Plotting utilities¶
-
sage.plot.misc.
get_matplotlib_linestyle
(linestyle, return_type)¶ Function which translates between matplotlib linestyle in short notation (i.e. ‘-‘, ‘–’, ‘:’, ‘-.’) and long notation (i.e. ‘solid’, ‘dashed’, ‘dotted’, ‘dashdot’ ).
If linestyle is none of these allowed options, the function raises a ValueError.
INPUT:
linestyle
- The style of the line, which is one of"-"
or"solid"
"--"
or"dashed"
"-."
or"dash dot"
":"
or"dotted"
"None"
or" "
or""
(nothing)
The linestyle can also be prefixed with a drawing style (e.g.,
"steps--"
)"default"
(connect the points with straight lines)"steps"
or"steps-pre"
(step function; horizontal line is to the left of point)"steps-mid"
(step function; points are in the middle of horizontal lines)"steps-post"
(step function; horizontal line is to the right of point)
If
linestyle
isNone
(of type NoneType), then we return it back unmodified.
return_type
- The type of linestyle that should be output. This argument takes only two values -"long"
or"short"
.
EXAMPLES:
Here is an example how to call this function:
sage: from sage.plot.misc import get_matplotlib_linestyle sage: get_matplotlib_linestyle(':', return_type='short') ':' sage: get_matplotlib_linestyle(':', return_type='long') 'dotted'
-
sage.plot.misc.
setup_for_eval_on_grid
(funcs, ranges, plot_points=None, return_vars=False)¶ Calculate the necessary parameters to construct a list of points, and make the functions fast_callable.
INPUT:
funcs
– a function, or a list, tuple, or vector of functionsranges
– a list of ranges. A range can be a 2-tuple of numbers specifying the minimum and maximum, or a 3-tuple giving the variable explicitly.plot_points
– a tuple of integers specifying the number of plot points for each range. If a single number is specified, it will be the value for all ranges. This defaults to 2.return_vars
– (defaultFalse
) IfTrue
, return the variables, in order.
OUTPUT:
fast_funcs
- if only one function passed, then a fast callable function. If funcs is a list or tuple, then a tuple of fast callable functions is returned.range_specs
- a list of range_specs: for each range, a tuple is returned of the form (range_min, range_max, range_step) such thatsrange(range_min, range_max, range_step, include_endpoint=True)
gives the correct points for evaluation.
EXAMPLES:
sage: x,y,z=var('x,y,z') sage: f(x,y)=x+y-z sage: g(x,y)=x+y sage: h(y)=-y sage: sage.plot.misc.setup_for_eval_on_grid(f, [(0, 2),(1,3),(-4,1)], plot_points=5) (<sage.ext...>, [(0.0, 2.0, 0.5), (1.0, 3.0, 0.5), (-4.0, 1.0, 1.25)]) sage: sage.plot.misc.setup_for_eval_on_grid([g,h], [(0, 2),(-1,1)], plot_points=5) ((<sage.ext...>, <sage.ext...>), [(0.0, 2.0, 0.5), (-1.0, 1.0, 0.5)]) sage: sage.plot.misc.setup_for_eval_on_grid([sin,cos], [(-1,1)], plot_points=9) ((<sage.ext...>, <sage.ext...>), [(-1.0, 1.0, 0.25)]) sage: sage.plot.misc.setup_for_eval_on_grid([lambda x: x^2,cos], [(-1,1)], plot_points=9) ((<function <lambda> ...>, <sage.ext...>), [(-1.0, 1.0, 0.25)]) sage: sage.plot.misc.setup_for_eval_on_grid([x+y], [(x,-1,1),(y,-2,2)]) ((<sage.ext...>,), [(-1.0, 1.0, 2.0), (-2.0, 2.0, 4.0)]) sage: sage.plot.misc.setup_for_eval_on_grid(x+y, [(x,-1,1),(y,-1,1)], plot_points=[4,9]) (<sage.ext...>, [(-1.0, 1.0, 0.6666666666666666), (-1.0, 1.0, 0.25)]) sage: sage.plot.misc.setup_for_eval_on_grid(x+y, [(x,-1,1),(y,-1,1)], plot_points=[4,9,10]) Traceback (most recent call last): ... ValueError: plot_points must be either an integer or a list of integers, one for each range sage: sage.plot.misc.setup_for_eval_on_grid(x+y, [(1,-1),(y,-1,1)], plot_points=[4,9,10]) Traceback (most recent call last): ... ValueError: Some variable ranges specify variables while others do not
Beware typos: a comma which should be a period, for instance:
sage: sage.plot.misc.setup_for_eval_on_grid(x+y, [(x, 1, 2), (y, 0,1, 0.2)], plot_points=[4,9,10]) Traceback (most recent call last): ... ValueError: At least one variable range has more than 3 entries: each should either have 2 or 3 entries, with one of the forms (xmin, xmax) or (x, xmin, xmax) sage: sage.plot.misc.setup_for_eval_on_grid(x+y, [(y,1,-1),(x,-1,1)], plot_points=5) (<sage.ext...>, [(1.0, -1.0, 0.5), (-1.0, 1.0, 0.5)]) sage: sage.plot.misc.setup_for_eval_on_grid(x+y, [(x,1,-1),(x,-1,1)], plot_points=5) Traceback (most recent call last): ... ValueError: range variables should be distinct, but there are duplicates sage: sage.plot.misc.setup_for_eval_on_grid(x+y, [(x,1,1),(y,-1,1)]) Traceback (most recent call last): ... ValueError: plot start point and end point must be different sage: sage.plot.misc.setup_for_eval_on_grid(x+y, [(x,1,-1),(y,-1,1)], return_vars=True) (<sage.ext...>, [(1.0, -1.0, 2.0), (-1.0, 1.0, 2.0)], [x, y]) sage: sage.plot.misc.setup_for_eval_on_grid(x+y, [(y,1,-1),(x,-1,1)], return_vars=True) (<sage.ext...>, [(1.0, -1.0, 2.0), (-1.0, 1.0, 2.0)], [y, x])
-
sage.plot.misc.
unify_arguments
(funcs)¶ Return a tuple of variables of the functions, as well as the number of “free” variables (i.e., variables that defined in a callable function).
INPUT:
funcs
– a list of functions; these can be symbolic expressions, polynomials, etc
OUTPUT: functions, expected arguments
- A tuple of variables in the functions
- A tuple of variables that were “free” in the functions
EXAMPLES:
sage: x,y,z=var('x,y,z') sage: f(x,y)=x+y-z sage: g(x,y)=x+y sage: h(y)=-y sage: sage.plot.misc.unify_arguments((f,g,h)) ((x, y, z), (z,)) sage: sage.plot.misc.unify_arguments((g,h)) ((x, y), ()) sage: sage.plot.misc.unify_arguments((f,z)) ((x, y, z), (z,)) sage: sage.plot.misc.unify_arguments((h,z)) ((y, z), (z,)) sage: sage.plot.misc.unify_arguments((x+y,x-y)) ((x, y), (x, y))