Kobayashi,
TWINE: A lightweight block cipher for multiple platforms; in
SAC, (2012), pp. 338-354. |
[Sor1984] | A. Sorkin, LUCIFER: a cryptographic algorithm;
in Cryptologia, 8(1), pp. 22–35, 1984. |
[Sma1998] | N.P. Smart, The algorithmic resolution of Diophantine equations,
Number 41 in Student Texts. London Mathematical Society, 1998. |
[Spe2013] | D. Speyer, An infinitely generated upper cluster algebra,
arXiv 1305.6867. |
[SPGQ2006] | F.-X. Standaert, G. Piret, N. Gershenfeld, and J.-J. Quisquater,
Sea: A scalable encryption algorithm for small embedded applications; in
CARDIS, (2006), pp. 222-236. |
[SPRQL2004] | F.-X. Standaert, G. Piret, G. Rouvroy, J.-J. Quisquarter,
and J.-D. Legat, ICEBERG: An involutional cipher efficient for block
encryption in reconfigurable hardware; in FSE, (2004), pp. 279-299. |
[Squ1984] | C. C. Squier. The Burau representation is unitary.
Proceedings of the American Mathematical Society,
Volume 90. Number 2, February 1984, pp. 199-202. |
[SS1983] | Shorey and Stewart. “On the Diophantine equation a
x^{2t} + b x^t y + c y^2 = d and pure powers in recurrence
sequences.” Mathematica Scandinavica, 1983. |
[SS1990] | Bruce E. Sagan and Richard P. Stanley.
Robinson-Schensted algorithms for skew tableaux.
Journal of Combinatorial Theory, Series A 55.2 (1990) pp. 161-193. |
[SS1992] | M. A. Shtan’ko and M. I. Shtogrin, “Embedding cubic
manifolds and complexes into a cubic lattice”, Uspekhi
Mat. Nauk 47 (1992), 219-220. |
[SS2015] | Anne Schilling and Travis Scrimshaw.
Crystal structure on rigged configurations and the filling map.
Electron. J. Combin., 22(1) (2015) #P1.73. arXiv 1409.2920. |
[SS2015II] | Ben Salisbury and Travis Scrimshaw.
A rigged configuration model for \(B(\infty)\).
J. Combin. Theory Ser. A, 133 (2015) pp. 29-75.
arXiv 1404.6539. |
[SS2017] | Ben Salisbury and Travis Scrimshaw.
Rigged configurations for all symmetrizable types.
Electron. J. Combin., 24(1) (2017) #P1.30. arXiv 1509.07833. |
[SS2018] | Ben Salisbury and Travis Scrimshaw.
Description of crystals for generalized Kac–Moody algebras using
rigged configurations.
Sém. Lothar. Combin. 80B (2018), Art. #20, 12 pp. |
[SSAMI2007] | T. Shirai, K. Shibutani, T. Akishita, S. Moriai, and T. Iwata,
The 128-bit blockcipher CLEFIA (extended abstract); in
FSE, (2007), pp. 181-195. |
[ST2010] | Einar Steingrimmsson and Bridget Tenner.
The Moebius Function of the Permutation Pattern Poset,
Journal of Combinatorics 1 (2010), 39-52 |
[ST2011] | A. Schilling, P. Tingley. Demazure crystals,
Kirillov-Reshetikhin crystals, and the energy function.
Electronic Journal of Combinatorics. 19(2). 2012.
arXiv 1104.2359 |
[St2011b] | W. Stein, “Toward a Generalization of the Gross-Zagier
Conjecture”, Int Math Res Notices (2011),
doi:10.1093/imrn/rnq075 |
[Sta1973] | H. M. Stark, Class-Numbers of Complex Quadratic
Fields. In: Kuijk W. (eds) Modular Functions of One
Variable I. Lecture Notes in Mathematics,
vol 320. (1973), Springer, Berlin, Heidelberg |
[Sta1995] | R. P. Stanley, A symmetric function generalization
of the chromatic polynomial of a graph, Adv. Math., *111*
no.1 (1995), 166-194. doi:10.1006/aima.1995.1020. |
[Sta2002] | Richard P. Stanley,
The rank and minimal border strip decompositions of a
skew partition,
J. Combin. Theory Ser. A 100 (2002), pp. 349-375.
arXiv math/0109092v1. |
[Sta2007] | Stanley, Richard: Hyperplane Arrangements, Geometric
Combinatorics (E. Miller, V. Reiner, and B. Sturmfels,
eds.), IAS/Park City Mathematics Series, vol. 13,
American Mathematical Society, Providence, RI, 2007,
pp. 389-496. |
[Star2011] | Š. Starosta, On Theta-palindromic Richness,
Theoret. Comp. Sci. 412 (2011) 1111–1121 |
[Sei2002] | T. R. Seifullin, Computation of determinants, adjoint
matrices, and characteristic polynomials without division
doi:10.1023/A:1021878507303 |
[ST1981] | J. J. Seidel and D. E. Taylor,
Two-graphs, a second survey.
Algebraic methods in graph theory, Vol. I, II (Szeged, 1978),
pp. 689–711, Colloq. Math. Soc. János Bolyai, 25,
North-Holland, Amsterdam-New York, 1981. |
[Stan2009] | Richard Stanley,
Promotion and evacuation,
Electron. J. Combin. 16 (2009), no. 2, Special volume in honor of
Anders Björner,
Research Paper 9, 24 pp. |
[Ste2003] | John R. Stembridge, A local characterization of
simply-laced crystals, Transactions of the American
Mathematical Society, Vol. 355, No. 12 (Dec., 2003),
pp. 4807–4823 |
[Stich2009] | Stichtenoth, Henning. Algebraic function fields and codes.
Vol. 254. Springer Science & Business Media, 2009. |
[Sti2006] | Douglas R. Stinson. Cryptography: Theory and
Practice. 3rd edition, Chapman & Hall/CRC, 2006. |
[Sto1998] | A. Storjohann, An O(n^3) algorithm for Frobenius normal
form. Proceedings of the International Symposium on
Symbolic and Algebraic Computation (ISSAC‘98), ACM Press,
1998, pp. 101-104. |
[Sto2000] | A. Storjohann, Algorithms for Matrix Canonical
Forms. PhD Thesis. Department of Computer Science, Swiss
Federal Institute of Technology – ETH, 2000. |
[Sto2011] | A. Storjohann, Email Communication. 30 May 2011. |
[Str1969] | Volker Strassen. Gaussian elimination is not
optimal. Numerische Mathematik, 13:354-356, 1969. |
[Striker2011] | J. Striker. A unifying poset perspective on
alternating sign matrices, plane partitions, Catalan objects,
tournaments, and tableaux, Advances in Applied Mathematics 46
(2011), no. 4, 583-609. arXiv 1408.5391 |
[Str2015] | Jessica Striker.
The toggle group, homomesy, and the Razumov-Stroganov correspondence,
Electron. J. Combin. 22 (2015) no. 2
arXiv 1503.08898 |
[Stu1987] | J. Sturm, On the congruence of modular forms, Number
theory (New York, 1984-1985), Springer, Berlin, 1987,
pp. 275-280. |
[Stu1993] | B. Sturmfels, Algorithms in invariant theory, Springer-Verlag,
1993. |
[Stu1995] | Bernd Sturmfels,
Grobner Bases and Convex Polytopes
AMS University Lecture Series Vol. 8 (01 December 1995) |
[Stu1997] | Bernd Sturmfels,
Equations defining toric varieties,
Algebraic Geometry - Santa Cruz 1995,
Proc. Sympos. Pure Math., 62, Part 2,
Amer. Math. Soc., Providence, RI, 1997,
pp. 437-449. |
[Stu2008] | C. Stump – More bijective Catalan combinatorics on
permutations and on colored permutations, Preprint.
arXiv 0808.2822. |
[STW2013] | J. Schejbal, E. Tews, and J. Wälde,
Reverse engineering of chiasmus from gstool; in
30c3, (2013). |
[STW2016] | C. Stump, H. Thomas, N. Williams. Cataland II, in
preparation, 2016. |
[STW2018] | Christian Stump, Hugh Thomas and Nathan Williams,
Cataland: why the fuss?, 2018. arXiv 1503.00710 |
[SU2014] | Christopher Skinner and Eric Urban,
The Iwasawa main conjectures for GL2.
Invent. Math. 195 (2014), no. 1, 1-277. |
[Sulzgr2017] | Robin Sulzgruber,
Inserting rim-hooks into reverse plane partitions,
arXiv 1710.09695v1. |
[Sut2012] | Sutherland. A local-global principle for rational
isogenies of prime degree. Journal de Théorie des Nombres de Bordeaux,
2012. |
[SV1970] | H. Schneider and M. Vidyasagar. Cross-positive matrices. SIAM
Journal on Numerical Analysis, 7:508-519, 1970. |
[SV2000] | J. Stern and S. Vaudenay,
CS-Cipher; in
First Open NESSIE Workshop, (2000). |
[SV2013] | Silliman and Vogt. “Powers in Lucas Sequences via Galois
Representations.” Proceedings of the American Mathematical
Society, 2013. arXiv 1307.5078v2 |
[SW1999] | Steger, A. and Wormald, N. Generating random
regular graphs quickly. Prob. and Comp. 8 (1999), pp 377-396.
doi:10.1017/S0963548399003867. |
[SW2013] | W. Stein and C. Wuthrich, Algorithms
for the Arithmetic of Elliptic Curves using Iwasawa Theory
Mathematics of Computation 82 (2013), 1757-1792. |
[St1922] | Ernst Steinitz, Polyeder und Raumeinteilungen.
In Encyclopädie der Mathematischen Wissenschaften, Franz Meyer
and Hand Mohrmann, eds., volume 3, Geometrie, erster Teil, zweite Hälfte,
pp. 1–139, Teubner, Leipzig, 1922 |
[SU2009] | J. Smillie and C. Ulcigrai. Symbolic coding for linear
trajectories in the regular octagon, arXiv 0905.0871, 2009. |
[Swe1969] | Moss Sweedler. Hopf algebras. W.A. Benjamin, Math Lec
Note Ser., 1969. |
[SWJ2008] | Fatima Shaheen, Michael Wooldridge, and Nicholas
Jennings. A linear approximation method for the Shapley
value. Artificial Intelligence 172.14 (2008): 1673-1699. |
[Sys1987] | Maciej M. SysŁo,
Minimizing the jump number for partially-ordered sets: a
graph-theoretic approach, II.
Discrete Mathematics,
Volume 63, Issues 2-3, 1987, Pages 279-295. |
[SYYTIYTT2002] | T. Shimoyama, H. Yanami, K. Yokoyama, M. Takenaka, K. Itoh,
J. Yajima, N. Torii, and H. Tanaka, The block cipher SC2000; in
FSE, (2001), pp. 312-327. |
[SZ1994] | Bruno Salvy and Paul Zimmermann. Gfun: a Maple package for
the manipulation of generating and holonomic functions in
one variable. ACM transactions on mathematical software,
20.2:163-177, 1994. |
[SZ2001] | M. Shimozono, M. Zabrocki,
Hall-Littlewood vertex operators and generalized Kostka polynomials.
Adv. Math. 158 (2001), no. 1, 66-85. |
T
[Tak1999] | Kisao Takeuchi, Totally real algebraic number fields of
degree 9 with small discriminant, Saitama Math. J. 17
(1999), 63–85 (2000). |
[Tam1962] | Dov Tamari.
The algebra of bracketings and their enumeration.
Nieuw Arch. Wisk. (1962). |
[Tar1976] | Robert E. Tarjan, Edge-disjoint spanning trees and
depth-first search, Acta Informatica 6 (2), 1976,
171-185, doi:10.1007/BF00268499. |
[Tarjan72] | R.E. Tarjan. Depth-First Search and Linear Graph
Algorithms. SIAM J. Comput. 1(2): 146-160 (1972). |
[Tate1975] | John Tate, Algorithm for determining the type of a
singular fiber in an elliptic pencil.
Modular functions of one variable, IV, pp. 33–52.
Lecture Notes in Math., Vol. 476, Springer, Berlin, 1975. |
[Tate1966] | John Tate, On the conjectures of Birch and Swinnerton-Dyer and
a geometric analog. Seminaire Bourbaki, Vol. 9,
Exp. No. 306, 1966. |
[TB1997] | Lloyd N. Trefethen and David Bau III, Numerical Linear
Algebra, SIAM, Philadelphia, 1997. |
[TCHP2008] | Marc Tedder, Derek Corneil, Michel Habib and
Christophe Paul, Simple, linear-time modular decomposition,
2008, arXiv 0710.3901v2. |
[Ter2011] | Audrey Terras, Zeta functions of graphs: a stroll through
the garden, Cambridge Studies in Advanced Mathematics, Vol. 128,
2011. |
[Terwilliger2011] | Paul Terwilliger. The universal Askey-Wilson algebra.
SIGMA 7 (2011), 069, 24 pages. arXiv 1104.2813. |
[Tho2010] | T. Thongjunthug, Computing a lower bound for the canonical
height on elliptic curves over number fields, Math. Comp. 79
(2010), pages 2431-2449. |
[Tingley2007] | Peter Tingley. Three combinatorial models for
\(\widehat{\mathfrak{sl}}_n\) crystals, with applications
to cylindric plane partitions.
International Mathematics Research Notices. (2007).
arXiv 0702062v3. |
[TK2013] | F. W. Takes and W. A. Kosters. Computing the eccentricity
distribution of large graphs. Algorithms 6:100-118 (2013).
doi:10.3390/a6010100. |
[TW1980] | A.D. Thomas and G.V. Wood, Group Tables (Exeter: Shiva
Publishing, 1980) |
U
[UDCIKMP2011] | M. Ullrich, C. De Canniere, S. Indesteege, Ö. Kücük, N. Mouha, and
B. Preenel, Finding Optimal Bitsliced Implementations of 4 x 4-bit
S-boxes; in SKEW, (2011). |
[Ukko1995] | E. Ukkonen, On-line construction of suffix trees,
Algorithmica, 1995, volume 14, number 3, pages 249–260. |
[U.S1998] | U.S. Department Of Commerce/National Institute of Standards and Technology,
Skipjack and KEA algorithms specifications, v2.0, (1998). |
[U.S1999] | U.S. Department Of Commerce/National Institute of Standards and Technology,
Data Encryption Standard, (1999). |
V
[Var1984] | V. S. Varadarajan. Lie groups, Lie algebras, and their
representations. Reprint of the 1974 edition. Graduate Texts in
Mathematics, 102. Springer-Verlag, New York, 1984. |
[Vazirani2002] | Monica Vazirani. Parameterizing Hecek algebra modules:
Bernstein-Zelevinsky multisegments, Kleshchev
multipartitions, and crystal graphs. Transform. Groups
7 (2002). pp. 267-303. arXiv 0107052v1,
doi:10.1007/s00031-002-0014-1. |
[VB1996] | E. Viterbo, E. Biglieri. Computing the Voronoi Cell of a
Lattice: The Diamond-Cutting Algorithm. IEEE Transactions
on Information Theory, 1996. |
[VBB1992] | Marc Van Barel and Adhemar Bultheel. “A general module theoretic
framework for vector M-Padé and matrix rational interpolation.”
Numer. Algorithms, 3:451-462, 1992.
doi:10.1007/BF02141952 |
[Vee1978] | William Veech, “Interval exchange
transformations”, J. Analyse Math. 33 (1978), 222-272 |
[Vie1983] | Xavier G. Viennot. Maximal chains of subwords and
up-down sequences of permutations. Journal of
Combinatorial Theory, Series A Volume 34, (1983),
pp. 1-14. |
[VJ2004] | S. Vaudenay and P. Junod,
Device and method for encrypting and decryptiong a block of data
Fox, a New Family of Block Ciphers, (2004). |
[VO2005] | A. M. Vershik, A. Yu. Okounkov.
A New Approach to the Representation Theory of the Symmetric
Groups. 2, 2005. arXiv math/0503040v3. |
[Voe2003] | V. Voevodsky, Reduced power operations in motivic
cohomology, Publ. Math. Inst. Hautes Études Sci. No. 98
(2003), 1-57. |
[Voi2008] | John Voight, Enumeration of totally real number fields of
bounded root discriminant, Lect. Notes in Comp. Sci. 5011
(2008). |
[Voi2012] | J. Voight. Identifying the matrix ring: algorithms for
quaternion algebras and quadratic forms, to appear. |
[VW1994] | Leonard Van Wyk. Graph groups are biautomatic. J. Pure
Appl. Alg. 94 (1994). no. 3, 341-352. |
W
[Wac2003] | Wachs, “Topology of Matching, Chessboard and General
Bounded Degree Graph Complexes” (Algebra Universalis
Special Issue in Memory of Gian-Carlo Rota, Algebra
Universalis, 49 (2003) 345-385) |
[Wal1960] | C. T. C. Wall, “Generators and relations for the
Steenrod algebra,” Ann. of Math. (2) 72 (1960),
429-444. |
[Wal1970] | David W. Walkup, “The lower bound conjecture for 3- and
4-manifolds”, Acta Math. 125 (1970), 75-107. |
[Walton1990] | Mark A. Walton. Fusion rules in Wess-Zumino-Witten models.
Nuclear Phys. B 340 (1990). |
[Wam1999] | van Wamelen, Paul. Examples of genus two CM curves defined
over the rationals. Math. Comp. 68 (1999), no. 225, 307–320. |
[Wan1998] | Daqing Wan, “Dimension variation of classical and p-adic
modular forms”, Invent. Math. 133, (1998) 449-463. |
[Wan2010] | Zhenghan Wang. Topological quantum
computation. Providence, RI: American Mathematical
Society (AMS), 2010. ISBN 978-0-8218-4930-9 |
[Was1997] | L. C. Washington, Cyclotomic Fields, Springer-Verlag,
GTM volume 83, 1997. |
[Wat2003] | Joel Watson. Strategy: an introduction to game
theory. WW Norton, 2002. |
[Wat2010] | Watkins, David S. Fundamentals of Matrix Computations,
Third Edition. Wiley, Hoboken, New Jersey, 2010. |
[Web2007] | James Webb. Game theory: decisions, interaction and
Evolution. Springer Science & Business Media, 2007. |
[Weh1998] | J. Wehler. Hypersurfaces of the Flag Variety: Deformation
Theory and the Theorems of Kodaira-Spencer, Torelli,
Lefschetz, M. Noether, and Serre. Math. Z. 198 (1988), 21-38. |
[WELLS] | Elliot Wells. Computing the Canonical Height of a Point in Projective Space.
arXiv 1602.04920v1 (2016). |
[Wei1994] | Charles A. Weibel, An introduction to homological
algebra. Cambridge Studies in Advanced Math., vol. 38,
Cambridge Univ. Press, 1994. |
[Wel1988] | Codes and Cryptography, Dominic Welsh, Oxford Sciences
Publications, 1988 |
[Wer1998] | Annette Werner, Local heights on abelian varieties and
rigid analytic uniformization, Doc. Math. 3 (1998), 301-319. |
[WFYTP2008] | D. Watanable, S. Furuya, H. Yoshida, K. Takaragi, and B. Preneel,
A new keystream generator MUGI; in
FSE, (2002), pp. 179-194. |
[Whi1932] | H. Whitney, Congruent graphs and the connectivity of graphs,
American Journal of Mathematics,
pages 150–168, 1932,
available on JSTOR |
[Wie2000] | B. Wieland. A large dihedral symmetry of the set of
alternating sign matrices. Electron. J. Combin. 7 (2000). |
[Wil2010] | M. Willis. A direct way to find the right key of
a semistandard Young tableau. arXiv 1110.6184v1. |
[Wil2013] | Harold Williams. Q-systems, factorization dynamics, and the
twist automorphism. Int. Math. Res. Not. (2015) no. 22,
12042–12069. doi:10.1093/imrn/rnv057. |
[Wol1974] | W. A. Wolovich. “Linear Multivariable Systems”, Applied
Mathematical Sciences (volume 11). Springer-Verlag New-York, 1974.
doi:10.1007/978-1-4612-6392-0 |
[Woo1998] | R. M. W. Wood, “Problems in the Steenrod algebra,”
Bull. London Math. Soc. 30 (1998), no. 5, 449-517. |
[Wor1984] | Worley, Dale Raymond, A theory of shifted Young
tableaux. Dissertation, Massachusetts Institute of
Technology, 1984. |
[WSK1997] | D. Wagner, B. Schneier, and J. Kelsey,
Cryptoanalysis of the cellular encryption algorithm; in
CRYPTO, (1997), pp. 526-537. |
[Wu2004] | Wuthrich, C. (2004). On p-adic heights in families of
elliptic curves. Journal of the London Mathematical
Society, 70(1), 23-40. |
[WW1991] | Michelle Wachs and Dennis White, p, q-Stirling numbers
and set partition statistics, Journal of Combinatorial
Theory, Series A 56.1 (1991): 27-46. |
[WW2005] | Ralf-Philipp Weinmann and Kai Wirt,
Analysis of the DVB Common Scrambling Algorithm; in
IFIP TC-6 TC-11, (2005). |
[WZ2011] | W. Wu and L. Zhang, The LBlock family of block ciphers;
in ACNS, (2011), pp. 327-344. |
[WZY2015] | Wenling Wu, Lei Zhang, and Xiaoli Yu, The DBlock family of block ciphers;
in Science China Information Sciences, (2015), pp. 1-14. |
X
[XP1994] | Deng Xiaotie, and Christos Papadimitriou. On the
complexity of cooperative solution concepts. Mathematics
of Operations Research 19.2 (1994): 257-266. |
Y
[Yamada2007] | Daisuke Yamada. Scattering rule in soliton cellular automaton
associated with crystal base of \(U_q(D_4^{(3)})\).
J. Math. Phys., 48 (4):043509, 28, (2007). |
[Yen1970] | Yen, Jin Y. (1970). An algorithm for finding shortest routes from
all source nodes to a given destination in general networks.
Quarterly of Applied Mathematics. 27 (4): 526–530.
doi:10.1090/qam/253822 |
[Yoc2005] | Jean-Christophe Yoccoz “Echange d’Intervalles”, Cours au
collège de France |
[Yip2018] | Yip, Martha. “Rook placements and Jordan forms of
upper-triangular nilpotent matrices.”
Electronic J. Comb. 25(1) (2018) #P1.68. arXiv 1703.00057. |
[Yun1976] | Yun, David YY. On square-free decomposition
algorithms. In Proceedings of the third ACM symposium on
Symbolic and algebraic computation, pp. 26-35. ACM, 1976. |
[Yuz1993] | Sergey Yuzvinsky, “The first two obstructions to the
freeness of arrangements”, Transactions of the American
Mathematical Society, Vol. 335, 1 (1993)
pp. 231–244. |
[YWHWXSW2014] | D. Ye, P. Wang, L. Hu, L. Wang, Y. Xie, S. Sun, and P. Wang,
Panda v1; in CAESAR Competition, (2014). |
[YT2002] | F. Yura and T. Tokihiro,
On a periodic soliton cellular automaton, J. Phys. A: Math. Gen.
35 (2002) 3787-3801. |
[YYT2003] | D. Yoshihara, F. Yura, and T. Tokihiro,
Fundamental cycle of a periodic box-ball system, J. Phys. A:
Math. Gen. 36 (2003) 99-121. |
Z
[ZBLRYV2015] | W. Zhang, Z. Bao, D. Lin, V. Rijmen, B. Yang, and I. Verbauwhede,
RECTANGLE: A bit-slice lightweight block cipher suitable for
multiple platforms; in
SCience China Information Sciences, (2015), pp. 1-15. |
[ZBN1997] | C. Zhu, R. H. Byrd and J. Nocedal. L-BFGS-B: Algorithm
778: L-BFGS-B, FORTRAN routines for large scale bound
constrained optimization. ACM Transactions on
Mathematical Software, Vol 23, Num. 4, pp.550–560, 1997. |
[Zei2011] | Doron Zeilberger. “The C-finite ansatz.” The Ramanujan Journal
(2011): 1-10. |
[Zhedanov1991] | A.S. Zhedanov.
“Hidden symmetry” of the Askey–Wilson polynomials,
Theoret. and Math. Phys. 89 (1991), 1146–1157. |
[Zie1998] | G. M. Ziegler. Shelling polyhedral 3-balls and
4-polytopes. Discrete Comput. Geom. 19 (1998), 159-174. |
[Zie2007] | G. M. Ziegler. Lectures on polytopes, Volume
152 of Graduate Texts in Mathematics, 7th printing of 1st edition, Springer, 2007. |
[Zor2008] | A. Zorich “Explicit Jenkins-Strebel representatives of
all strata of Abelian and quadratic differentials”,
Journal of Modern Dynamics, vol. 2, no 1, 139-185 (2008)
(http://www.math.psu.edu/jmd) |
[ZZ2005] | Hechun Zhang and R. B. Zhang.
Dual canonical bases for the quantum special linear group
and invariant subalgebras.
Lett. Math. Phys. 73 (2005), pp. 165-181.
arXiv math/0509651. |