Elements of Quaternion Algebras¶
Sage allows for computation with elements of quaternion algebras over a nearly arbitrary base field of characteristic not 2. Sage also has very highly optimized implementation of arithmetic in rational quaternion algebras and quaternion algebras over number fields.
-
class
sage.algebras.quatalg.quaternion_algebra_element.
QuaternionAlgebraElement_abstract
¶ Bases:
sage.structure.element.AlgebraElement
-
coefficient_tuple
()¶ Return 4-tuple of coefficients of this quaternion.
EXAMPLES:
sage: K.<x> = QQ['x'] sage: Q.<i,j,k> = QuaternionAlgebra(Frac(K),-5,-2) sage: a = 1/2*x^2 + 2/3*x*i - 3/4*j + 5/7*k sage: type(a) <... 'sage.algebras.quatalg.quaternion_algebra_element.QuaternionAlgebraElement_generic'> sage: a.coefficient_tuple() (1/2*x^2, 2/3*x, -3/4, 5/7)
-
conjugate
()¶ Return the conjugate of the quaternion: if \(\theta = x + yi + zj + wk\), return \(x - yi - zj - wk\); that is, return theta.reduced_trace() - theta.
EXAMPLES:
sage: A.<i,j,k> = QuaternionAlgebra(QQ,-5,-2) sage: a = 3*i - j + 2 sage: type(a) <... 'sage.algebras.quatalg.quaternion_algebra_element.QuaternionAlgebraElement_rational_field'> sage: a.conjugate() 2 - 3*i + j
The “universal” test:
sage: K.<x,y,z,w,a,b> = QQ[] sage: Q.<i,j,k> = QuaternionAlgebra(a,b) sage: theta = x+y*i+z*j+w*k sage: theta.conjugate() x + (-y)*i + (-z)*j + (-w)*k
-
is_constant
()¶ Return True if this quaternion is constant, i.e., has no i, j, or k term.
OUTPUT:
bool
EXAMPLES:
sage: A.<i,j,k> = QuaternionAlgebra(-1,-2) sage: A(1).is_constant() True sage: A(1+i).is_constant() False sage: A(i).is_constant() False
-
matrix
(action='right')¶ Return the matrix of right or left multiplication of self on the basis for the ambient quaternion algebra.
In particular, if action is ‘right’ (the default), returns the matrix of the mapping sending x to x*self.
INPUT:
action
– (default: ‘right’) ‘right’ or ‘left’.
OUTPUT:
- a matrix
EXAMPLES:
sage: Q.<i,j,k> = QuaternionAlgebra(-3,-19) sage: a = 2/3 -1/2*i + 3/5*j - 4/3*k sage: a.matrix() [ 2/3 -1/2 3/5 -4/3] [ 3/2 2/3 4 3/5] [-57/5 -76/3 2/3 1/2] [ 76 -57/5 -3/2 2/3] sage: a.matrix() == a.matrix(action='right') True sage: a.matrix(action='left') [ 2/3 -1/2 3/5 -4/3] [ 3/2 2/3 -4 -3/5] [-57/5 76/3 2/3 -1/2] [ 76 57/5 3/2 2/3] sage: (i*a,j*a,k*a) (3/2 + 2/3*i + 4*j + 3/5*k, -57/5 - 76/3*i + 2/3*j + 1/2*k, 76 - 57/5*i - 3/2*j + 2/3*k) sage: a.matrix(action='foo') Traceback (most recent call last): ... ValueError: action must be either 'left' or 'right'
We test over a more generic base field:
sage: K.<x> = QQ['x'] sage: Q.<i,j,k> = QuaternionAlgebra(Frac(K),-5,-2) sage: a = 1/2*x^2 + 2/3*x*i - 3/4*j + 5/7*k sage: type(a) <... 'sage.algebras.quatalg.quaternion_algebra_element.QuaternionAlgebraElement_generic'> sage: a.matrix() [1/2*x^2 2/3*x -3/4 5/7] [-10/3*x 1/2*x^2 -25/7 -3/4] [ 3/2 10/7 1/2*x^2 -2/3*x] [ -50/7 3/2 10/3*x 1/2*x^2]
-
pair
(right)¶ Return the result of pairing self and right, which should both be elements of a quaternion algebra. The pairing is (x,y) = (x.conjugate()*y).reduced_trace().
INPUT:
right
– quaternion
EXAMPLES:
sage: A.<i,j,k>=QuaternionAlgebra(-1,-2) sage: (1+i+j-2*k).pair(2/3+5*i-3*j+k) -26/3 sage: x = 1+i+j-2*k; y = 2/3+5*i-3*j+k sage: x.pair(y) -26/3 sage: y.pair(x) -26/3 sage: (x.conjugate()*y).reduced_trace() -26/3
-
reduced_characteristic_polynomial
(var='x')¶ Return the reduced characteristic polynomial of this quaternion algebra element, which is \(X^2 - tX + n\), where \(t\) is the reduced trace and \(n\) is the reduced norm.
INPUT:
- var – string (default: ‘x’); indeterminate of characteristic polynomial
EXAMPLES:
sage: A.<i,j,k>=QuaternionAlgebra(-1,-2) sage: i.reduced_characteristic_polynomial() x^2 + 1 sage: j.reduced_characteristic_polynomial() x^2 + 2 sage: (i+j).reduced_characteristic_polynomial() x^2 + 3 sage: (2+j+k).reduced_trace() 4 sage: (2+j+k).reduced_characteristic_polynomial('T') T^2 - 4*T + 8
-
reduced_norm
()¶ Return the reduced norm of self: if \(\theta = x + yi + zj + wk\), then \(\theta\) has reduced norm \(x^2 - ay^2 - bz^2 + abw^2\).
EXAMPLES:
sage: K.<x,y,z,w,a,b> = QQ[] sage: Q.<i,j,k> = QuaternionAlgebra(a,b) sage: theta = x+y*i+z*j+w*k sage: theta.reduced_norm() w^2*a*b - y^2*a - z^2*b + x^2
-
reduced_trace
()¶ Return the reduced trace of self: if \(\theta = x + yi + zj + wk\), then \(\theta\) has reduced trace \(2x\).
EXAMPLES:
sage: K.<x,y,z,w,a,b> = QQ[] sage: Q.<i,j,k> = QuaternionAlgebra(a,b) sage: theta = x+y*i+z*j+w*k sage: theta.reduced_trace() 2*x
-
-
class
sage.algebras.quatalg.quaternion_algebra_element.
QuaternionAlgebraElement_generic
¶ Bases:
sage.algebras.quatalg.quaternion_algebra_element.QuaternionAlgebraElement_abstract
-
class
sage.algebras.quatalg.quaternion_algebra_element.
QuaternionAlgebraElement_number_field
¶ Bases:
sage.algebras.quatalg.quaternion_algebra_element.QuaternionAlgebraElement_abstract
EXAMPLES:
sage: K.<a> = QQ[2^(1/3)]; Q.<i,j,k> = QuaternionAlgebra(K,-a,a+1) sage: Q([a,-2/3,a^2-1/2,a*2]) # implicit doctest a + (-2/3)*i + (a^2 - 1/2)*j + 2*a*k
-
class
sage.algebras.quatalg.quaternion_algebra_element.
QuaternionAlgebraElement_rational_field
¶ Bases:
sage.algebras.quatalg.quaternion_algebra_element.QuaternionAlgebraElement_abstract
-
coefficient_tuple
()¶ Return 4-tuple of rational numbers which are the coefficients of this quaternion.
EXAMPLES:
sage: A.<i,j,k> = QuaternionAlgebra(-1,-2) sage: (2/3 + 3/5*i + 4/3*j - 5/7*k).coefficient_tuple() (2/3, 3/5, 4/3, -5/7)
-
conjugate
()¶ Return the conjugate of this quaternion.
EXAMPLES:
sage: A.<i,j,k> = QuaternionAlgebra(QQ,-5,-2) sage: a = 3*i - j + 2 sage: type(a) <... 'sage.algebras.quatalg.quaternion_algebra_element.QuaternionAlgebraElement_rational_field'> sage: a.conjugate() 2 - 3*i + j sage: b = 1 + 1/3*i + 1/5*j - 1/7*k sage: b.conjugate() 1 - 1/3*i - 1/5*j + 1/7*k
-
denominator
()¶ Return the lowest common multiple of the denominators of the coefficients of i, j and k for this quaternion.
EXAMPLES:
sage: A = QuaternionAlgebra(QQ, -1, -1) sage: A.<i,j,k> = QuaternionAlgebra(QQ, -1, -1) sage: a = (1/2) + (1/5)*i + (5/12)*j + (1/13)*k sage: a 1/2 + 1/5*i + 5/12*j + 1/13*k sage: a.denominator() 780 sage: lcm([2, 5, 12, 13]) 780 sage: (a * a).denominator() 608400 sage: (a + a).denominator() 390
-
denominator_and_integer_coefficient_tuple
()¶ Return 5-tuple d, x, y, z, w, where this rational quaternion is equal to \((x + yi + zj + wk)/d\) and x, y, z, w do not share a common factor with d.
OUTPUT:
5-tuple of Integers
EXAMPLES:
sage: A.<i,j,k>=QuaternionAlgebra(-1,-2) sage: (2 + 3*i + 4/3*j - 5*k).denominator_and_integer_coefficient_tuple() (3, 6, 9, 4, -15)
-
integer_coefficient_tuple
()¶ Return the integer part of this quaternion, ignoring the common denominator.
OUTPUT:
4-tuple of Integers
EXAMPLES:
sage: A.<i,j,k>=QuaternionAlgebra(-1,-2) sage: (2 + 3*i + 4/3*j - 5*k).integer_coefficient_tuple() (6, 9, 4, -15)
-
is_constant
()¶ Return True if this quaternion is constant, i.e., has no i, j, or k term.
OUTPUT:
bool
EXAMPLES:
sage: A.<i,j,k>=QuaternionAlgebra(-1,-2) sage: A(1/3).is_constant() True sage: A(-1).is_constant() True sage: (1+i).is_constant() False sage: j.is_constant() False
-
reduced_norm
()¶ Return the reduced norm of
self
.Given a quaternion \(x+yi+zj+wk\), this is \(x^2 - ay^2 - bz^2 + abw^2\).
EXAMPLES:
sage: K.<i,j,k> = QuaternionAlgebra(QQ, -5, -2) sage: i.reduced_norm() 5 sage: j.reduced_norm() 2 sage: a = 1/3 + 1/5*i + 1/7*j + k sage: a.reduced_norm() 22826/2205
-
reduced_trace
()¶ Return the reduced trace of
self
.This is \(2x\) if self is \(x+iy+zj+wk\).
EXAMPLES:
sage: K.<i,j,k> = QuaternionAlgebra(QQ, -5, -2) sage: i.reduced_trace() 0 sage: j.reduced_trace() 0 sage: a = 1/3 + 1/5*i + 1/7*j + k sage: a.reduced_trace() 2/3
-
-
sage.algebras.quatalg.quaternion_algebra_element.
unpickle_QuaternionAlgebraElement_generic_v0
(*args)¶ EXAMPLES:
sage: K.<X> = QQ[] sage: Q.<i,j,k> = QuaternionAlgebra(Frac(K), -5,-19); z = 2/3 + i*X - X^2*j + X^3*k sage: f, t = z.__reduce__() sage: sage.algebras.quatalg.quaternion_algebra_element.unpickle_QuaternionAlgebraElement_generic_v0(*t) 2/3 + X*i + (-X^2)*j + X^3*k sage: sage.algebras.quatalg.quaternion_algebra_element.unpickle_QuaternionAlgebraElement_generic_v0(*t) == z True
-
sage.algebras.quatalg.quaternion_algebra_element.
unpickle_QuaternionAlgebraElement_number_field_v0
(*args)¶ EXAMPLES:
sage: K.<a> = QQ[2^(1/3)]; Q.<i,j,k> = QuaternionAlgebra(K, -3, a); z = i + j sage: f, t = z.__reduce__() sage: sage.algebras.quatalg.quaternion_algebra_element.unpickle_QuaternionAlgebraElement_number_field_v0(*t) i + j sage: sage.algebras.quatalg.quaternion_algebra_element.unpickle_QuaternionAlgebraElement_number_field_v0(*t) == z True
-
sage.algebras.quatalg.quaternion_algebra_element.
unpickle_QuaternionAlgebraElement_rational_field_v0
(*args)¶ EXAMPLES:
sage: Q.<i,j,k> = QuaternionAlgebra(-5,-19); a = 2/3 + i*5/7 - j*2/5 +19/2 sage: f, t = a.__reduce__() sage: sage.algebras.quatalg.quaternion_algebra_element.unpickle_QuaternionAlgebraElement_rational_field_v0(*t) 61/6 + 5/7*i - 2/5*j