Miscellaneous Functions

This file contains several miscellaneous functions used by p-adics.

  • gauss_sum – compute Gauss sums using the Gross-Koblitz formula.
  • min – a version of min that returns on empty input.
  • max – a version of max that returns on empty input.

AUTHORS:

  • David Roe
  • Adriana Salerno
  • Ander Steele
  • Kiran Kedlaya (modified gauss_sum 2017/09)
sage.rings.padics.misc.gauss_sum(a, p, f, prec=20, factored=False, algorithm='pari', parent=None)

Return the Gauss sum gq(a) as a p-adic number.

The Gauss sum gq(a) is defined by

gq(a)=uFqω(u)aζuq,

where q=pf, ω is the Teichmüller character and ζq is some arbitrary choice of primitive q-th root of unity. The computation is adapted from the main theorem in Alain Robert’s paper The Gross-Koblitz formula revisited, Rend. Sem. Mat. Univ. Padova 105 (2001), 157–170.

Let p be a prime, f a positive integer, q=pf, and π be the unique root of f(x)=xp1+p congruent to ζp1 modulo (ζp1)2. Let 0a<q1. Then the Gross-Koblitz formula gives us the value of the Gauss sum gq(a) as a product of p-adic Gamma functions as follows:

gq(a)=πs0i<fΓp(a(i)/(q1)),

where s is the sum of the digits of a in base p and the a(i) have p-adic expansions obtained from cyclic permutations of that of a.

INPUT:

  • a – integer
  • p – prime
  • f – positive integer
  • prec – positive integer (optional, 20 by default)
  • factored - boolean (optional, False by default)
  • algorithm - flag passed to p-adic Gamma function (optional, “pari” by default)

OUTPUT:

If factored is False, returns a p-adic number in an Eisenstein extension of Qp. This number has the form piez where pi is as above, e is some nonnegative integer, and z is an element of Zp; if factored is True, the pair (e,z) is returned instead, and the Eisenstein extension is not formed.

Note

This is based on GP code written by Adriana Salerno.

EXAMPLES:

In this example, we verify that g3(0)=1:

sage: from sage.rings.padics.misc import gauss_sum
sage: -gauss_sum(0,3,1)
1 + O(pi^40)

Next, we verify that g5(a)g5(a)=5(1)a:

sage: from sage.rings.padics.misc import gauss_sum
sage: gauss_sum(2,5,1)^2-5
O(pi^84)
sage: gauss_sum(1,5,1)*gauss_sum(3,5,1)+5
O(pi^84)

Finally, we compute a non-trivial value:

sage: from sage.rings.padics.misc import gauss_sum
sage: gauss_sum(2,13,2)
6*pi^2 + 7*pi^14 + 11*pi^26 + 3*pi^62 + 6*pi^74 + 3*pi^86 + 5*pi^98 +
pi^110 + 7*pi^134 + 9*pi^146 + 4*pi^158 + 6*pi^170 + 4*pi^194 +
pi^206 + 6*pi^218 + 9*pi^230 + O(pi^242)
sage: gauss_sum(2,13,2,prec=5,factored=True)
(2, 6 + 6*13 + 10*13^2 + O(13^5))
sage.rings.padics.misc.max(*L)

Return the maximum of the inputs, where the maximum of the empty list is .

EXAMPLES:

sage: from sage.rings.padics.misc import max
sage: max()
-Infinity
sage: max(2,3)
3
sage.rings.padics.misc.min(*L)

Return the minimum of the inputs, where the minimum of the empty list is .

EXAMPLES:

sage: from sage.rings.padics.misc import min
sage: min()
+Infinity
sage: min(2,3)
2
sage.rings.padics.misc.precprint(prec_type, prec_cap, p)

String describing the precision mode on a p-adic ring or field.

EXAMPLES:

sage: from sage.rings.padics.misc import precprint
sage: precprint('capped-rel', 12, 2)
'with capped relative precision 12'
sage: precprint('capped-abs', 11, 3)
'with capped absolute precision 11'
sage: precprint('floating-point', 1234, 5)
'with floating precision 1234'
sage: precprint('fixed-mod', 1, 17)
'of fixed modulus 17^1'
sage.rings.padics.misc.trim_zeros(L)

Strips trailing zeros/empty lists from a list.

EXAMPLES:

sage: from sage.rings.padics.misc import trim_zeros
sage: trim_zeros([1,0,1,0])
[1, 0, 1]
sage: trim_zeros([[1],[],[2],[],[]])
[[1], [], [2]]
sage: trim_zeros([[],[]])
[]
sage: trim_zeros([])
[]

Zeros are also trimmed from nested lists (one deep):

sage: trim_zeros([[1,0]]) [[1]] sage: trim_zeros([[0],[1]]) [[], [1]]