Quaternion Algebras¶
AUTHORS:
- Jon Bobber (2009): rewrite
- William Stein (2009): rewrite
- Julian Rueth (2014-03-02): use UniqueFactory for caching
This code is partly based on Sage code by David Kohel from 2005.
-
class
sage.algebras.quatalg.quaternion_algebra.
QuaternionAlgebraFactory
¶ Bases:
sage.structure.factory.UniqueFactory
There are three input formats:
QuaternionAlgebra(a, b)
: quaternion algebra generated byi
,j
subject to \(i^2 = a\), \(j^2 = b\), \(j \cdot i = -i \cdot j\).QuaternionAlgebra(K, a, b)
: same as above but over a fieldK
. Here,a
andb
are nonzero elements of a field (K
) of characteristic not 2, and we set \(k = i \cdot j\).QuaternionAlgebra(D)
: a rational quaternion algebra with discriminantD
, where \(D > 1\) is a squarefree integer.
EXAMPLES:
QuaternionAlgebra(a, b)
- return quaternion algebra over the smallest field containing the nonzero elementsa
andb
with generatorsi
,j
,k
with \(i^2=a\), \(j^2=b\) and \(j \cdot i = -i \cdot j\):sage: QuaternionAlgebra(-2,-3) Quaternion Algebra (-2, -3) with base ring Rational Field sage: QuaternionAlgebra(GF(5)(2), GF(5)(3)) Quaternion Algebra (2, 3) with base ring Finite Field of size 5 sage: QuaternionAlgebra(2, GF(5)(3)) Quaternion Algebra (2, 3) with base ring Finite Field of size 5 sage: QuaternionAlgebra(QQ[sqrt(2)](-1), -5) Quaternion Algebra (-1, -5) with base ring Number Field in sqrt2 with defining polynomial x^2 - 2 with sqrt2 = 1.414213562373095? sage: QuaternionAlgebra(sqrt(-1), sqrt(-3)) Quaternion Algebra (I, sqrt(-3)) with base ring Symbolic Ring sage: QuaternionAlgebra(1r,1) Quaternion Algebra (1, 1) with base ring Rational Field
Python ints, longs and floats may be passed to the
QuaternionAlgebra(a, b)
constructor, as may all pairs of nonzero elements of a ring not of characteristic 2. The following tests address the issues raised in trac ticket #10601:sage: QuaternionAlgebra(1r,1) Quaternion Algebra (1, 1) with base ring Rational Field sage: QuaternionAlgebra(1,1.0r) Quaternion Algebra (1.00000000000000, 1.00000000000000) with base ring Real Field with 53 bits of precision sage: QuaternionAlgebra(0,0) Traceback (most recent call last): ... ValueError: a and b must be nonzero sage: QuaternionAlgebra(GF(2)(1),1) Traceback (most recent call last): ... ValueError: a and b must be elements of a ring with characteristic not 2 sage: a = PermutationGroupElement([1,2,3]) sage: QuaternionAlgebra(a, a) Traceback (most recent call last): ... ValueError: a and b must be elements of a ring with characteristic not 2
QuaternionAlgebra(K, a, b)
- return quaternion algebra over the fieldK
with generatorsi
,j
,k
with \(i^2=a\), \(j^2=b\) and \(i \cdot j = -j \cdot i\):sage: QuaternionAlgebra(QQ, -7, -21) Quaternion Algebra (-7, -21) with base ring Rational Field sage: QuaternionAlgebra(QQ[sqrt(2)], -2,-3) Quaternion Algebra (-2, -3) with base ring Number Field in sqrt2 with defining polynomial x^2 - 2 with sqrt2 = 1.414213562373095?
QuaternionAlgebra(D)
-D
is a squarefree integer; returns a rational quaternion algebra of discriminantD
:sage: QuaternionAlgebra(1) Quaternion Algebra (-1, 1) with base ring Rational Field sage: QuaternionAlgebra(2) Quaternion Algebra (-1, -1) with base ring Rational Field sage: QuaternionAlgebra(7) Quaternion Algebra (-1, -7) with base ring Rational Field sage: QuaternionAlgebra(2*3*5*7) Quaternion Algebra (-22, 210) with base ring Rational Field
If the coefficients \(a\) and \(b\) in the definition of the quaternion algebra are not integral, then a slower generic type is used for arithmetic:
sage: type(QuaternionAlgebra(-1,-3).0) <... 'sage.algebras.quatalg.quaternion_algebra_element.QuaternionAlgebraElement_rational_field'> sage: type(QuaternionAlgebra(-1,-3/2).0) <... 'sage.algebras.quatalg.quaternion_algebra_element.QuaternionAlgebraElement_generic'>
Make sure caching is sane:
sage: A = QuaternionAlgebra(2,3); A Quaternion Algebra (2, 3) with base ring Rational Field sage: B = QuaternionAlgebra(GF(5)(2),GF(5)(3)); B Quaternion Algebra (2, 3) with base ring Finite Field of size 5 sage: A is QuaternionAlgebra(2,3) True sage: B is QuaternionAlgebra(GF(5)(2),GF(5)(3)) True sage: Q = QuaternionAlgebra(2); Q Quaternion Algebra (-1, -1) with base ring Rational Field sage: Q is QuaternionAlgebra(QQ,-1,-1) True sage: Q is QuaternionAlgebra(-1,-1) True sage: Q.<ii,jj,kk> = QuaternionAlgebra(15); Q.variable_names() ('ii', 'jj', 'kk') sage: QuaternionAlgebra(15).variable_names() ('i', 'j', 'k')
-
create_key
(arg0, arg1=None, arg2=None, names='i, j, k')¶ Create a key that uniquely determines a quaternion algebra.
-
create_object
(version, key, **extra_args)¶ Create the object from the key (extra arguments are ignored). This is only called if the object was not found in the cache.
-
class
sage.algebras.quatalg.quaternion_algebra.
QuaternionAlgebra_ab
(base_ring, a, b, names='i, j, k')¶ Bases:
sage.algebras.quatalg.quaternion_algebra.QuaternionAlgebra_abstract
The quaternion algebra of the form \((a, b/K)\), where \(i^2=a\), \(j^2 = b\), and \(j*i = -i*j\).
K
is a field not of characteristic 2 anda
,b
are nonzero elements ofK
.See
QuaternionAlgebra
for many more examples.INPUT:
base_ring
– commutative ringa, b
– elements ofbase_ring
names
– string (optional, default ‘i,j,k’) names of the generators
EXAMPLES:
sage: QuaternionAlgebra(QQ, -7, -21) # indirect doctest Quaternion Algebra (-7, -21) with base ring Rational Field
-
discriminant
()¶ Given a quaternion algebra \(A\) defined over a number field, return the discriminant of \(A\), i.e. the product of the ramified primes of \(A\).
EXAMPLES:
sage: QuaternionAlgebra(210,-22).discriminant() 210 sage: QuaternionAlgebra(19).discriminant() 19 sage: F.<a> = NumberField(x^2-x-1) sage: B.<i,j,k> = QuaternionAlgebra(F, 2*a,F(-1)) sage: B.discriminant() Fractional ideal (2) sage: QuaternionAlgebra(QQ[sqrt(2)],3,19).discriminant() Fractional ideal (1)
-
gen
(i=0)¶ Return the \(i^{th}\) generator of
self
.INPUT:
i
- integer (optional, default 0)
EXAMPLES:
sage: Q.<ii,jj,kk> = QuaternionAlgebra(QQ,-1,-2); Q Quaternion Algebra (-1, -2) with base ring Rational Field sage: Q.gen(0) ii sage: Q.gen(1) jj sage: Q.gen(2) kk sage: Q.gens() [ii, jj, kk]
-
ideal
(gens, left_order=None, right_order=None, check=True, **kwds)¶ Return the quaternion ideal with given gens over \(\ZZ\).
Neither a left or right order structure need be specified.
INPUT:
gens
– a list of elements of this quaternion ordercheck
– bool (default:True
); ifFalse
, thengens
must 4-tuple that forms a Hermite basis for an idealleft_order
– a quaternion order orNone
right_order
– a quaternion order orNone
EXAMPLES:
sage: R = QuaternionAlgebra(-11,-1) sage: R.ideal([2*a for a in R.basis()]) Fractional ideal (2, 2*i, 2*j, 2*k)
-
inner_product_matrix
()¶ Return the inner product matrix associated to
self
, i.e. the Gram matrix of the reduced norm as a quadratic form onself
. The standard basis \(1\), \(i\), \(j\), \(k\) is orthogonal, so this matrix is just the diagonal matrix with diagonal entries \(1\), \(a\), \(b\), \(ab\).EXAMPLES:
sage: Q.<i,j,k> = QuaternionAlgebra(-5,-19) sage: Q.inner_product_matrix() [ 2 0 0 0] [ 0 10 0 0] [ 0 0 38 0] [ 0 0 0 190] sage: R.<a,b> = QQ[]; Q.<i,j,k> = QuaternionAlgebra(Frac(R),a,b) sage: Q.inner_product_matrix() [ 2 0 0 0] [ 0 -2*a 0 0] [ 0 0 -2*b 0] [ 0 0 0 2*a*b]
-
invariants
()¶ Return the structural invariants \(a\), \(b\) of this quaternion algebra:
self
is generated by \(i\), \(j\) subject to \(i^2 = a\), \(j^2 = b\) and \(j*i = -i*j\).EXAMPLES:
sage: Q.<i,j,k> = QuaternionAlgebra(15) sage: Q.invariants() (-3, 5) sage: i^2 -3 sage: j^2 5
-
maximal_order
(take_shortcuts=True)¶ Return a maximal order in this quaternion algebra.
The algorithm used is from [Voi2012].
INPUT:
take_shortcuts
– (default:True
) if the discriminant is prime and the invariants of the algebra are of a nice form, use Proposition 5.2 of [Piz1980].
OUTPUT:
A maximal order in this quaternion algebra.
EXAMPLES:
sage: QuaternionAlgebra(-1,-7).maximal_order() Order of Quaternion Algebra (-1, -7) with base ring Rational Field with basis (1/2 + 1/2*j, 1/2*i + 1/2*k, j, k) sage: QuaternionAlgebra(-1,-1).maximal_order().basis() (1/2 + 1/2*i + 1/2*j + 1/2*k, i, j, k) sage: QuaternionAlgebra(-1,-11).maximal_order().basis() (1/2 + 1/2*j, 1/2*i + 1/2*k, j, k) sage: QuaternionAlgebra(-1,-3).maximal_order().basis() (1/2 + 1/2*j, 1/2*i + 1/2*k, j, k) sage: QuaternionAlgebra(-3,-1).maximal_order().basis() (1/2 + 1/2*i, 1/2*j - 1/2*k, i, -k) sage: QuaternionAlgebra(-2,-5).maximal_order().basis() (1/2 + 1/2*j + 1/2*k, 1/4*i + 1/2*j + 1/4*k, j, k) sage: QuaternionAlgebra(-5,-2).maximal_order().basis() (1/2 + 1/2*i - 1/2*k, 1/2*i + 1/4*j - 1/4*k, i, -k) sage: QuaternionAlgebra(-17,-3).maximal_order().basis() (1/2 + 1/2*j, 1/2*i + 1/2*k, -1/3*j - 1/3*k, k) sage: QuaternionAlgebra(-3,-17).maximal_order().basis() (1/2 + 1/2*i, 1/2*j - 1/2*k, -1/3*i + 1/3*k, -k) sage: QuaternionAlgebra(-17*9,-3).maximal_order().basis() (1, 1/3*i, 1/6*i + 1/2*j, 1/2 + 1/3*j + 1/18*k) sage: QuaternionAlgebra(-2, -389).maximal_order().basis() (1/2 + 1/2*j + 1/2*k, 1/4*i + 1/2*j + 1/4*k, j, k)
If you want bases containing 1, switch off
take_shortcuts
:sage: QuaternionAlgebra(-3,-89).maximal_order(take_shortcuts=False) Order of Quaternion Algebra (-3, -89) with base ring Rational Field with basis (1, 1/2 + 1/2*i, j, 1/2 + 1/6*i + 1/2*j + 1/6*k) sage: QuaternionAlgebra(1,1).maximal_order(take_shortcuts=False) # Matrix ring Order of Quaternion Algebra (1, 1) with base ring Rational Field with basis (1, 1/2 + 1/2*i, j, 1/2*j + 1/2*k) sage: QuaternionAlgebra(-22,210).maximal_order(take_shortcuts=False) Order of Quaternion Algebra (-22, 210) with base ring Rational Field with basis (1, i, 1/2*i + 1/2*j, 1/2 + 17/22*i + 1/44*k) sage: for d in ( m for m in range(1, 750) if is_squarefree(m) ): # long time (3s) ....: A = QuaternionAlgebra(d) ....: R = A.maximal_order(take_shortcuts=False) ....: assert A.discriminant() == R.discriminant()
We do not support number fields other than the rationals yet:
sage: K = QuadraticField(5) sage: QuaternionAlgebra(K,-1,-1).maximal_order() Traceback (most recent call last): ... NotImplementedError: maximal order only implemented for rational quaternion algebras
-
modp_splitting_data
(p)¶ Return mod \(p\) splitting data for this quaternion algebra at the unramified prime \(p\).
This is \(2\times 2\) matrices \(I\), \(J\), \(K\) over the finite field \(\GF{p}\) such that if the quaternion algebra has generators \(i, j, k\), then \(I^2 = i^2\), \(J^2 = j^2\), \(IJ=K\) and \(IJ=-JI\).
Note
Currently only implemented when \(p\) is odd and the base ring is \(\QQ\).
INPUT:
- \(p\) – unramified odd prime
OUTPUT:
- 2-tuple of matrices over finite field
EXAMPLES:
sage: Q = QuaternionAlgebra(-15, -19) sage: Q.modp_splitting_data(7) ( [0 6] [6 1] [6 6] [1 0], [1 1], [6 1] ) sage: Q.modp_splitting_data(next_prime(10^5)) ( [ 0 99988] [97311 4] [99999 59623] [ 1 0], [13334 2692], [97311 4] ) sage: I,J,K = Q.modp_splitting_data(23) sage: I [0 8] [1 0] sage: I^2 [8 0] [0 8] sage: J [19 2] [17 4] sage: J^2 [4 0] [0 4] sage: I*J == -J*I True sage: I*J == K True
The following is a good test because of the asserts in the code:
sage: v = [Q.modp_splitting_data(p) for p in primes(20,1000)]
Proper error handling:
sage: Q.modp_splitting_data(5) Traceback (most recent call last): ... NotImplementedError: algorithm for computing local splittings not implemented in general (currently require the first invariant to be coprime to p) sage: Q.modp_splitting_data(2) Traceback (most recent call last): ... NotImplementedError: p must be odd
-
modp_splitting_map
(p)¶ Return Python map from the (\(p\)-integral) quaternion algebra to the set of \(2\times 2\) matrices over \(\GF{p}\).
INPUT:
- \(p\) – prime number
EXAMPLES:
sage: Q.<i,j,k> = QuaternionAlgebra(-1, -7) sage: f = Q.modp_splitting_map(13) sage: a = 2+i-j+3*k; b = 7+2*i-4*j+k sage: f(a*b) [12 3] [10 5] sage: f(a)*f(b) [12 3] [10 5]
-
quaternion_order
(basis, check=True)¶ Return the order of this quaternion order with given basis.
INPUT:
basis
- list of 4 elements ofself
check
- bool (default:True
)
EXAMPLES:
sage: Q.<i,j,k> = QuaternionAlgebra(-11,-1) sage: Q.quaternion_order([1,i,j,k]) Order of Quaternion Algebra (-11, -1) with base ring Rational Field with basis (1, i, j, k)
We test out
check=False
:sage: Q.quaternion_order([1,i,j,k], check=False) Order of Quaternion Algebra (-11, -1) with base ring Rational Field with basis [1, i, j, k] sage: Q.quaternion_order([i,j,k], check=False) Order of Quaternion Algebra (-11, -1) with base ring Rational Field with basis [i, j, k]
-
ramified_primes
()¶ Return the primes that ramify in this quaternion algebra.
Currently only implemented over the rational numbers.
EXAMPLES:
sage: QuaternionAlgebra(QQ, -1, -1).ramified_primes() [2]
-
class
sage.algebras.quatalg.quaternion_algebra.
QuaternionAlgebra_abstract
¶ Bases:
sage.rings.ring.Algebra
-
basis
()¶ Return the fixed basis of
self
, which is \(1\), \(i\), \(j\), \(k\), where \(i\), \(j\), \(k\) are the generators ofself
.EXAMPLES:
sage: Q.<i,j,k> = QuaternionAlgebra(QQ,-5,-2) sage: Q.basis() (1, i, j, k) sage: Q.<xyz,abc,theta> = QuaternionAlgebra(GF(9,'a'),-5,-2) sage: Q.basis() (1, xyz, abc, theta)
The basis is cached:
sage: Q.basis() is Q.basis() True
-
inner_product_matrix
()¶ Return the inner product matrix associated to
self
.This is the Gram matrix of the reduced norm as a quadratic form on
self
. The standard basis \(1\), \(i\), \(j\), \(k\) is orthogonal, so this matrix is just the diagonal matrix with diagonal entries \(2\), \(2a\), \(2b\), \(2ab\).EXAMPLES:
sage: Q.<i,j,k> = QuaternionAlgebra(-5,-19) sage: Q.inner_product_matrix() [ 2 0 0 0] [ 0 10 0 0] [ 0 0 38 0] [ 0 0 0 190]
-
is_commutative
()¶ Return
False
always, since all quaternion algebras are noncommutative.EXAMPLES:
sage: Q.<i,j,k> = QuaternionAlgebra(QQ, -3,-7) sage: Q.is_commutative() False
-
is_division_algebra
()¶ Return
True
if the quaternion algebra is a division algebra (i.e. every nonzero element inself
is invertible), andFalse
if the quaternion algebra is isomorphic to the 2x2 matrix algebra.EXAMPLES:
sage: QuaternionAlgebra(QQ,-5,-2).is_division_algebra() True sage: QuaternionAlgebra(1).is_division_algebra() False sage: QuaternionAlgebra(2,9).is_division_algebra() False sage: QuaternionAlgebra(RR(2.),1).is_division_algebra() Traceback (most recent call last): ... NotImplementedError: base field must be rational numbers
-
is_exact
()¶ Return
True
if elements of this quaternion algebra are represented exactly, i.e. there is no precision loss when doing arithmetic. A quaternion algebra is exact if and only if its base field is exact.EXAMPLES:
sage: Q.<i,j,k> = QuaternionAlgebra(QQ, -3, -7) sage: Q.is_exact() True sage: Q.<i,j,k> = QuaternionAlgebra(Qp(7), -3, -7) sage: Q.is_exact() False
-
is_field
(proof=True)¶ Return
False
always, since all quaternion algebras are noncommutative and all fields are commutative.EXAMPLES:
sage: Q.<i,j,k> = QuaternionAlgebra(QQ, -3, -7) sage: Q.is_field() False
-
is_finite
()¶ Return
True
if the quaternion algebra is finite as a set.Algorithm: A quaternion algebra is finite if and only if the base field is finite.
EXAMPLES:
sage: Q.<i,j,k> = QuaternionAlgebra(QQ, -3, -7) sage: Q.is_finite() False sage: Q.<i,j,k> = QuaternionAlgebra(GF(5), -3, -7) sage: Q.is_finite() True
-
is_integral_domain
(proof=True)¶ Return
False
always, since all quaternion algebras are noncommutative and integral domains are commutative (in Sage).EXAMPLES:
sage: Q.<i,j,k> = QuaternionAlgebra(QQ, -3, -7) sage: Q.is_integral_domain() False
-
is_matrix_ring
()¶ Return
True
if the quaternion algebra is isomorphic to the 2x2 matrix ring, andFalse
ifself
is a division algebra (i.e. every nonzero element inself
is invertible).EXAMPLES:
sage: QuaternionAlgebra(QQ,-5,-2).is_matrix_ring() False sage: QuaternionAlgebra(1).is_matrix_ring() True sage: QuaternionAlgebra(2,9).is_matrix_ring() True sage: QuaternionAlgebra(RR(2.),1).is_matrix_ring() Traceback (most recent call last): ... NotImplementedError: base field must be rational numbers
-
is_noetherian
()¶ Return
True
always, since any quaternion algebra is a noetherian ring (because it is a finitely generated module over a field).EXAMPLES:
sage: Q.<i,j,k> = QuaternionAlgebra(QQ, -3, -7) sage: Q.is_noetherian() True
-
ngens
()¶ Return the number of generators of the quaternion algebra as a K-vector space, not including 1.
This value is always 3: the algebra is spanned by the standard basis \(1\), \(i\), \(j\), \(k\).
EXAMPLES:
sage: Q.<i,j,k> = QuaternionAlgebra(QQ,-5,-2) sage: Q.ngens() 3 sage: Q.gens() [i, j, k]
-
order
()¶ Return the number of elements of the quaternion algebra, or
+Infinity
if the algebra is not finite.EXAMPLES:
sage: Q.<i,j,k> = QuaternionAlgebra(QQ, -3, -7) sage: Q.order() +Infinity sage: Q.<i,j,k> = QuaternionAlgebra(GF(5), -3, -7) sage: Q.order() 625
-
random_element
(*args, **kwds)¶ Return a random element of this quaternion algebra.
The
args
andkwds
are passed to therandom_element
method of the base ring.EXAMPLES:
sage: QuaternionAlgebra(QQ[sqrt(2)],-3,7).random_element() (sqrt2 + 2)*i + (-12*sqrt2 - 2)*j + (-sqrt2 + 1)*k sage: QuaternionAlgebra(-3,19).random_element() -1 + 2*i - j - 6/5*k sage: QuaternionAlgebra(GF(17)(2),3).random_element() 14 + 10*i + 4*j + 7*k
Specify the numerator and denominator bounds:
sage: QuaternionAlgebra(-3,19).random_element(10^6,10^6) -979933/553629 + 255525/657688*i - 3511/6929*j - 700105/258683*k
-
vector_space
()¶ Return the vector space associated to
self
with inner product given by the reduced norm.EXAMPLES:
sage: QuaternionAlgebra(-3,19).vector_space() Ambient quadratic space of dimension 4 over Rational Field Inner product matrix: [ 2 0 0 0] [ 0 6 0 0] [ 0 0 -38 0] [ 0 0 0 -114]
-
-
class
sage.algebras.quatalg.quaternion_algebra.
QuaternionFractionalIdeal
(ring, gens, coerce=True)¶
-
class
sage.algebras.quatalg.quaternion_algebra.
QuaternionFractionalIdeal_rational
(basis, left_order=None, right_order=None, check=True)¶ Bases:
sage.algebras.quatalg.quaternion_algebra.QuaternionFractionalIdeal
A fractional ideal in a rational quaternion algebra.
INPUT:
left_order
– a quaternion order orNone
right_order
– a quaternion order orNone
basis
– tuple of length 4 of elements in of ambient quaternion algebra whose \(\ZZ\)-span is an idealcheck
– bool (default:True
); ifFalse
, do no type checking, and the input basis must be in Hermite form.
-
basis
()¶ Return basis for this fractional ideal.
The basis is in Hermite form.
OUTPUT: tuple
EXAMPLES:
sage: QuaternionAlgebra(-11,-1).maximal_order().unit_ideal().basis() (1/2 + 1/2*i, 1/2*j - 1/2*k, i, -k)
-
basis_matrix
()¶ Return basis matrix \(M\) in Hermite normal form for self as a matrix with rational entries.
If \(Q\) is the ambient quaternion algebra, then the \(\ZZ\)-span of the rows of \(M\) viewed as linear combinations of Q.basis() = \([1,i,j,k]\) is the fractional ideal self. Also,
M * M.denominator()
is an integer matrix in Hermite normal form.OUTPUT: matrix over \(\QQ\)
EXAMPLES:
sage: QuaternionAlgebra(-11,-1).maximal_order().unit_ideal().basis_matrix() [ 1/2 1/2 0 0] [ 0 0 1/2 -1/2] [ 0 1 0 0] [ 0 0 0 -1]
-
conjugate
()¶ Return the ideal with generators the conjugates of the generators for self.
OUTPUT: a quaternionic fractional ideal
EXAMPLES:
sage: I = BrandtModule(3,5).right_ideals()[1]; I Fractional ideal (2 + 6*j + 4*k, 2*i + 4*j + 34*k, 8*j + 32*k, 40*k) sage: I.conjugate() Fractional ideal (2 + 2*j + 28*k, 2*i + 4*j + 34*k, 8*j + 32*k, 40*k)
-
cyclic_right_subideals
(p, alpha=None)¶ Let \(I\) =
self
. This function returns the right subideals \(J\) of \(I\) such that \(I/J\) is an \(\GF{p}\)-vector space of dimension 2.INPUT:
p
– prime number (see below)alpha
– (default:None
) element of quaternion algebra, which can be used to parameterize the order of the ideals \(J\). More precisely the \(J\)’s are the right annihilators of \((1,0) \alpha^i\) for \(i=0,1,2,...,p\)
OUTPUT:
- list of right ideals
Note
Currently, \(p\) must satisfy a bunch of conditions, or a
NotImplementedError
is raised. In particular, \(p\) must be odd and unramified in the quaternion algebra, must be coprime to the index of the right order in the maximal order, and also coprime to the normal of self. (The Brandt modules code has a more general algorithm in some cases.)EXAMPLES:
sage: B = BrandtModule(2,37); I = B.right_ideals()[0] sage: I.cyclic_right_subideals(3) [Fractional ideal (2 + 2*i + 10*j + 90*k, 4*i + 4*j + 152*k, 12*j + 132*k, 444*k), Fractional ideal (2 + 2*i + 2*j + 150*k, 4*i + 8*j + 196*k, 12*j + 132*k, 444*k), Fractional ideal (2 + 2*i + 6*j + 194*k, 4*i + 8*j + 344*k, 12*j + 132*k, 444*k), Fractional ideal (2 + 2*i + 6*j + 46*k, 4*i + 4*j + 4*k, 12*j + 132*k, 444*k)] sage: B = BrandtModule(5,389); I = B.right_ideals()[0] sage: C = I.cyclic_right_subideals(3); C [Fractional ideal (2 + 10*j + 546*k, i + 6*j + 133*k, 12*j + 3456*k, 4668*k), Fractional ideal (2 + 2*j + 2910*k, i + 6*j + 3245*k, 12*j + 3456*k, 4668*k), Fractional ideal (2 + i + 2295*k, 3*i + 2*j + 3571*k, 4*j + 2708*k, 4668*k), Fractional ideal (2 + 2*i + 2*j + 4388*k, 3*i + 2*j + 2015*k, 4*j + 4264*k, 4668*k)] sage: [(I.free_module()/J.free_module()).invariants() for J in C] [(3, 3), (3, 3), (3, 3), (3, 3)] sage: I.scale(3).cyclic_right_subideals(3) [Fractional ideal (6 + 30*j + 1638*k, 3*i + 18*j + 399*k, 36*j + 10368*k, 14004*k), Fractional ideal (6 + 6*j + 8730*k, 3*i + 18*j + 9735*k, 36*j + 10368*k, 14004*k), Fractional ideal (6 + 3*i + 6885*k, 9*i + 6*j + 10713*k, 12*j + 8124*k, 14004*k), Fractional ideal (6 + 6*i + 6*j + 13164*k, 9*i + 6*j + 6045*k, 12*j + 12792*k, 14004*k)] sage: C = I.scale(1/9).cyclic_right_subideals(3); C [Fractional ideal (2/9 + 10/9*j + 182/3*k, 1/9*i + 2/3*j + 133/9*k, 4/3*j + 384*k, 1556/3*k), Fractional ideal (2/9 + 2/9*j + 970/3*k, 1/9*i + 2/3*j + 3245/9*k, 4/3*j + 384*k, 1556/3*k), Fractional ideal (2/9 + 1/9*i + 255*k, 1/3*i + 2/9*j + 3571/9*k, 4/9*j + 2708/9*k, 1556/3*k), Fractional ideal (2/9 + 2/9*i + 2/9*j + 4388/9*k, 1/3*i + 2/9*j + 2015/9*k, 4/9*j + 4264/9*k, 1556/3*k)] sage: [(I.scale(1/9).free_module()/J.free_module()).invariants() for J in C] [(3, 3), (3, 3), (3, 3), (3, 3)] sage: Q.<i,j,k> = QuaternionAlgebra(-2,-5) sage: I = Q.ideal([Q(1),i,j,k]) sage: I.cyclic_right_subideals(3) [Fractional ideal (1 + 2*j, i + k, 3*j, 3*k), Fractional ideal (1 + j, i + 2*k, 3*j, 3*k), Fractional ideal (1 + 2*i, 3*i, j + 2*k, 3*k), Fractional ideal (1 + i, 3*i, j + k, 3*k)]
The general algorithm is not yet implemented here:
sage: I.cyclic_right_subideals(3)[0].cyclic_right_subideals(3) Traceback (most recent call last): ... NotImplementedError: general algorithm not implemented (The given basis vectors must be linearly independent.)
-
free_module
()¶ Return the underlying free \(\ZZ\)-module corresponding to this ideal.
OUTPUT:
Free \(\ZZ\)-module of rank 4 embedded in an ambient \(\QQ^4\).
EXAMPLES:
sage: X = BrandtModule(3,5).right_ideals() sage: X[0] Fractional ideal (2 + 2*j + 8*k, 2*i + 18*k, 4*j + 16*k, 20*k) sage: X[0].free_module() Free module of degree 4 and rank 4 over Integer Ring Echelon basis matrix: [ 2 0 2 8] [ 0 2 0 18] [ 0 0 4 16] [ 0 0 0 20] sage: X[0].scale(1/7).free_module() Free module of degree 4 and rank 4 over Integer Ring Echelon basis matrix: [ 2/7 0 2/7 8/7] [ 0 2/7 0 18/7] [ 0 0 4/7 16/7] [ 0 0 0 20/7] sage: QuaternionAlgebra(-11,-1).maximal_order().unit_ideal().basis_matrix() [ 1/2 1/2 0 0] [ 0 0 1/2 -1/2] [ 0 1 0 0] [ 0 0 0 -1]
The free module method is also useful since it allows for checking if one ideal is contained in another, computing quotients \(I/J\), etc.:
sage: X = BrandtModule(3,17).right_ideals() sage: I = X[0].intersection(X[2]); I Fractional ideal (2 + 2*j + 164*k, 2*i + 4*j + 46*k, 16*j + 224*k, 272*k) sage: I.free_module().is_submodule(X[3].free_module()) False sage: I.free_module().is_submodule(X[1].free_module()) True sage: X[0].free_module() / I.free_module() Finitely generated module V/W over Integer Ring with invariants (4, 4)
This shows that the issue at trac ticket #6760 is fixed:
sage: R.<i,j,k> = QuaternionAlgebra(-1, -13) sage: I = R.ideal([2+i, 3*i, 5*j, j+k]); I Fractional ideal (2 + i, 3*i, j + k, 5*k) sage: I.free_module() Free module of degree 4 and rank 4 over Integer Ring Echelon basis matrix: [2 1 0 0] [0 3 0 0] [0 0 1 1] [0 0 0 5]
-
gens
()¶ Return the generators for this ideal, which are the same as the \(\ZZ\)-basis for this ideal.
EXAMPLES:
sage: QuaternionAlgebra(-11,-1).maximal_order().unit_ideal().gens() (1/2 + 1/2*i, 1/2*j - 1/2*k, i, -k)
-
gram_matrix
()¶ Return the Gram matrix of this fractional ideal.
OUTPUT: \(4 \times 4\) matrix over \(\QQ\).
EXAMPLES:
sage: I = BrandtModule(3,5).right_ideals()[1]; I Fractional ideal (2 + 6*j + 4*k, 2*i + 4*j + 34*k, 8*j + 32*k, 40*k) sage: I.gram_matrix() [ 640 1920 2112 1920] [ 1920 14080 13440 16320] [ 2112 13440 13056 15360] [ 1920 16320 15360 19200]
-
intersection
(J)¶ Return the intersection of the ideals self and \(J\).
EXAMPLES:
sage: X = BrandtModule(3,5).right_ideals() sage: I = X[0].intersection(X[1]); I Fractional ideal (2 + 6*j + 4*k, 2*i + 4*j + 34*k, 8*j + 32*k, 40*k)
-
is_equivalent
(I, J, B=10)¶ Return
True
ifI
andJ
are equivalent as right ideals.INPUT:
I
– a fractional quaternion ideal (self)J
– a fractional quaternion ideal with same order asI
B
– a bound to compute and compare theta series before doing the full equivalence test
OUTPUT: bool
EXAMPLES:
sage: R = BrandtModule(3,5).right_ideals(); len(R) 2 sage: R[0].is_equivalent(R[1]) False sage: R[0].is_equivalent(R[0]) True sage: OO = R[0].quaternion_order() sage: S = OO.right_ideal([3*a for a in R[0].basis()]) sage: R[0].is_equivalent(S) True
-
left_order
()¶ Return the left order associated to this fractional ideal.
OUTPUT: an order in a quaternion algebra
EXAMPLES:
sage: B = BrandtModule(11) sage: R = B.maximal_order() sage: I = R.unit_ideal() sage: I.left_order() Order of Quaternion Algebra (-1, -11) with base ring Rational Field with basis (1/2 + 1/2*j, 1/2*i + 1/2*k, j, k)
We do a consistency check:
sage: B = BrandtModule(11,19); R = B.right_ideals() sage: [r.left_order().discriminant() for r in R] [209, 209, 209, 209, 209, 209, 209, 209, 209, 209, 209, 209, 209, 209, 209, 209, 209, 209]
-
multiply_by_conjugate
(J)¶ Return product of self and the conjugate Jbar of \(J\).
INPUT:
J
– a quaternion ideal.
OUTPUT: a quaternionic fractional ideal.
EXAMPLES:
sage: R = BrandtModule(3,5).right_ideals() sage: R[0].multiply_by_conjugate(R[1]) Fractional ideal (8 + 8*j + 112*k, 8*i + 16*j + 136*k, 32*j + 128*k, 160*k) sage: R[0]*R[1].conjugate() Fractional ideal (8 + 8*j + 112*k, 8*i + 16*j + 136*k, 32*j + 128*k, 160*k)
-
norm
()¶ Return the reduced norm of this fractional ideal.
OUTPUT: rational number
EXAMPLES:
sage: M = BrandtModule(37) sage: C = M.right_ideals() sage: [I.norm() for I in C] [16, 32, 32] sage: (a,b) = M.quaternion_algebra().invariants() # optional - magma sage: magma.eval('A<i,j,k> := QuaternionAlgebra<Rationals() | %s, %s>' % (a,b)) # optional - magma '' sage: magma.eval('O := QuaternionOrder(%s)' % str(list(C[0].right_order().basis()))) # optional - magma '' sage: [ magma('rideal<O | %s>' % str(list(I.basis()))).Norm() for I in C] # optional - magma [16, 32, 32] sage: A.<i,j,k> = QuaternionAlgebra(-1,-1) sage: R = A.ideal([i,j,k,1/2 + 1/2*i + 1/2*j + 1/2*k]) # this is actually an order, so has reduced norm 1 sage: R.norm() 1 sage: [ J.norm() for J in R.cyclic_right_subideals(3) ] # enumerate maximal right R-ideals of reduced norm 3, verify their norms [3, 3, 3, 3]
-
quadratic_form
()¶ Return the normalized quadratic form associated to this quaternion ideal.
OUTPUT: quadratic form
EXAMPLES:
sage: I = BrandtModule(11).right_ideals()[1] sage: Q = I.quadratic_form(); Q Quadratic form in 4 variables over Rational Field with coefficients: [ 18 22 33 22 ] [ * 7 22 11 ] [ * * 22 0 ] [ * * * 22 ] sage: Q.theta_series(10) 1 + 12*q^2 + 12*q^3 + 12*q^4 + 12*q^5 + 24*q^6 + 24*q^7 + 36*q^8 + 36*q^9 + O(q^10) sage: I.theta_series(10) 1 + 12*q^2 + 12*q^3 + 12*q^4 + 12*q^5 + 24*q^6 + 24*q^7 + 36*q^8 + 36*q^9 + O(q^10)
-
quaternion_algebra
()¶ Return the ambient quaternion algebra that contains this fractional ideal.
OUTPUT: a quaternion algebra
EXAMPLES:
sage: I = BrandtModule(3,5).right_ideals()[1]; I Fractional ideal (2 + 6*j + 4*k, 2*i + 4*j + 34*k, 8*j + 32*k, 40*k) sage: I.quaternion_algebra() Quaternion Algebra (-1, -3) with base ring Rational Field
-
quaternion_order
()¶ Return the order for which this ideal is a left or right fractional ideal.
If this ideal has both a left and right ideal structure, then the left order is returned. If it has neither structure, then an error is raised.
OUTPUT: QuaternionOrder
EXAMPLES:
sage: R = QuaternionAlgebra(-11,-1).maximal_order() sage: R.unit_ideal().quaternion_order() is R True
-
right_order
()¶ Return the right order associated to this fractional ideal.
OUTPUT: an order in a quaternion algebra
EXAMPLES:
sage: I = BrandtModule(389).right_ideals()[1]; I Fractional ideal (2 + 6*j + 2*k, i + 2*j + k, 8*j, 8*k) sage: I.right_order() Order of Quaternion Algebra (-2, -389) with base ring Rational Field with basis (1/2 + 1/2*j + 1/2*k, 1/4*i + 1/2*j + 1/4*k, j, k) sage: I.left_order() Order of Quaternion Algebra (-2, -389) with base ring Rational Field with basis (1/2 + 1/2*j + 3/2*k, 1/8*i + 1/4*j + 9/8*k, j + k, 2*k)
The following is a big consistency check. We take reps for all the right ideal classes of a certain order, take the corresponding left orders, then take ideals in the left orders and from those compute the right order again:
sage: B = BrandtModule(11,19); R = B.right_ideals() sage: O = [r.left_order() for r in R] sage: J = [O[i].left_ideal(R[i].basis()) for i in range(len(R))] sage: len(set(J)) 18 sage: len(set([I.right_order() for I in J])) 1 sage: J[0].right_order() == B.order_of_level_N() True
-
ring
()¶ Return ring that this is a fractional ideal for.
EXAMPLES:
sage: R = QuaternionAlgebra(-11,-1).maximal_order() sage: R.unit_ideal().ring() is R True
-
scale
(alpha, left=False)¶ Scale the fractional ideal
self
by multiplying the basis byalpha
.INPUT:
- \(\alpha\) – element of quaternion algebra
left
– bool (default: False); if true multiply \(\alpha\) on the left, otherwise multiply \(\alpha\) on the right
OUTPUT:
- a new fractional ideal
EXAMPLES:
sage: B = BrandtModule(5,37); I = B.right_ideals()[0]; i,j,k = B.quaternion_algebra().gens(); I Fractional ideal (2 + 2*j + 106*k, i + 2*j + 105*k, 4*j + 64*k, 148*k) sage: I.scale(i) Fractional ideal [2*i + 212*j - 2*k, -2 + 210*j - 2*k, 128*j - 4*k, 296*j] sage: I.scale(i, left=True) Fractional ideal [2*i - 212*j + 2*k, -2 - 210*j + 2*k, -128*j + 4*k, -296*j] sage: I.scale(i, left=False) Fractional ideal [2*i + 212*j - 2*k, -2 + 210*j - 2*k, 128*j - 4*k, 296*j] sage: i * I.gens()[0] 2*i - 212*j + 2*k sage: I.gens()[0] * i 2*i + 212*j - 2*k
-
theta_series
(B, var='q')¶ Return normalized theta series of self, as a power series over \(\ZZ\) in the variable
var
, which is ‘q’ by default.The normalized theta series is by definition
\[\theta_I(q) = \sum_{x \in I} q^{\frac{N(x)}{N(I)}}.\]INPUT:
B
– positive integervar
– string (default: ‘q’)
OUTPUT: power series
EXAMPLES:
sage: I = BrandtModule(11).right_ideals()[1]; I Fractional ideal (2 + 6*j + 4*k, 2*i + 4*j + 2*k, 8*j, 8*k) sage: I.norm() 32 sage: I.theta_series(5) 1 + 12*q^2 + 12*q^3 + 12*q^4 + O(q^5) sage: I.theta_series(5,'T') 1 + 12*T^2 + 12*T^3 + 12*T^4 + O(T^5) sage: I.theta_series(3) 1 + 12*q^2 + O(q^3)
-
theta_series_vector
(B)¶ Return theta series coefficients of
self
, as a vector ofB
integers.INPUT:
B
– positive integer
OUTPUT:
Vector over \(\ZZ\) with
B
entries.EXAMPLES:
sage: I = BrandtModule(37).right_ideals()[1]; I Fractional ideal (2 + 6*j + 2*k, i + 2*j + k, 8*j, 8*k) sage: I.theta_series_vector(5) (1, 0, 2, 2, 6) sage: I.theta_series_vector(10) (1, 0, 2, 2, 6, 4, 8, 6, 10, 10) sage: I.theta_series_vector(5) (1, 0, 2, 2, 6)
-
class
sage.algebras.quatalg.quaternion_algebra.
QuaternionOrder
(A, basis, check=True)¶ Bases:
sage.rings.ring.Algebra
An order in a quaternion algebra.
EXAMPLES:
sage: QuaternionAlgebra(-1,-7).maximal_order() Order of Quaternion Algebra (-1, -7) with base ring Rational Field with basis (1/2 + 1/2*j, 1/2*i + 1/2*k, j, k) sage: type(QuaternionAlgebra(-1,-7).maximal_order()) <class 'sage.algebras.quatalg.quaternion_algebra.QuaternionOrder_with_category'>
-
basis
()¶ Return fix choice of basis for this quaternion order.
EXAMPLES:
sage: QuaternionAlgebra(-11,-1).maximal_order().basis() (1/2 + 1/2*i, 1/2*j - 1/2*k, i, -k)
-
discriminant
()¶ Return the discriminant of this order.
This is defined as \(\sqrt{ det ( Tr(e_i \bar{e}_j ) ) }\), where \(\{e_i\}\) is the basis of the order.
OUTPUT: rational number
EXAMPLES:
sage: QuaternionAlgebra(-11,-1).maximal_order().discriminant() 11 sage: S = BrandtModule(11,5).order_of_level_N() sage: S.discriminant() 55 sage: type(S.discriminant()) <... 'sage.rings.rational.Rational'>
-
free_module
()¶ Return the free \(\ZZ\)-module that corresponds to this order inside the vector space corresponding to the ambient quaternion algebra.
OUTPUT:
A free \(\ZZ\)-module of rank 4.
EXAMPLES:
sage: R = QuaternionAlgebra(-11,-1).maximal_order() sage: R.basis() (1/2 + 1/2*i, 1/2*j - 1/2*k, i, -k) sage: R.free_module() Free module of degree 4 and rank 4 over Integer Ring Echelon basis matrix: [1/2 1/2 0 0] [ 0 1 0 0] [ 0 0 1/2 1/2] [ 0 0 0 1]
-
gen
(n)¶ Return the n-th generator.
INPUT:
n
- an integer between 0 and 3, inclusive.
EXAMPLES:
sage: R = QuaternionAlgebra(-11,-1).maximal_order(); R Order of Quaternion Algebra (-11, -1) with base ring Rational Field with basis (1/2 + 1/2*i, 1/2*j - 1/2*k, i, -k) sage: R.gen(0) 1/2 + 1/2*i sage: R.gen(1) 1/2*j - 1/2*k sage: R.gen(2) i sage: R.gen(3) -k
-
gens
()¶ Return generators for self.
EXAMPLES:
sage: QuaternionAlgebra(-1,-7).maximal_order().gens() (1/2 + 1/2*j, 1/2*i + 1/2*k, j, k)
-
intersection
(other)¶ Return the intersection of this order with other.
INPUT:
other
- a quaternion order in the same ambient quaternion algebra
OUTPUT: a quaternion order
EXAMPLES:
sage: R = QuaternionAlgebra(-11,-1).maximal_order() sage: R.intersection(R) Order of Quaternion Algebra (-11, -1) with base ring Rational Field with basis (1/2 + 1/2*i, i, 1/2*j + 1/2*k, k)
We intersect various orders in the quaternion algebra ramified at 11:
sage: B = BrandtModule(11,3) sage: R = B.maximal_order(); S = B.order_of_level_N() sage: R.intersection(S) Order of Quaternion Algebra (-1, -11) with base ring Rational Field with basis (1/2 + 1/2*j, 1/2*i + 5/2*k, j, 3*k) sage: R.intersection(S) == S True sage: B = BrandtModule(11,5) sage: T = B.order_of_level_N() sage: S.intersection(T) Order of Quaternion Algebra (-1, -11) with base ring Rational Field with basis (1/2 + 1/2*j, 1/2*i + 23/2*k, j, 15*k)
-
left_ideal
(gens, check=True)¶ Return the ideal with given gens over \(\ZZ\).
INPUT:
gens
– a list of elements of this quaternion ordercheck
– bool (default:True
); ifFalse
, thengens
must 4-tuple that forms a Hermite basis for an ideal
EXAMPLES:
sage: R = QuaternionAlgebra(-11,-1).maximal_order() sage: R.left_ideal([2*a for a in R.basis()]) Fractional ideal (1 + i, 2*i, j + k, 2*k)
-
ngens
()¶ Return the number of generators (which is 4).
EXAMPLES:
sage: QuaternionAlgebra(-1,-7).maximal_order().ngens() 4
-
quadratic_form
()¶ Return the normalized quadratic form associated to this quaternion order.
OUTPUT: quadratic form
EXAMPLES:
sage: R = BrandtModule(11,13).order_of_level_N() sage: Q = R.quadratic_form(); Q Quadratic form in 4 variables over Rational Field with coefficients: [ 14 253 55 286 ] [ * 1455 506 3289 ] [ * * 55 572 ] [ * * * 1859 ] sage: Q.theta_series(10) 1 + 2*q + 2*q^4 + 4*q^6 + 4*q^8 + 2*q^9 + O(q^10)
-
quaternion_algebra
()¶ Return ambient quaternion algebra that contains this quaternion order.
EXAMPLES:
sage: QuaternionAlgebra(-11,-1).maximal_order().quaternion_algebra() Quaternion Algebra (-11, -1) with base ring Rational Field
-
random_element
(*args, **kwds)¶ Return a random element of this order.
The args and kwds are passed to the random_element method of the integer ring, and we return an element of the form
\[ae_1 + be_2 + ce_3 + de_4\]where \(e_1\), …, \(e_4\) are the basis of this order and \(a\), \(b\), \(c\), \(d\) are random integers.
EXAMPLES:
sage: QuaternionAlgebra(-11,-1).maximal_order().random_element() -4 - 4*i + j - k sage: QuaternionAlgebra(-11,-1).maximal_order().random_element(-10,10) -9/2 - 7/2*i - 7/2*j - 3/2*k
-
right_ideal
(gens, check=True)¶ Return the ideal with given gens over \(\ZZ\).
INPUT:
gens
– a list of elements of this quaternion ordercheck
– bool (default:True
); ifFalse
, thengens
must 4-tuple that forms a Hermite basis for an ideal
EXAMPLES:
sage: R = QuaternionAlgebra(-11,-1).maximal_order() sage: R.right_ideal([2*a for a in R.basis()]) Fractional ideal (1 + i, 2*i, j + k, 2*k)
-
ternary_quadratic_form
(include_basis=False)¶ Return the ternary quadratic form associated to this order.
INPUT:
include_basis
– bool (default: False), if True also return a basis for the dimension 3 subspace \(G\)
OUTPUT:
- QuadraticForm
- optional basis for dimension 3 subspace
This function computes the positive definition quadratic form obtained by letting G be the trace zero subspace of \(\ZZ\) + 2*
self
, which has rank 3, and restricting the pairing:(x,y) = (x.conjugate()*y).reduced_trace()
to \(G\).
APPLICATIONS: Ternary quadratic forms associated to an order in a rational quaternion algebra are useful in computing with Gross points, in decided whether quaternion orders have embeddings from orders in quadratic imaginary fields, and in computing elements of the Kohnen plus subspace of modular forms of weight 3/2.
EXAMPLES:
sage: R = BrandtModule(11,13).order_of_level_N() sage: Q = R.ternary_quadratic_form(); Q Quadratic form in 3 variables over Rational Field with coefficients: [ 5820 1012 13156 ] [ * 55 1144 ] [ * * 7436 ] sage: factor(Q.disc()) 2^4 * 11^2 * 13^2
The following theta series is a modular form of weight 3/2 and level 4*11*13:
sage: Q.theta_series(100) 1 + 2*q^23 + 2*q^55 + 2*q^56 + 2*q^75 + 4*q^92 + O(q^100)
-
unit_ideal
()¶ Return the unit ideal in this quaternion order.
EXAMPLES:
sage: R = QuaternionAlgebra(-11,-1).maximal_order() sage: I = R.unit_ideal(); I Fractional ideal (1/2 + 1/2*i, 1/2*j - 1/2*k, i, -k)
-
-
sage.algebras.quatalg.quaternion_algebra.
basis_for_quaternion_lattice
(gens, reverse=False)¶ Return a basis for the \(\ZZ\)-lattice in a quaternion algebra spanned by the given gens.
INPUT:
gens
– list of elements of a single quaternion algebrareverse
– when computing the HNF do it on the basis \((k,j,i,1)\) instead of \((1,i,j,k)\); this ensures that ifgens
are the generators for an order, the first returned basis vector is 1
EXAMPLES:
sage: from sage.algebras.quatalg.quaternion_algebra import basis_for_quaternion_lattice sage: A.<i,j,k> = QuaternionAlgebra(-1,-7) sage: basis_for_quaternion_lattice([i+j, i-j, 2*k, A(1/3)]) [1/3, i + j, 2*j, 2*k] sage: basis_for_quaternion_lattice([A(1),i,j,k]) [1, i, j, k]
-
sage.algebras.quatalg.quaternion_algebra.
intersection_of_row_modules_over_ZZ
(v)¶ Intersect the \(\ZZ\)-modules with basis matrices the full rank \(4 \times 4\) \(\QQ\)-matrices in the list v.
The returned intersection is represented by a \(4 \times 4\) matrix over \(\QQ\). This can also be done using modules and intersection, but that would take over twice as long because of overhead, hence this function.
EXAMPLES:
sage: a = matrix(QQ,4,[-2, 0, 0, 0, 0, -1, -1, 1, 2, -1/2, 0, 0, 1, 1, -1, 0]) sage: b = matrix(QQ,4,[0, -1/2, 0, -1/2, 2, 1/2, -1, -1/2, 1, 2, 1, -2, 0, -1/2, -2, 0]) sage: c = matrix(QQ,4,[0, 1, 0, -1/2, 0, 0, 2, 2, 0, -1/2, 1/2, -1, 1, -1, -1/2, 0]) sage: v = [a,b,c] sage: from sage.algebras.quatalg.quaternion_algebra import intersection_of_row_modules_over_ZZ sage: M = intersection_of_row_modules_over_ZZ(v); M [ 2 0 -1 -1] [ -4 1 1 -3] [ -3 19/2 -1 -4] [ 2 -3 -8 4] sage: M2 = a.row_module(ZZ).intersection(b.row_module(ZZ)).intersection(c.row_module(ZZ)) sage: M.row_module(ZZ) == M2 True
-
sage.algebras.quatalg.quaternion_algebra.
is_QuaternionAlgebra
(A)¶ Return
True
ifA
is of the QuaternionAlgebra data type.EXAMPLES:
sage: sage.algebras.quatalg.quaternion_algebra.is_QuaternionAlgebra(QuaternionAlgebra(QQ,-1,-1)) True sage: sage.algebras.quatalg.quaternion_algebra.is_QuaternionAlgebra(ZZ) False
-
sage.algebras.quatalg.quaternion_algebra.
maxord_solve_aux_eq
(a, b, p)¶ Given
a
andb
and an even prime idealp
find (y,z,w) with y a unit mod \(p^{2e}\) such that\[1 - ay^2 - bz^2 + abw^2 \equiv 0 mod p^{2e},\]where \(e\) is the ramification index of \(p\).
Currently only \(p=2\) is implemented by hardcoding solutions.
INPUT:
a
– integer with \(v_p(a) = 0\)b
– integer with \(v_p(b) \in \{0,1\}\)p
– even prime ideal (actually onlyp=ZZ(2)
is implemented)
OUTPUT:
- A tuple \((y, z, w)\)
EXAMPLES:
sage: from sage.algebras.quatalg.quaternion_algebra import maxord_solve_aux_eq sage: for a in [1,3]: ....: for b in [1,2,3]: ....: (y,z,w) = maxord_solve_aux_eq(a, b, 2) ....: assert mod(y, 4) == 1 or mod(y, 4) == 3 ....: assert mod(1 - a*y^2 - b*z^2 + a*b*w^2, 4) == 0
-
sage.algebras.quatalg.quaternion_algebra.
normalize_basis_at_p
(e, p, B=<function <lambda> at 0x7fd8b5c5c5f0>)¶ Compute a (at
p
) normalized basis from the given basise
of a \(\ZZ\)-module.The returned basis is (at
p
) a \(\ZZ_p\) basis for the same module, and has the property that with respect to it the quadratic form induced by the bilinear form B is represented as a orthogonal sum of atomic forms multiplied by p-powers.If \(p \neq 2\) this means that the form is diagonal with respect to this basis.
If \(p = 2\) there may be additional 2-dimensional subspaces on which the form is represented as \(2^e (ax^2 + bxy + cx^2)\) with \(0 = v_2(b) = v_2(a) \leq v_2(c)\).
INPUT:
e
– list; basis of a \(\ZZ\) module. WARNING: will be modified!p
– prime for at which the basis should be normalizedB
– (default:lambda x,y: ((x*y).conjugate()).reduced_trace()
) a bilinear form with respect to which to normalize
OUTPUT:
- A list containing two-element tuples: The first element of each tuple is a basis element, the second the valuation of the orthogonal summand to which it belongs. The list is sorted by ascending valuation.
EXAMPLES:
sage: from sage.algebras.quatalg.quaternion_algebra import normalize_basis_at_p sage: A.<i,j,k> = QuaternionAlgebra(-1, -1) sage: e = [A(1), i, j, k] sage: normalize_basis_at_p(e, 2) [(1, 0), (i, 0), (j, 0), (k, 0)] sage: A.<i,j,k> = QuaternionAlgebra(210) sage: e = [A(1), i, j, k] sage: normalize_basis_at_p(e, 2) [(1, 0), (i, 1), (j, 1), (k, 2)] sage: A.<i,j,k> = QuaternionAlgebra(286) sage: e = [A(1), k, 1/2*j + 1/2*k, 1/2 + 1/2*i + 1/2*k] sage: normalize_basis_at_p(e, 5) [(1, 0), (1/2*j + 1/2*k, 0), (-5/6*j + 1/6*k, 1), (1/2*i, 1)] sage: A.<i,j,k> = QuaternionAlgebra(-1,-7) sage: e = [A(1), k, j, 1/2 + 1/2*i + 1/2*j + 1/2*k] sage: normalize_basis_at_p(e, 2) [(1, 0), (1/2 + 1/2*i + 1/2*j + 1/2*k, 0), (-34/105*i - 463/735*j + 71/105*k, 1), (-34/105*i - 463/735*j + 71/105*k, 1)]
-
sage.algebras.quatalg.quaternion_algebra.
unpickle_QuaternionAlgebra_v0
(*key)¶ The 0th version of pickling for quaternion algebras.
EXAMPLES:
sage: Q = QuaternionAlgebra(-5,-19) sage: t = (QQ, -5, -19, ('i', 'j', 'k')) sage: sage.algebras.quatalg.quaternion_algebra.unpickle_QuaternionAlgebra_v0(*t) Quaternion Algebra (-5, -19) with base ring Rational Field sage: loads(dumps(Q)) == Q True sage: loads(dumps(Q)) is Q True