Histograms¶
-
class
sage.plot.histogram.
Histogram
(datalist, options)¶ Bases:
sage.plot.primitive.GraphicPrimitive
Graphics primitive that represents a histogram. This takes quite a few options as well.
EXAMPLES:
sage: from sage.plot.histogram import Histogram sage: g = Histogram([1,3,2,0], {}); g Histogram defined by a data list of size 4 sage: type(g) <class 'sage.plot.histogram.Histogram'> sage: opts = { 'bins':20, 'label':'mydata'} sage: g = Histogram([random() for _ in range(500)], opts); g Histogram defined by a data list of size 500
We can accept multiple sets of the same length:
sage: g = Histogram([[1,3,2,0], [4,4,3,3]], {}); g Histogram defined by 2 data lists
-
get_minmax_data
()¶ Get minimum and maximum horizontal and vertical ranges for the Histogram object.
EXAMPLES:
sage: H = histogram([10,3,5], density=True); h = H[0] sage: h.get_minmax_data() # rel tol 1e-15 {'xmax': 10.0, 'xmin': 3.0, 'ymax': 0.4761904761904765, 'ymin': 0} sage: G = histogram([random() for _ in range(500)]); g = G[0] sage: g.get_minmax_data() # random output {'xmax': 0.99729312925213209, 'xmin': 0.00013024562219410285, 'ymax': 61, 'ymin': 0} sage: Y = histogram([random()*10 for _ in range(500)], range=[2,8]); y = Y[0] sage: ymm = y.get_minmax_data(); ymm['xmax'], ymm['xmin'] (8.0, 2.0) sage: Z = histogram([[1,3,2,0], [4,4,3,3]]); z = Z[0] sage: z.get_minmax_data() {'xmax': 4.0, 'xmin': 0, 'ymax': 2, 'ymin': 0}
-
-
sage.plot.histogram.
histogram
(datalist, edgecolor='black', align='mid', range=None, weights=None, aspect_ratio='automatic', bins=10, **options)¶ Computes and draws the histogram for list(s) of numerical data. See examples for the many options; even more customization is available using matplotlib directly.
INPUT:
datalist
– A list, or a list of lists, of numerical dataalign
– (default: “mid”) How the bars align inside of each bin. Acceptable values are “left”, “right” or “mid”alpha
– (float in [0,1], default: 1) The transparency of the plotbins
– The number of sections in which to divide the range. Also can be a sequence of points within the range that create the partitioncolor
– The color of the face of the bars or list of colors if multiple data sets are givencumulative
– (boolean - default: False) If True, then a histogram is computed in which each bin gives the counts in that bin plus all bins for smaller values. Negative values give a reversed direction of accumulationedgecolor
– The color of the border of each barfill
– (boolean - default: True) Whether to fill the barshatch
– (default: None) symbol to fill the bars with - one of “/”, “”, “|”, “-“, “+”, “x”, “o”, “O”, “.”, “*”, “” (or None)hue
– The color of the bars given as a hue. Seehue
for more information on the huelabel
– A string label for each data list givenlinewidth
– (float) width of the lines defining the barslinestyle
– (default: ‘solid’) Style of the line. One of ‘solid’ or ‘-‘, ‘dashed’ or ‘–’, ‘dotted’ or ‘:’, ‘dashdot’ or ‘-.’density
– (boolean - default: False) If True, the result is the value of the probability density function at the bin, normalized such that the integral over the range is 1.range
– A list [min, max] which define the range of the histogram. Values outside of this range are treated as outliers and omitted from countsrwidth
– (float in [0,1], default: 1) The relative width of the bars as a fraction of the bin widthstacked
– (boolean - default: False) If True, multiple data are stacked on top of each otherweights
– (list) A sequence of weights the same length as the data list. If supplied, then each value contributes its associated weight to the bin countzorder
– (integer) the layer level at which to draw the histogram
Note
The
weights
option works only with a single list. List of lists representing multiple data are not supported.EXAMPLES:
A very basic histogram for four data points:
sage: histogram([1,2,3,4], bins=2) Graphics object consisting of 1 graphics primitive
We can see how the histogram compares to various distributions. Note the use of the
density
keyword to guarantee the plot looks like the probability density function:sage: nv = normalvariate sage: H = histogram([nv(0,1) for _ in range(1000)], bins=20, density=True, range=[-5,5]) sage: P = plot( 1/sqrt(2*pi)*e^(-x^2/2), (x,-5,5), color='red', linestyle='--') sage: H+P Graphics object consisting of 2 graphics primitives
There are many options one can use with histograms. Some of these control the presentation of the data, even if it is boring:
sage: histogram(list(range(100)), color=(1,0,0), label='mydata', rwidth=.5, align="right") Graphics object consisting of 1 graphics primitive
This includes many usual matplotlib styling options:
sage: T = RealDistribution('lognormal', [0,1]) sage: histogram( [T.get_random_element() for _ in range(100)], alpha=0.3, edgecolor='red', fill=False, linestyle='dashed', hatch='O', linewidth=5) Graphics object consisting of 1 graphics primitive sage: histogram( [T.get_random_element() for _ in range(100)],linestyle='-.') Graphics object consisting of 1 graphics primitive
We can do several data sets at once if desired:
sage: histogram([srange(0,1,.1)*10, [nv(0, 1) for _ in range(100)]], color=['red','green'], bins=5) Graphics object consisting of 1 graphics primitive
We have the option of stacking the data sets too:
sage: histogram([ [1,1,1,1,2,2,2,3,3,3], [4,4,4,4,3,3,3,2,2,2] ], stacked=True, color=['blue', 'red']) Graphics object consisting of 1 graphics primitive
It is possible to use weights with the histogram as well:
sage: histogram(list(range(10)), bins=3, weights=[1,2,3,4,5,5,4,3,2,1]) Graphics object consisting of 1 graphics primitive