Plotting fields¶
-
class
sage.plot.plot_field.
PlotField
(xpos_array, ypos_array, xvec_array, yvec_array, options)¶ Bases:
sage.plot.primitive.GraphicPrimitive
Primitive class that initializes the PlotField graphics type
-
get_minmax_data
()¶ Returns a dictionary with the bounding box data.
EXAMPLES:
sage: x,y = var('x,y') sage: d = plot_vector_field((.01*x,x+y), (x,10,20), (y,10,20))[0].get_minmax_data() sage: d['xmin'] 10.0 sage: d['ymin'] 10.0
-
-
sage.plot.plot_field.
plot_slope_field
(f, xrange, yrange, **kwds)¶ plot_slope_field
takes a function of two variables xvar and yvar (for instance, if the variables are x and y, take f(x,y)), and at representative points (xi,yi) between xmin, xmax, and ymin, ymax respectively, plots a line with slope f(xi,yi) (see below).plot_slope_field(f, (xvar,xmin,xmax), (yvar,ymin,ymax))
EXAMPLES:
A logistic function modeling population growth:
sage: x,y = var('x y') sage: capacity = 3 # thousand sage: growth_rate = 0.7 # population increases by 70% per unit of time sage: plot_slope_field(growth_rate * (1-y/capacity) * y, (x,0,5), (y,0,capacity*2)) Graphics object consisting of 1 graphics primitive
Plot a slope field involving sin and cos:
sage: x,y = var('x y') sage: plot_slope_field(sin(x+y) + cos(x+y), (x,-3,3), (y,-3,3)) Graphics object consisting of 1 graphics primitive
Plot a slope field using a lambda function:
sage: plot_slope_field(lambda x,y: x + y, (-2,2), (-2,2)) Graphics object consisting of 1 graphics primitive
-
sage.plot.plot_field.
plot_vector_field
(f_g, xrange, yrange, frame=True, plot_points=20, **options)¶ plot_vector_field
takes two functions of two variables xvar and yvar (for instance, if the variables are x and y, take (f(x,y),g(x,y))) and plots vector arrows of the function over the specified ranges, with xrange being of xvar between xmin and xmax, and yrange similarly (see below).plot_vector_field((f,g), (xvar,xmin,xmax), (yvar,ymin,ymax))
EXAMPLES:
Plot some vector fields involving sin and cos:
sage: x,y = var('x y') sage: plot_vector_field((sin(x),cos(y)), (x,-3,3), (y,-3,3)) Graphics object consisting of 1 graphics primitive
sage: plot_vector_field((y,(cos(x)-2) * sin(x)), (x,-pi,pi), (y,-pi,pi)) Graphics object consisting of 1 graphics primitive
Plot a gradient field:
sage: u, v = var('u v') sage: f = exp(-(u^2 + v^2)) sage: plot_vector_field(f.gradient(), (u,-2,2), (v,-2,2), color='blue') Graphics object consisting of 1 graphics primitive
Plot two orthogonal vector fields:
sage: x,y = var('x,y') sage: a = plot_vector_field((x,y), (x,-3,3), (y,-3,3), color='blue') sage: b = plot_vector_field((y,-x), (x,-3,3), (y,-3,3), color='red') sage: show(a + b)
We ignore function values that are infinite or NaN:
sage: x,y = var('x,y') sage: plot_vector_field((-x/sqrt(x^2+y^2),-y/sqrt(x^2+y^2)), (x,-10,10), (y,-10,10)) Graphics object consisting of 1 graphics primitive
sage: x,y = var('x,y') sage: plot_vector_field((-x/sqrt(x+y),-y/sqrt(x+y)), (x,-10, 10), (y,-10,10)) Graphics object consisting of 1 graphics primitive
Extra options will get passed on to show(), as long as they are valid:
sage: plot_vector_field((x,y), (x,-2,2), (y,-2,2), xmax=10) Graphics object consisting of 1 graphics primitive sage: plot_vector_field((x,y), (x,-2,2), (y,-2,2)).show(xmax=10) # These are equivalent