Eisenstein Extension Generic¶
This file implements the shared functionality for Eisenstein extensions.
AUTHORS:
- David Roe
-
class
sage.rings.padics.eisenstein_extension_generic.
EisensteinExtensionGeneric
(poly, prec, print_mode, names, element_class)¶ Bases:
sage.rings.padics.padic_extension_generic.pAdicExtensionGeneric
Initializes self.
EXAMPLES:
sage: A = Zp(7,10) sage: S.<x> = A[] sage: B.<t> = A.ext(x^2+7) #indirect doctest
-
absolute_e
()¶ Return the absolute ramification index of this ring or field
EXAMPLES:
sage: K.<a> = Qq(3^5) sage: K.absolute_e() 1 sage: L.<pi> = Qp(3).extension(x^2 - 3) sage: L.absolute_e() 2
-
gen
(n=0)¶ Returns a generator for self as an extension of its ground ring.
EXAMPLES:
sage: A = Zp(7,10) sage: S.<x> = A[] sage: B.<t> = A.ext(x^2+7) sage: B.gen() t + O(t^21)
-
inertia_subring
()¶ Returns the inertia subring.
Since an Eisenstein extension is totally ramified, this is just the ground field.
EXAMPLES:
sage: A = Zp(7,10) sage: S.<x> = A[] sage: B.<t> = A.ext(x^2+7) sage: B.inertia_subring() 7-adic Ring with capped relative precision 10
-
residue_class_field
()¶ Returns the residue class field.
INPUT:
- self – a p-adic ring
OUTPUT:
- the residue field
EXAMPLES:
sage: A = Zp(7,10) sage: S.<x> = A[] sage: B.<t> = A.ext(x^2+7) sage: B.residue_class_field() Finite Field of size 7
-
residue_ring
(n)¶ Return the quotient of the ring of integers by the nth power of its maximal ideal.
EXAMPLES:
sage: S.<x> = ZZ[] sage: W.<w> = Zp(5).extension(x^2 - 5) sage: W.residue_ring(1) Ring of integers modulo 5
The following requires implementing more general Artinian rings:
sage: W.residue_ring(2) Traceback (most recent call last): ... NotImplementedError
-
uniformizer
()¶ Returns the uniformizer of self, ie a generator for the unique maximal ideal.
EXAMPLES:
sage: A = Zp(7,10) sage: S.<x> = A[] sage: B.<t> = A.ext(x^2+7) sage: B.uniformizer() t + O(t^21)
-
uniformizer_pow
(n)¶ Returns the nth power of the uniformizer of self (as an element of self).
EXAMPLES:
sage: A = Zp(7,10) sage: S.<x> = A[] sage: B.<t> = A.ext(x^2+7) sage: B.uniformizer_pow(5) t^5 + O(t^25)
-