Enumeration of Totally Real Fields: Relative Extensions¶
This module contains functions to enumerate primitive extensions \(L / K\), where
\(K\) is a given totally real number field, with given degree and small root
discriminant. This is a relative analogue of the problem described in
sage.rings.number_field.totallyreal
, and we use a similar approach
based on a relative version of Hunter’s theorem.
In this first simple example, we compute the totally real quadratic fields of \(F = \QQ(\sqrt{2})\) of discriminant \(\le 2000\).
sage: ZZx = ZZ['x']
sage: F.<t> = NumberField(x^2-2)
sage: enumerate_totallyreal_fields_rel(F, 2, 2000)
[[1600, x^4 - 6*x^2 + 4, xF^2 + xF - 1]]
There is indeed only one such extension, given by \(F(\sqrt{5})\).
Next, we list all totally real quadratic extensions of \(\QQ(\sqrt 5)\) with root discriminant \(\le 10\).
sage: F.<t> = NumberField(x^2-5)
sage: ls = enumerate_totallyreal_fields_rel(F, 2, 10^4)
sage: ls # random (the second factor is platform-dependent)
[[725, x^4 - x^3 - 3*x^2 + x + 1, xF^2 + (-1/2*t - 7/2)*xF + 1],
[1125, x^4 - x^3 - 4*x^2 + 4*x + 1, xF^2 + (-1/2*t - 7/2)*xF + 1/2*t + 3/2],
[1600, x^4 - 6*x^2 + 4, xF^2 - 2],
[2000, x^4 - 5*x^2 + 5, xF^2 - 1/2*t - 5/2],
[2225, x^4 - x^3 - 5*x^2 + 2*x + 4, xF^2 + (-1/2*t + 1/2)*xF - 3/2*t - 7/2],
[2525, x^4 - 2*x^3 - 4*x^2 + 5*x + 5, xF^2 + (-1/2*t - 1/2)*xF - 1/2*t - 5/2],
[3600, x^4 - 2*x^3 - 7*x^2 + 8*x + 1, xF^2 - 3],
[4225, x^4 - 9*x^2 + 4, xF^2 + (-1/2*t - 1/2)*xF - 3/2*t - 9/2],
[4400, x^4 - 7*x^2 + 11, xF^2 - 1/2*t - 7/2],
[4525, x^4 - x^3 - 7*x^2 + 3*x + 9, xF^2 + (-1/2*t - 1/2)*xF - 3],
[5125, x^4 - 2*x^3 - 6*x^2 + 7*x + 11, xF^2 + (-1/2*t - 1/2)*xF - t - 4],
[5225, x^4 - x^3 - 8*x^2 + x + 11, xF^2 + (-1/2*t - 1/2)*xF - 1/2*t - 7/2],
[5725, x^4 - x^3 - 8*x^2 + 6*x + 11, xF^2 + (-1/2*t + 1/2)*xF - 1/2*t - 7/2],
[6125, x^4 - x^3 - 9*x^2 + 9*x + 11, xF^2 + (-1/2*t + 1/2)*xF - t - 4],
[7225, x^4 - 11*x^2 + 9, xF^2 + (-1)*xF - 4],
[7600, x^4 - 9*x^2 + 19, xF^2 - 1/2*t - 9/2],
[7625, x^4 - x^3 - 9*x^2 + 4*x + 16, xF^2 + (-1/2*t - 1/2)*xF - 4],
[8000, x^4 - 10*x^2 + 20, xF^2 - t - 5],
[8525, x^4 - 2*x^3 - 8*x^2 + 9*x + 19, xF^2 + (-1)*xF - 1/2*t - 9/2],
[8725, x^4 - x^3 - 10*x^2 + 2*x + 19, xF^2 + (-1/2*t - 1/2)*xF - 1/2*t - 9/2],
[9225, x^4 - x^3 - 10*x^2 + 7*x + 19, xF^2 + (-1/2*t + 1/2)*xF - 1/2*t - 9/2]]
sage: [ f[0] for f in ls ]
[725, 1125, 1600, 2000, 2225, 2525, 3600, 4225, 4400, 4525, 5125, 5225, 5725, 6125, 7225, 7600, 7625, 8000, 8525, 8725, 9225]
sage: [NumberField(ZZx(x[1]), 't').is_galois() for x in ls]
[False, True, True, True, False, False, True, True, False, False, False, False, False, True, True, False, False, True, False, False, False]
Eight out of 21 such fields are Galois (with Galois group \(C_4\) or \(C_2 \times C_2\)); the others have Galois closure of degree 8 (with Galois group \(D_8\)).
Finally, we compute the cubic extensions of \(\QQ(\zeta_7)^+\) with discriminant \(\le 17 \times 10^9\).
sage: F.<t> = NumberField(ZZx([1,-4,3,1]))
sage: F.disc()
49
sage: enumerate_totallyreal_fields_rel(F, 3, 17*10^9) # not tested, too long time (258s on sage.math, 2013)
[[16240385609L, x^9 - x^8 - 9*x^7 + 4*x^6 + 26*x^5 - 2*x^4 - 25*x^3 - x^2 + 7*x + 1, xF^3 + (-t^2 - 4*t + 1)*xF^2 + (t^2 + 3*t - 5)*xF + 3*t^2 + 11*t - 5]] # 32-bit
[[16240385609, x^9 - x^8 - 9*x^7 + 4*x^6 + 26*x^5 - 2*x^4 - 25*x^3 - x^2 + 7*x + 1, xF^3 + (-t^2 - 4*t + 1)*xF^2 + (t^2 + 3*t - 5)*xF + 3*t^2 + 11*t - 5]] # 64-bit
AUTHORS:
- John Voight (2007-11-03): Initial version.
-
sage.rings.number_field.totallyreal_rel.
enumerate_totallyreal_fields_all
(n, B, verbose=0, return_seqs=False, return_pari_objects=True)¶ Enumerates all totally real fields of degree
n
with discriminant at mostB
, primitive or otherwise.INPUT:
n
– integer, the degreeB
– integer, the discriminant boundverbose
– boolean or nonnegative integer or string (default: 0) give a verbose description of the computations being performed. Ifverbose
is set to2
or more then it outputs some extra information. Ifverbose
is a string then it outputs to a file specified byverbose
return_seqs
– (boolean, default False) IfTrue
, then return the polynomials as sequences (for easier exporting to a file). This also returns a list of four numbers, as explained in the OUTPUT section below.return_pari_objects
– (boolean, default: True) if bothreturn_seqs
andreturn_pari_objects
areFalse
then it returns the elements as Sage objects; otherwise it returns pari objects.
EXAMPLES:
sage: enumerate_totallyreal_fields_all(4, 2000) [[725, x^4 - x^3 - 3*x^2 + x + 1], [1125, x^4 - x^3 - 4*x^2 + 4*x + 1], [1600, x^4 - 6*x^2 + 4], [1957, x^4 - 4*x^2 - x + 1], [2000, x^4 - 5*x^2 + 5]] sage: enumerate_totallyreal_fields_all(1, 10) [[1, x - 1]]
-
sage.rings.number_field.totallyreal_rel.
enumerate_totallyreal_fields_rel
(F, m, B, a=[], verbose=0, return_seqs=False, return_pari_objects=True)¶ This function enumerates (primitive) totally real field extensions of degree \(m>1\) of the totally real field F with discriminant \(d \leq B\); optionally one can specify the first few coefficients, where the sequence
a
corresponds to a polynomial bya[d]*x^n + ... + a[0]*x^(n-d)
if
length(a) = d+1
, so in particular alwaysa[d] = 1
.Note
This is guaranteed to give all primitive such fields, and seems in practice to give many imprimitive ones.
INPUT:
F
– number field, the base fieldm
– integer, the degreeB
– integer, the discriminant bounda
– list (default: []), the coefficient list to begin withverbose
– boolean or nonnegative integer or string (default: 0) give a verbose description of the computations being performed. Ifverbose
is set to2
or more then it outputs some extra information. Ifverbose
is a string then it outputs to a file specified byverbose
return_seqs
– (boolean, default False) IfTrue
, then return the polynomials as sequences (for easier exporting to a file). This also returns a list of four numbers, as explained in the OUTPUT section below.return_pari_objects
– (boolean, default: True) if bothreturn_seqs
andreturn_pari_objects
areFalse
then it returns the elements as Sage objects; otherwise it returns pari objects.
OUTPUT:
- the list of fields with entries
[d,fabs,f]
, whered
is the discriminant,fabs
is an absolute defining polynomial, andf
is a defining polynomial relative toF
, sorted by discriminant. - if
return_seqs
isTrue
, then the first field of the list is a list containing the count of four items as explained below- the first entry gives the number of polynomials tested
- the second entry gives the number of polynomials with its discriminant having a large enough square divisor
- the third entry is the number of irreducible polynomials
- the fourth entry is the number of irreducible polynomials with
discriminant at most
B
EXAMPLES:
sage: ZZx = ZZ['x'] sage: F.<t> = NumberField(x^2-2) sage: enumerate_totallyreal_fields_rel(F, 1, 2000) [[1, [-2, 0, 1], xF - 1]] sage: enumerate_totallyreal_fields_rel(F, 2, 2000) [[1600, x^4 - 6*x^2 + 4, xF^2 + xF - 1]] sage: enumerate_totallyreal_fields_rel(F, 2, 2000, return_seqs=True) [[9, 6, 5, 0], [[1600, [4, 0, -6, 0, 1], [-1, 1, 1]]]]
AUTHORS:
- John Voight (2007-11-01)
-
sage.rings.number_field.totallyreal_rel.
integral_elements_in_box
(K, C)¶ Return all integral elements of the totally real field \(K\) whose embeddings lie numerically within the bounds specified by the list \(C\). The output is architecture dependent, and one may want to expand the bounds that define C by some epsilon.
INPUT:
- \(K\) – a totally real number field
- \(C\) – a list [[lower, upper], …] of lower and upper bounds, for each embedding
EXAMPLES:
sage: x = polygen(QQ) sage: K.<alpha> = NumberField(x^2-2) sage: eps = 10e-6 sage: C = [[0-eps,5+eps],[0-eps,10+eps]] sage: ls = sage.rings.number_field.totallyreal_rel.integral_elements_in_box(K, C) sage: sorted([ a.trace() for a in ls ]) [0, 2, 4, 4, 4, 6, 6, 6, 6, 8, 8, 8, 10, 10, 10, 10, 12, 12, 14] sage: len(ls) 19 sage: v = sage.rings.number_field.totallyreal_rel.integral_elements_in_box(K, C) sage: sorted(v) [0, -alpha + 2, 1, -alpha + 3, 2, 3, alpha + 2, 4, alpha + 3, 5, alpha + 4, 2*alpha + 3, alpha + 5, 2*alpha + 4, alpha + 6, 2*alpha + 5, 2*alpha + 6, 3*alpha + 5, 2*alpha + 7]
A cubic field:
sage: x = polygen(QQ) sage: K.<a> = NumberField(x^3 - 16*x +16) sage: eps = 10e-6 sage: C = [[0-eps,5+eps]]*3 sage: v = sage.rings.number_field.totallyreal_rel.integral_elements_in_box(K, C)
Note that the output is platform dependent (sometimes a 5 is listed below, and sometimes it isn’t):
sage: sorted(v) [-1/2*a + 2, 1/4*a^2 + 1/2*a, 0, 1, 2, 3, 4,...-1/4*a^2 - 1/2*a + 5, 1/2*a + 3, -1/4*a^2 + 5]
-
class
sage.rings.number_field.totallyreal_rel.
tr_data_rel
(F, m, B, a=None)¶ This class encodes the data used in the enumeration of totally real fields for relative extensions.
We do not give a complete description here. For more information, see the attached functions; all of these are used internally by the functions in totallyreal_rel.py, so see that file for examples and further documentation.
-
incr
(f_out, verbose=False, haltk=0)¶ This function ‘increments’ the totally real data to the next value which satisfies the bounds essentially given by Rolle’s theorem, and returns the next polynomial in the sequence f_out.
The default or usual case just increments the constant coefficient; then inductively, if this is outside of the bounds we increment the next higher coefficient, and so on.
If there are no more coefficients to be had, returns the zero polynomial.
INPUT:
f_out
– an integer sequence, to be written with the coefficients of the next polynomialverbose
– boolean or nonnegative integer (default: False) print verbosely computational details. It prints extra information ifverbose
is set to2
or morehaltk
– integer, the level at which to halt the inductive coefficient bounds
OUTPUT:
the successor polynomial as a coefficient list.
-