MacMahon’s Partition Analysis Omega Operator¶
This module implements MacMahon's Omega Operator
[Mac1915], which takes a quotient of Laurent polynomials and
removes all negative exponents in the corresponding power series.
Examples¶
In the following example, all negative exponents of \(\mu\) are removed. The formula
can be calculated and verified by
sage: L.<mu, x, y> = LaurentPolynomialRing(ZZ)
sage: MacMahonOmega(mu, 1, [1 - x*mu, 1 - y/mu])
1 * (-x + 1)^-1 * (-x*y + 1)^-1
Various¶
AUTHORS:
- Daniel Krenn (2016)
ACKNOWLEDGEMENT:
- Daniel Krenn is supported by the Austrian Science Fund (FWF): P 24644-N26.
Functions¶
-
sage.rings.polynomial.omega.
MacMahonOmega
(var, expression, denominator=None, op=<built-in function ge>, Factorization_sort=False, Factorization_simplify=True)¶ Return \(\Omega_{\mathrm{op}}\) of
expression
with respect tovar
.To be more precise, calculate
\[\Omega_{\mathrm{op}} \frac{n}{d_1 \dots d_n}\]for the numerator \(n\) and the factors \(d_1\), …, \(d_n\) of the denominator, all of which are Laurent polynomials in
var
and return a (partial) factorization of the result.INPUT:
var
– a variable or a representation string of a variableexpression
– aFactorization
of Laurent polynomials or, ifdenominator
is specified, a Laurent polynomial interpreted as the numerator of the expressiondenominator
– a Laurent polynomial or aFactorization
(consisting of Laurent polynomial factors) or a tuple/list of factors (Laurent polynomials)op
– (default:operator.ge
) an operatorAt the moment only
operator.ge
is implemented.Factorization_sort
(default:False
) andFactorization_simplify
(default:True
) – are passed on tosage.structure.factorization.Factorization
when creating the result
OUTPUT:
A (partial)
Factorization
of the result whose factors are Laurent polynomialsNote
The numerator of the result may not be factored.
REFERENCES:
EXAMPLES:
sage: L.<mu, x, y, z, w> = LaurentPolynomialRing(ZZ) sage: MacMahonOmega(mu, 1, [1 - x*mu, 1 - y/mu]) 1 * (-x + 1)^-1 * (-x*y + 1)^-1 sage: MacMahonOmega(mu, 1, [1 - x*mu, 1 - y/mu, 1 - z/mu]) 1 * (-x + 1)^-1 * (-x*y + 1)^-1 * (-x*z + 1)^-1 sage: MacMahonOmega(mu, 1, [1 - x*mu, 1 - y*mu, 1 - z/mu]) (-x*y*z + 1) * (-x + 1)^-1 * (-y + 1)^-1 * (-x*z + 1)^-1 * (-y*z + 1)^-1 sage: MacMahonOmega(mu, 1, [1 - x*mu, 1 - y/mu^2]) 1 * (-x + 1)^-1 * (-x^2*y + 1)^-1 sage: MacMahonOmega(mu, 1, [1 - x*mu^2, 1 - y/mu]) (x*y + 1) * (-x + 1)^-1 * (-x*y^2 + 1)^-1 sage: MacMahonOmega(mu, 1, [1 - x*mu, 1 - y*mu, 1 - z/mu^2]) (-x^2*y*z - x*y^2*z + x*y*z + 1) * (-x + 1)^-1 * (-y + 1)^-1 * (-x^2*z + 1)^-1 * (-y^2*z + 1)^-1 sage: MacMahonOmega(mu, 1, [1 - x*mu, 1 - y/mu^3]) 1 * (-x + 1)^-1 * (-x^3*y + 1)^-1 sage: MacMahonOmega(mu, 1, [1 - x*mu, 1 - y/mu^4]) 1 * (-x + 1)^-1 * (-x^4*y + 1)^-1 sage: MacMahonOmega(mu, 1, [1 - x*mu^3, 1 - y/mu]) (x*y^2 + x*y + 1) * (-x + 1)^-1 * (-x*y^3 + 1)^-1 sage: MacMahonOmega(mu, 1, [1 - x*mu^4, 1 - y/mu]) (x*y^3 + x*y^2 + x*y + 1) * (-x + 1)^-1 * (-x*y^4 + 1)^-1 sage: MacMahonOmega(mu, 1, [1 - x*mu^2, 1 - y/mu, 1 - z/mu]) (x*y*z + x*y + x*z + 1) * (-x + 1)^-1 * (-x*y^2 + 1)^-1 * (-x*z^2 + 1)^-1 sage: MacMahonOmega(mu, 1, [1 - x*mu^2, 1 - y*mu, 1 - z/mu]) (-x*y*z^2 - x*y*z + x*z + 1) * (-x + 1)^-1 * (-y + 1)^-1 * (-x*z^2 + 1)^-1 * (-y*z + 1)^-1 sage: MacMahonOmega(mu, 1, [1 - x*mu, 1 - y*mu, 1 - z*mu, 1 - w/mu]) (x*y*z*w^2 + x*y*z*w - x*y*w - x*z*w - y*z*w + 1) * (-x + 1)^-1 * (-y + 1)^-1 * (-z + 1)^-1 * (-x*w + 1)^-1 * (-y*w + 1)^-1 * (-z*w + 1)^-1 sage: MacMahonOmega(mu, 1, [1 - x*mu, 1 - y*mu, 1 - z/mu, 1 - w/mu]) (x^2*y*z*w + x*y^2*z*w - x*y*z*w - x*y*z - x*y*w + 1) * (-x + 1)^-1 * (-y + 1)^-1 * (-x*z + 1)^-1 * (-x*w + 1)^-1 * (-y*z + 1)^-1 * (-y*w + 1)^-1 sage: MacMahonOmega(mu, mu^-2, [1 - x*mu, 1 - y/mu]) x^2 * (-x + 1)^-1 * (-x*y + 1)^-1 sage: MacMahonOmega(mu, mu^-1, [1 - x*mu, 1 - y/mu]) x * (-x + 1)^-1 * (-x*y + 1)^-1 sage: MacMahonOmega(mu, mu, [1 - x*mu, 1 - y/mu]) (-x*y + y + 1) * (-x + 1)^-1 * (-x*y + 1)^-1 sage: MacMahonOmega(mu, mu^2, [1 - x*mu, 1 - y/mu]) (-x*y^2 - x*y + y^2 + y + 1) * (-x + 1)^-1 * (-x*y + 1)^-1
We demonstrate the different allowed input variants:
sage: MacMahonOmega(mu, ....: Factorization([(mu, 2), (1 - x*mu, -1), (1 - y/mu, -1)])) (-x*y^2 - x*y + y^2 + y + 1) * (-x + 1)^-1 * (-x*y + 1)^-1 sage: MacMahonOmega(mu, mu^2, ....: Factorization([(1 - x*mu, 1), (1 - y/mu, 1)])) (-x*y^2 - x*y + y^2 + y + 1) * (-x + 1)^-1 * (-x*y + 1)^-1 sage: MacMahonOmega(mu, mu^2, [1 - x*mu, 1 - y/mu]) (-x*y^2 - x*y + y^2 + y + 1) * (-x + 1)^-1 * (-x*y + 1)^-1 sage: MacMahonOmega(mu, mu^2, (1 - x*mu)*(1 - y/mu)) # not tested because not fully implemented (-x*y^2 - x*y + y^2 + y + 1) * (-x + 1)^-1 * (-x*y + 1)^-1 sage: MacMahonOmega(mu, mu^2 / ((1 - x*mu)*(1 - y/mu))) # not tested because not fully implemented (-x*y^2 - x*y + y^2 + y + 1) * (-x + 1)^-1 * (-x*y + 1)^-1
-
sage.rings.polynomial.omega.
Omega_ge
(a, exponents)¶ Return \(\Omega_{\ge}\) of the expression specified by the input.
To be more precise, calculate
\[\Omega_{\ge} \frac{\mu^a}{ (1 - z_0 \mu^{e_0}) \dots (1 - z_{n-1} \mu^{e_{n-1}})}\]and return its numerator and a factorization of its denominator. Note that \(z_0\), …, \(z_{n-1}\) only appear in the output, but not in the input.
INPUT:
a
– an integerexponents
– a tuple of integers
OUTPUT:
A pair representing a quotient as follows: Its first component is the numerator as a Laurent polynomial, its second component a factorization of the denominator as a tuple of Laurent polynomials, where each Laurent polynomial \(z\) represents a factor \(1 - z\).
The parents of these Laurent polynomials is always a Laurent polynomial ring in \(z_0\), …, \(z_{n-1}\) over \(\ZZ\), where \(n\) is the length of
exponents
.EXAMPLES:
sage: from sage.rings.polynomial.omega import Omega_ge sage: Omega_ge(0, (1, -2)) (1, (z0, z0^2*z1)) sage: Omega_ge(0, (1, -3)) (1, (z0, z0^3*z1)) sage: Omega_ge(0, (1, -4)) (1, (z0, z0^4*z1)) sage: Omega_ge(0, (2, -1)) (z0*z1 + 1, (z0, z0*z1^2)) sage: Omega_ge(0, (3, -1)) (z0*z1^2 + z0*z1 + 1, (z0, z0*z1^3)) sage: Omega_ge(0, (4, -1)) (z0*z1^3 + z0*z1^2 + z0*z1 + 1, (z0, z0*z1^4)) sage: Omega_ge(0, (1, 1, -2)) (-z0^2*z1*z2 - z0*z1^2*z2 + z0*z1*z2 + 1, (z0, z1, z0^2*z2, z1^2*z2)) sage: Omega_ge(0, (2, -1, -1)) (z0*z1*z2 + z0*z1 + z0*z2 + 1, (z0, z0*z1^2, z0*z2^2)) sage: Omega_ge(0, (2, 1, -1)) (-z0*z1*z2^2 - z0*z1*z2 + z0*z2 + 1, (z0, z1, z0*z2^2, z1*z2))
sage: Omega_ge(0, (2, -2)) (-z0*z1 + 1, (z0, z0*z1, z0*z1)) sage: Omega_ge(0, (2, -3)) (z0^2*z1 + 1, (z0, z0^3*z1^2)) sage: Omega_ge(0, (3, 1, -3)) (-z0^3*z1^3*z2^3 + 2*z0^2*z1^3*z2^2 - z0*z1^3*z2 + z0^2*z2^2 - 2*z0*z2 + 1, (z0, z1, z0*z2, z0*z2, z0*z2, z1^3*z2))
sage: Omega_ge(0, (3, 6, -1)) (-z0*z1*z2^8 - z0*z1*z2^7 - z0*z1*z2^6 - z0*z1*z2^5 - z0*z1*z2^4 + z1*z2^5 - z0*z1*z2^3 + z1*z2^4 - z0*z1*z2^2 + z1*z2^3 - z0*z1*z2 + z0*z2^2 + z1*z2^2 + z0*z2 + z1*z2 + 1, (z0, z1, z0*z2^3, z1*z2^6))
-
sage.rings.polynomial.omega.
homogenous_symmetric_function
(j, x)¶ Return a complete homogeneous symmetric polynomial (Wikipedia article Complete_homogeneous_symmetric_polynomial).
INPUT:
j
– the degree as a nonnegative integerx
– an iterable of variables
OUTPUT:
A polynomial of the common parent of all entries of
x
EXAMPLES:
sage: from sage.rings.polynomial.omega import homogenous_symmetric_function sage: P = PolynomialRing(ZZ, 'X', 3) sage: homogenous_symmetric_function(0, P.gens()) 1 sage: homogenous_symmetric_function(1, P.gens()) X0 + X1 + X2 sage: homogenous_symmetric_function(2, P.gens()) X0^2 + X0*X1 + X1^2 + X0*X2 + X1*X2 + X2^2 sage: homogenous_symmetric_function(3, P.gens()) X0^3 + X0^2*X1 + X0*X1^2 + X1^3 + X0^2*X2 + X0*X1*X2 + X1^2*X2 + X0*X2^2 + X1*X2^2 + X2^3
-
sage.rings.polynomial.omega.
partition
(items, predicate=<type 'bool'>)¶ Split
items
into two parts by the givenpredicate
.INPUT:
item
– an iteratorpredicate
– a function
OUTPUT:
A pair of iterators; the first contains the elements not satisfying the
predicate
, the second the elements satisfying thepredicate
.ALGORITHM:
Source of the code: http://nedbatchelder.com/blog/201306/filter_a_list_into_two_parts.html
EXAMPLES:
sage: from sage.rings.polynomial.omega import partition sage: E, O = partition(srange(10), is_odd) sage: tuple(E), tuple(O) ((0, 2, 4, 6, 8), (1, 3, 5, 7, 9))