Relative Number Field Ideals¶
AUTHORS:
- Steven Sivek (2005-05-16)
- William Stein (2007-09-06)
- Nick Alexander (2009-01)
EXAMPLES:
sage: K.<a,b> = NumberField([x^2 + 1, x^2 + 2])
sage: A = K.absolute_field('z')
sage: I = A.factor(7)[0][0]
sage: from_A, to_A = A.structure()
sage: G = [from_A(z) for z in I.gens()]; G
[7, -2*b*a - 1]
sage: K.fractional_ideal(G)
Fractional ideal (2*b*a + 1)
sage: K.fractional_ideal(G).absolute_norm().factor()
7^2
-
class
sage.rings.number_field.number_field_ideal_rel.
NumberFieldFractionalIdeal_rel
(field, gens, coerce=True)¶ Bases:
sage.rings.number_field.number_field_ideal.NumberFieldFractionalIdeal
An ideal of a relative number field.
EXAMPLES:
sage: K.<a> = NumberField([x^2 + 1, x^2 + 2]); K Number Field in a0 with defining polynomial x^2 + 1 over its base field sage: i = K.ideal(38); i Fractional ideal (38) sage: K.<a0, a1> = NumberField([x^2 + 1, x^2 + 2]); K Number Field in a0 with defining polynomial x^2 + 1 over its base field sage: i = K.ideal([a0+1]); i # random Fractional ideal (-a1*a0) sage: (g, ) = i.gens_reduced(); g # random -a1*a0 sage: (g / (a0 + 1)).is_integral() True sage: ((a0 + 1) / g).is_integral() True
-
absolute_ideal
(names='a')¶ If this is an ideal in the extension \(L/K\), return the ideal with the same generators in the absolute field \(L/\QQ\).
INPUT:
names
(optional) – string; name of generator of the absolute field
EXAMPLES:
sage: x = ZZ['x'].0 sage: K.<b> = NumberField(x^2 - 2) sage: L.<c> = K.extension(x^2 - b) sage: F.<m> = L.absolute_field()
An example of an inert ideal:
sage: P = F.factor(13)[0][0]; P Fractional ideal (13) sage: J = L.ideal(13) sage: J.absolute_ideal() Fractional ideal (13)
Now a non-trivial ideal in \(L\) that is principal in the subfield \(K\). Since the optional ‘names’ argument is not passed, the generators of the absolute ideal J are returned in terms of the default field generator ‘a’. This does not agree with the generator ‘m’ of the absolute field F defined above:
sage: J = L.ideal(b); J Fractional ideal (b) sage: J.absolute_ideal() Fractional ideal (a^2) sage: J.relative_norm() Fractional ideal (2) sage: J.absolute_norm() 4 sage: J.absolute_ideal().norm() 4
Now pass ‘m’ as the name for the generator of the absolute field:
sage: J.absolute_ideal(‘m’) Fractional ideal (m^2)Now an ideal not generated by an element of \(K\):
sage: J = L.ideal(c); J Fractional ideal (c) sage: J.absolute_ideal() Fractional ideal (a) sage: J.absolute_norm() 2 sage: J.ideal_below() Fractional ideal (b) sage: J.ideal_below().norm() 2
-
absolute_norm
()¶ Compute the absolute norm of this fractional ideal in a relative number field, returning a positive integer.
EXAMPLES:
sage: L.<a, b, c> = QQ.extension([x^2 - 23, x^2 - 5, x^2 - 7]) sage: I = L.ideal(a + b) sage: I.absolute_norm() 104976 sage: I.relative_norm().relative_norm().relative_norm() 104976
-
absolute_ramification_index
()¶ Return the absolute ramification index of this fractional ideal, assuming it is prime. Otherwise, raise a ValueError.
The absolute ramification index is the power of this prime appearing in the factorization of the rational prime that this prime lies over.
Use relative_ramification_index to obtain the power of this prime occurring in the factorization of the prime ideal of the base field that this prime lies over.
EXAMPLES:
sage: PQ.<X> = QQ[] sage: F.<a, b> = NumberFieldTower([X^2 - 2, X^2 - 3]) sage: PF.<Y> = F[] sage: K.<c> = F.extension(Y^2 - (1 + a)*(a + b)*a*b) sage: I = K.ideal(3, c) sage: I.absolute_ramification_index() 4 sage: I.smallest_integer() 3 sage: K.ideal(3) == I^4 True
-
element_1_mod
(other)¶ Returns an element \(r\) in this ideal such that \(1-r\) is in other.
An error is raised if either ideal is not integral of if they are not coprime.
INPUT:
other
– another ideal of the same field, or generators of an ideal.
OUTPUT:
an element \(r\) of the ideal self such that \(1-r\) is in the ideal other.
EXAMPLES:
sage: K.<a, b> = NumberFieldTower([x^2 - 23, x^2 + 1]) sage: I = Ideal(2, (a - 3*b + 2)/2) sage: J = K.ideal(a) sage: z = I.element_1_mod(J) sage: z in I True sage: 1 - z in J True
-
factor
()¶ Factor the ideal by factoring the corresponding ideal in the absolute number field.
EXAMPLES:
sage: K.<a, b> = QQ.extension([x^2 + 11, x^2 - 5]) sage: K.factor(5) (Fractional ideal (5, (-1/4*b - 1/4)*a + 1/4*b - 3/4))^2 * (Fractional ideal (5, (-1/4*b - 1/4)*a + 1/4*b - 7/4))^2 sage: K.ideal(5).factor() (Fractional ideal (5, (-1/4*b - 1/4)*a + 1/4*b - 3/4))^2 * (Fractional ideal (5, (-1/4*b - 1/4)*a + 1/4*b - 7/4))^2 sage: K.ideal(5).prime_factors() [Fractional ideal (5, (-1/4*b - 1/4)*a + 1/4*b - 3/4), Fractional ideal (5, (-1/4*b - 1/4)*a + 1/4*b - 7/4)] sage: PQ.<X> = QQ[] sage: F.<a, b> = NumberFieldTower([X^2 - 2, X^2 - 3]) sage: PF.<Y> = F[] sage: K.<c> = F.extension(Y^2 - (1 + a)*(a + b)*a*b) sage: I = K.ideal(c) sage: P = K.ideal((b*a - b - 1)*c/2 + a - 1) sage: Q = K.ideal((b*a - b - 1)*c/2) sage: list(I.factor()) == [(P, 2), (Q, 1)] True sage: I == P^2*Q True sage: [p.is_prime() for p in [P, Q]] [True, True]
-
free_module
()¶ Return this ideal as a \(\ZZ\)-submodule of the \(\QQ\)-vector space corresponding to the ambient number field.
EXAMPLES:
sage: K.<a, b> = NumberField([x^3 - x + 1, x^2 + 23]) sage: I = K.ideal(a*b - 1) sage: I.free_module() Free module of degree 6 and rank 6 over Integer Ring User basis matrix: ... sage: I.free_module().is_submodule(K.maximal_order().free_module()) True
-
gens_reduced
()¶ Return a small set of generators for this ideal. This will always return a single generator if one exists (i.e. if the ideal is principal), and otherwise two generators.
EXAMPLES:
sage: K.<a, b> = NumberField([x^2 + 1, x^2 - 2]) sage: I = K.ideal((a + 1)*b/2 + 1) sage: I.gens_reduced() (1/2*b*a + 1/2*b + 1,)
-
ideal_below
()¶ Compute the ideal of \(K\) below this ideal of \(L\).
EXAMPLES:
sage: R.<x> = QQ[] sage: K.<a> = NumberField(x^2+6) sage: L.<b> = K.extension(K['x'].gen()^4 + a) sage: N = L.ideal(b) sage: M = N.ideal_below(); M == K.ideal([-a]) True sage: Np = L.ideal( [ L(t) for t in M.gens() ]) sage: Np.ideal_below() == M True sage: M.parent() Monoid of ideals of Number Field in a with defining polynomial x^2 + 6 sage: M.ring() Number Field in a with defining polynomial x^2 + 6 sage: M.ring() is K True
This example concerns an inert ideal:
sage: K = NumberField(x^4 + 6*x^2 + 24, 'a') sage: K.factor(7) Fractional ideal (7) sage: K0, K0_into_K, _ = K.subfields(2)[0] sage: K0 Number Field in a0 with defining polynomial x^2 - 6*x + 24 sage: L = K.relativize(K0_into_K, 'c'); L Number Field in c with defining polynomial x^2 + a0 over its base field sage: L.base_field() is K0 True sage: L.ideal(7) Fractional ideal (7) sage: L.ideal(7).ideal_below() Fractional ideal (7) sage: L.ideal(7).ideal_below().number_field() is K0 True
This example concerns an ideal that splits in the quadratic field but each factor ideal remains inert in the extension:
sage: len(K.factor(19)) 2 sage: K0 = L.base_field(); a0 = K0.gen() sage: len(K0.factor(19)) 2 sage: w1 = -a0 + 1; P1 = K0.ideal([w1]) sage: P1.norm().factor(), P1.is_prime() (19, True) sage: L_into_K, K_into_L = L.structure() sage: L.ideal(K_into_L(K0_into_K(w1))).ideal_below() == P1 True
The choice of embedding of quadratic field into quartic field matters:
sage: rho, tau = K0.embeddings(K) sage: L1 = K.relativize(rho, 'b') sage: L2 = K.relativize(tau, 'b') sage: L1_into_K, K_into_L1 = L1.structure() sage: L2_into_K, K_into_L2 = L2.structure() sage: a = K.gen() sage: P = K.ideal([a^2 + 5]) sage: K_into_L1(P).ideal_below() == K0.ideal([-a0 + 1]) True sage: K_into_L2(P).ideal_below() == K0.ideal([-a0 + 5]) True sage: K0.ideal([-a0 + 1]) == K0.ideal([-a0 + 5]) False
It works when the base_field is itself a relative number field:
sage: PQ.<X> = QQ[] sage: F.<a, b> = NumberFieldTower([X^2 - 2, X^2 - 3]) sage: PF.<Y> = F[] sage: K.<c> = F.extension(Y^2 - (1 + a)*(a + b)*a*b) sage: I = K.ideal(3, c) sage: J = I.ideal_below(); J Fractional ideal (-b) sage: J.number_field() == F True
Number fields defined by non-monic and non-integral polynomials are supported (trac ticket #252):
sage: K.<a> = NumberField(2*x^2 - 1/3) sage: L.<b> = K.extension(5*x^2 + 1) sage: P = L.primes_above(2)[0] sage: P.ideal_below() Fractional ideal (-6*a + 2)
-
integral_basis
()¶ Return a basis for self as a \(\ZZ\)-module.
EXAMPLES:
sage: K.<a,b> = NumberField([x^2 + 1, x^2 - 3]) sage: I = K.ideal(17*b - 3*a) sage: x = I.integral_basis(); x # random [438, -b*a + 309, 219*a - 219*b, 156*a - 154*b]
The exact results are somewhat unpredictable, hence the
# random
flag, but we can test that they are indeed a basis:sage: V, _, phi = K.absolute_vector_space() sage: V.span([phi(u) for u in x], ZZ) == I.free_module() True
-
integral_split
()¶ Return a tuple \((I, d)\), where \(I\) is an integral ideal, and \(d\) is the smallest positive integer such that this ideal is equal to \(I/d\).
EXAMPLES:
sage: K.<a, b> = NumberFieldTower([x^2 - 23, x^2 + 1]) sage: I = K.ideal([a + b/3]) sage: J, d = I.integral_split() sage: J.is_integral() True sage: J == d*I True
-
is_integral
()¶ Return True if this ideal is integral.
EXAMPLES:
sage: K.<a, b> = QQ.extension([x^2 + 11, x^2 - 5]) sage: I = K.ideal(7).prime_factors()[0] sage: I.is_integral() True sage: (I/2).is_integral() False
-
is_prime
()¶ Return
True
if this ideal of a relative number field is prime.EXAMPLES:
sage: K.<a, b> = NumberField([x^2 - 17, x^3 - 2]) sage: K.ideal(a + b).is_prime() True sage: K.ideal(13).is_prime() False
-
is_principal
(proof=None)¶ Return True if this ideal is principal. If so, set self.__reduced_generators, with length one.
EXAMPLES:
sage: K.<a, b> = NumberField([x^2 - 23, x^2 + 1]) sage: I = K.ideal([7, (-1/2*b - 3/2)*a + 3/2*b + 9/2]) sage: I.is_principal() True sage: I # random Fractional ideal ((1/2*b + 1/2)*a - 3/2*b - 3/2)
-
is_zero
()¶ Return True if this is the zero ideal.
EXAMPLES:
sage: K.<a, b> = NumberField([x^2 + 3, x^3 + 4]) sage: K.ideal(17).is_zero() False sage: K.ideal(0).is_zero() True
-
norm
()¶ The norm of a fractional ideal in a relative number field is deliberately unimplemented, so that a user cannot mistake the absolute norm for the relative norm, or vice versa.
EXAMPLES:
sage: K.<a, b> = NumberField([x^2 + 1, x^2 - 2]) sage: K.ideal(2).norm() Traceback (most recent call last): ... NotImplementedError: For a fractional ideal in a relative number field you must use relative_norm or absolute_norm as appropriate
-
pari_rhnf
()¶ Return PARI’s representation of this relative ideal in Hermite normal form.
EXAMPLES:
sage: K.<a, b> = NumberField([x^2 + 23, x^2 - 7]) sage: I = K.ideal(2, (a + 2*b + 3)/2) sage: I.pari_rhnf() [[1, -2; 0, 1], [[2, 1; 0, 1], 1/2]]
-
ramification_index
()¶ For ideals in relative number fields,
ramification_index
is deliberately not implemented in order to avoid ambiguity. Eitherrelative_ramification_index()
orabsolute_ramification_index()
should be used instead.EXAMPLES:
sage: K.<a, b> = NumberField([x^2 + 1, x^2 - 2]) sage: K.ideal(2).ramification_index() Traceback (most recent call last): ... NotImplementedError: For an ideal in a relative number field you must use relative_ramification_index or absolute_ramification_index as appropriate
-
relative_norm
()¶ Compute the relative norm of this fractional ideal in a relative number field, returning an ideal in the base field.
EXAMPLES:
sage: R.<x> = QQ[] sage: K.<a> = NumberField(x^2+6) sage: L.<b> = K.extension(K['x'].gen()^4 + a) sage: N = L.ideal(b).relative_norm(); N Fractional ideal (-a) sage: N.parent() Monoid of ideals of Number Field in a with defining polynomial x^2 + 6 sage: N.ring() Number Field in a with defining polynomial x^2 + 6 sage: PQ.<X> = QQ[] sage: F.<a, b> = NumberField([X^2 - 2, X^2 - 3]) sage: PF.<Y> = F[] sage: K.<c> = F.extension(Y^2 - (1 + a)*(a + b)*a*b) sage: K.ideal(1).relative_norm() Fractional ideal (1) sage: K.ideal(13).relative_norm().relative_norm() Fractional ideal (28561) sage: K.ideal(13).relative_norm().relative_norm().relative_norm() 815730721 sage: K.ideal(13).absolute_norm() 815730721
Number fields defined by non-monic and non-integral polynomials are supported (trac ticket #252):
sage: K.<a> = NumberField(2*x^2 - 1/3) sage: L.<b> = K.extension(5*x^2 + 1) sage: P = L.primes_above(2)[0] sage: P.relative_norm() Fractional ideal (-6*a + 2)
-
relative_ramification_index
()¶ Return the relative ramification index of this fractional ideal, assuming it is prime. Otherwise, raise a ValueError.
The relative ramification index is the power of this prime appearing in the factorization of the prime ideal of the base field that this prime lies over.
Use absolute_ramification_index to obtain the power of this prime occurring in the factorization of the rational prime that this prime lies over.
EXAMPLES:
sage: PQ.<X> = QQ[] sage: F.<a, b> = NumberFieldTower([X^2 - 2, X^2 - 3]) sage: PF.<Y> = F[] sage: K.<c> = F.extension(Y^2 - (1 + a)*(a + b)*a*b) sage: I = K.ideal(3, c) sage: I.relative_ramification_index() 2 sage: I.ideal_below() # random sign Fractional ideal (b) sage: I.ideal_below() == K.ideal(b) True sage: K.ideal(b) == I^2 True
-
residue_class_degree
()¶ Return the residue class degree of this prime.
EXAMPLES:
sage: PQ.<X> = QQ[] sage: F.<a, b> = NumberFieldTower([X^2 - 2, X^2 - 3]) sage: PF.<Y> = F[] sage: K.<c> = F.extension(Y^2 - (1 + a)*(a + b)*a*b) sage: [I.residue_class_degree() for I in K.ideal(c).prime_factors()] [1, 2]
-
residues
()¶ Returns a iterator through a complete list of residues modulo this integral ideal.
An error is raised if this fractional ideal is not integral.
EXAMPLES:
sage: K.<a, w> = NumberFieldTower([x^2 - 3, x^2 + x + 1]) sage: I = K.ideal(6, -w*a - w + 4) sage: list(I.residues())[:5] [(25/3*w - 1/3)*a + 22*w + 1, (16/3*w - 1/3)*a + 13*w, (7/3*w - 1/3)*a + 4*w - 1, (-2/3*w - 1/3)*a - 5*w - 2, (-11/3*w - 1/3)*a - 14*w - 3]
-
smallest_integer
()¶ Return the smallest non-negative integer in \(I \cap \ZZ\), where \(I\) is this ideal. If \(I = 0\), returns \(0\).
EXAMPLES:
sage: K.<a, b> = NumberFieldTower([x^2 - 23, x^2 + 1]) sage: I = K.ideal([a + b]) sage: I.smallest_integer() 12 sage: [m for m in range(13) if m in I] [0, 12]
-
valuation
(p)¶ Return the valuation of this fractional ideal at
p
.INPUT:
p
– a prime ideal \(\mathfrak{p}\) of this relative number field.
OUTPUT:
(integer) The valuation of this fractional ideal at the prime \(\mathfrak{p}\). If \(\mathfrak{p}\) is not prime, raise a ValueError.
EXAMPLES:
sage: K.<a, b> = NumberField([x^2 - 17, x^3 - 2]) sage: A = K.ideal(a + b) sage: A.is_prime() True sage: (A*K.ideal(3)).valuation(A) 1 sage: K.ideal(25).valuation(5) Traceback (most recent call last): ... ValueError: p (= Fractional ideal (5)) must be a prime
-
-
sage.rings.number_field.number_field_ideal_rel.
is_NumberFieldFractionalIdeal_rel
(x)¶ Return True if x is a fractional ideal of a relative number field.
EXAMPLES:
sage: from sage.rings.number_field.number_field_ideal_rel import is_NumberFieldFractionalIdeal_rel sage: from sage.rings.number_field.number_field_ideal import is_NumberFieldFractionalIdeal sage: is_NumberFieldFractionalIdeal_rel(2/3) False sage: is_NumberFieldFractionalIdeal_rel(ideal(5)) False sage: k.<a> = NumberField(x^2 + 2) sage: I = k.ideal([a + 1]); I Fractional ideal (a + 1) sage: is_NumberFieldFractionalIdeal_rel(I) False sage: R.<x> = QQ[] sage: K.<a> = NumberField(x^2+6) sage: L.<b> = K.extension(K['x'].gen()^4 + a) sage: I = L.ideal(b); I Fractional ideal (6, b) sage: is_NumberFieldFractionalIdeal_rel(I) True sage: N = I.relative_norm(); N Fractional ideal (-a) sage: is_NumberFieldFractionalIdeal_rel(N) False sage: is_NumberFieldFractionalIdeal(N) True