Miscellaneous Functions¶
This file contains several miscellaneous functions used by \(p\)-adics.
gauss_sum
– compute Gauss sums using the Gross-Koblitz formula.min
– a version ofmin
that returns \(\infty\) on empty input.max
– a version ofmax
that returns \(-\infty\) on empty input.
AUTHORS:
- David Roe
- Adriana Salerno
- Ander Steele
- Kiran Kedlaya (modified gauss_sum 2017/09)
-
sage.rings.padics.misc.
gauss_sum
(a, p, f, prec=20, factored=False, algorithm='pari', parent=None)¶ Return the Gauss sum \(g_q(a)\) as a \(p\)-adic number.
The Gauss sum \(g_q(a)\) is defined by
\[g_q(a)= \sum_{u\in F_q^*} \omega(u)^{-a} \zeta_q^u,\]where \(q = p^f\), \(\omega\) is the Teichmüller character and \(\zeta_q\) is some arbitrary choice of primitive \(q\)-th root of unity. The computation is adapted from the main theorem in Alain Robert’s paper The Gross-Koblitz formula revisited, Rend. Sem. Mat. Univ. Padova 105 (2001), 157–170.
Let \(p\) be a prime, \(f\) a positive integer, \(q=p^f\), and \(\pi\) be the unique root of \(f(x) = x^{p-1}+p\) congruent to \(\zeta_p - 1\) modulo \((\zeta_p - 1)^2\). Let \(0\leq a < q-1\). Then the Gross-Koblitz formula gives us the value of the Gauss sum \(g_q(a)\) as a product of \(p\)-adic Gamma functions as follows:
\[g_q(a) = -\pi^s \prod_{0\leq i < f} \Gamma_p(a^{(i)}/(q-1)),\]where \(s\) is the sum of the digits of \(a\) in base \(p\) and the \(a^{(i)}\) have \(p\)-adic expansions obtained from cyclic permutations of that of \(a\).
INPUT:
a
– integerp
– primef
– positive integerprec
– positive integer (optional, 20 by default)factored
- boolean (optional, False by default)algorithm
- flag passed to p-adic Gamma function (optional, “pari” by default)
OUTPUT:
If
factored
isFalse
, returns a \(p\)-adic number in an Eisenstein extension of \(\QQ_p\). This number has the form \(pi^e * z\) where \(pi\) is as above, \(e\) is some nonnegative integer, and \(z\) is an element of \(\ZZ_p\); iffactored
isTrue
, the pair \((e,z)\) is returned instead, and the Eisenstein extension is not formed.Note
This is based on GP code written by Adriana Salerno.
EXAMPLES:
In this example, we verify that \(g_3(0) = -1\):
sage: from sage.rings.padics.misc import gauss_sum sage: -gauss_sum(0,3,1) 1 + O(pi^40)
Next, we verify that \(g_5(a) g_5(-a) = 5 (-1)^a\):
sage: from sage.rings.padics.misc import gauss_sum sage: gauss_sum(2,5,1)^2-5 O(pi^84) sage: gauss_sum(1,5,1)*gauss_sum(3,5,1)+5 O(pi^84)
Finally, we compute a non-trivial value:
sage: from sage.rings.padics.misc import gauss_sum sage: gauss_sum(2,13,2) 6*pi^2 + 7*pi^14 + 11*pi^26 + 3*pi^62 + 6*pi^74 + 3*pi^86 + 5*pi^98 + pi^110 + 7*pi^134 + 9*pi^146 + 4*pi^158 + 6*pi^170 + 4*pi^194 + pi^206 + 6*pi^218 + 9*pi^230 + O(pi^242) sage: gauss_sum(2,13,2,prec=5,factored=True) (2, 6 + 6*13 + 10*13^2 + O(13^5))
See also
sage.arith.misc.gauss_sum()
for general finite fieldssage.modular.dirichlet.DirichletCharacter.gauss_sum()
for prime finite fieldssage.modular.dirichlet.DirichletCharacter.gauss_sum_numerical()
for prime finite fields
-
sage.rings.padics.misc.
max
(*L)¶ Return the maximum of the inputs, where the maximum of the empty list is \(-\infty\).
EXAMPLES:
sage: from sage.rings.padics.misc import max sage: max() -Infinity sage: max(2,3) 3
-
sage.rings.padics.misc.
min
(*L)¶ Return the minimum of the inputs, where the minimum of the empty list is \(\infty\).
EXAMPLES:
sage: from sage.rings.padics.misc import min sage: min() +Infinity sage: min(2,3) 2
-
sage.rings.padics.misc.
precprint
(prec_type, prec_cap, p)¶ String describing the precision mode on a p-adic ring or field.
EXAMPLES:
sage: from sage.rings.padics.misc import precprint sage: precprint('capped-rel', 12, 2) 'with capped relative precision 12' sage: precprint('capped-abs', 11, 3) 'with capped absolute precision 11' sage: precprint('floating-point', 1234, 5) 'with floating precision 1234' sage: precprint('fixed-mod', 1, 17) 'of fixed modulus 17^1'
-
sage.rings.padics.misc.
trim_zeros
(L)¶ Strips trailing zeros/empty lists from a list.
EXAMPLES:
sage: from sage.rings.padics.misc import trim_zeros sage: trim_zeros([1,0,1,0]) [1, 0, 1] sage: trim_zeros([[1],[],[2],[],[]]) [[1], [], [2]] sage: trim_zeros([[],[]]) [] sage: trim_zeros([]) []
Zeros are also trimmed from nested lists (one deep):
sage: trim_zeros([[1,0]]) [[1]] sage: trim_zeros([[0],[1]]) [[], [1]]