Number Field Ideals¶
AUTHORS:
- Steven Sivek (2005-05-16)
- William Stein (2007-09-06): vastly improved the doctesting
- William Stein and John Cremona (2007-01-28): new class NumberFieldFractionalIdeal now used for all except the 0 ideal
- Radoslav Kirov and Alyson Deines (2010-06-22):
- prime_to_S_part, is_S_unit, is_S_integral
We test that pickling works:
sage: K.<a> = NumberField(x^2 - 5)
sage: I = K.ideal(2/(5+a))
sage: I == loads(dumps(I))
True
-
class
sage.rings.number_field.number_field_ideal.
LiftMap
(OK, M_OK_map, Q, I)¶ Class to hold data needed by lifting maps from residue fields to number field orders.
-
class
sage.rings.number_field.number_field_ideal.
NumberFieldFractionalIdeal
(field, gens, coerce=True)¶ Bases:
sage.structure.element.MultiplicativeGroupElement
,sage.rings.number_field.number_field_ideal.NumberFieldIdeal
A fractional ideal in a number field.
EXAMPLES:
sage: R.<x> = PolynomialRing(QQ) sage: K.<a> = NumberField(x^3 - 2) sage: I = K.ideal(2/(5+a)) sage: J = I^2 sage: Jinv = I^(-2) sage: J*Jinv Fractional ideal (1)
-
denominator
()¶ Return the denominator ideal of this fractional ideal. Each fractional ideal has a unique expression as \(N/D\) where \(N\), \(D\) are coprime integral ideals; the denominator is \(D\).
EXAMPLES:
sage: K.<i>=NumberField(x^2+1) sage: I = K.ideal((3+4*i)/5); I Fractional ideal (4/5*i + 3/5) sage: I.denominator() Fractional ideal (2*i + 1) sage: I.numerator() Fractional ideal (-i - 2) sage: I.numerator().is_integral() and I.denominator().is_integral() True sage: I.numerator() + I.denominator() == K.unit_ideal() True sage: I.numerator()/I.denominator() == I True
-
divides
(other)¶ Returns True if this ideal divides other and False otherwise.
EXAMPLES:
sage: K.<a> = CyclotomicField(11); K Cyclotomic Field of order 11 and degree 10 sage: I = K.factor(31)[0][0]; I Fractional ideal (31, a^5 + 10*a^4 - a^3 + a^2 + 9*a - 1) sage: I.divides(I) True sage: I.divides(31) True sage: I.divides(29) False
-
element_1_mod
(other)¶ Returns an element \(r\) in this ideal such that \(1-r\) is in other
An error is raised if either ideal is not integral of if they are not coprime.
INPUT:
other
– another ideal of the same field, or generators of an ideal.
OUTPUT:
An element \(r\) of the ideal self such that \(1-r\) is in the ideal other
AUTHOR: Maite Aranes (modified to use PARI’s pari:idealaddtoone by Francis Clarke)
EXAMPLES:
sage: K.<a> = NumberField(x^3-2) sage: A = K.ideal(a+1); A; A.norm() Fractional ideal (a + 1) 3 sage: B = K.ideal(a^2-4*a+2); B; B.norm() Fractional ideal (a^2 - 4*a + 2) 68 sage: r = A.element_1_mod(B); r -33 sage: r in A True sage: 1-r in B True
-
euler_phi
()¶ Returns the Euler \(\varphi\)-function of this integral ideal.
This is the order of the multiplicative group of the quotient modulo the ideal.
An error is raised if the ideal is not integral.
EXAMPLES:
sage: K.<i>=NumberField(x^2+1) sage: I = K.ideal(2+i) sage: [r for r in I.residues() if I.is_coprime(r)] [-2*i, -i, i, 2*i] sage: I.euler_phi() 4 sage: J = I^3 sage: J.euler_phi() 100 sage: len([r for r in J.residues() if J.is_coprime(r)]) 100 sage: J = K.ideal(3-2*i) sage: I.is_coprime(J) True sage: I.euler_phi()*J.euler_phi() == (I*J).euler_phi() True sage: L.<b> = K.extension(x^2 - 7) sage: L.ideal(3).euler_phi() 64
-
factor
()¶ Factorization of this ideal in terms of prime ideals.
EXAMPLES:
sage: K.<a> = NumberField(x^4 + 23); K Number Field in a with defining polynomial x^4 + 23 sage: I = K.ideal(19); I Fractional ideal (19) sage: F = I.factor(); F (Fractional ideal (19, 1/2*a^2 + a - 17/2)) * (Fractional ideal (19, 1/2*a^2 - a - 17/2)) sage: type(F) <class 'sage.structure.factorization.Factorization'> sage: list(F) [(Fractional ideal (19, 1/2*a^2 + a - 17/2), 1), (Fractional ideal (19, 1/2*a^2 - a - 17/2), 1)] sage: F.prod() Fractional ideal (19)
-
idealcoprime
(J)¶ Returns l such that l*self is coprime to J.
INPUT:
J
- another integral ideal of the same field as self, which must also be integral.
OUTPUT:
l
- an element such that l*self is coprime to the ideal J
TODO: Extend the implementation to non-integral ideals.
EXAMPLES:
sage: k.<a> = NumberField(x^2 + 23) sage: A = k.ideal(a+1) sage: B = k.ideal(3) sage: A.is_coprime(B) False sage: lam = A.idealcoprime(B); lam -1/6*a + 1/6 sage: (lam*A).is_coprime(B) True
ALGORITHM: Uses Pari function pari:idealcoprime.
-
ideallog
(x, gens=None, check=True)¶ Returns the discrete logarithm of x with respect to the generators given in the
bid
structure of the ideal self, or with respect to the generatorsgens
if these are given.INPUT:
x
- a non-zero element of the number field of self, which must have valuation equal to 0 at all prime ideals in the support of the ideal self.gens
- a list of elements of the number field which generate \((R / I)^*\), where \(R\) is the ring of integers of the field and \(I\) is this ideal, orNone
. IfNone
, use the generators calculated byidealstar()
.check
- if True, do a consistency check on the results. Ignored ifgens
is None.
OUTPUT:
l
- a list of non-negative integers \((x_i)\) such that \(x = \prod_i g_i^{x_i}\) in \((R/I)^*\), where \(x_i\) are the generators, and the list \((x_i)\) is lexicographically minimal with respect to this requirement. If the \(x_i\) generate independent cyclic factors of order \(d_i\), as is the case for the default generators calculated byidealstar()
, this just means that \(0 \le x_i < d_i\).
A
ValueError
will be raised if the elements specified ingens
do not in fact generate the unit group (even if the element \(x\) is in the subgroup they generate).EXAMPLES:
sage: k.<a> = NumberField(x^3 - 11) sage: A = k.ideal(5) sage: G = A.idealstar(2) sage: l = A.ideallog(a^2 +3) sage: r = G(l).value() sage: (a^2 + 3) - r in A True sage: A.small_residue(r) # random a^2 - 2
Examples with custom generators:
sage: K.<a> = NumberField(x^2 - 7) sage: I = K.ideal(17) sage: I.ideallog(a + 7, [1+a, 2]) [10, 3] sage: I.ideallog(a + 7, [2, 1+a]) [0, 118] sage: L.<b> = NumberField(x^4 - x^3 - 7*x^2 + 3*x + 2) sage: J = L.ideal(-b^3 - b^2 - 2) sage: u = -14*b^3 + 21*b^2 + b - 1 sage: v = 4*b^2 + 2*b - 1 sage: J.ideallog(5+2*b, [u, v], check=True) [4, 13]
A non-example:
sage: I.ideallog(a + 7, [2]) Traceback (most recent call last): ... ValueError: Given elements do not generate unit group -- they generate a subgroup of index 36
ALGORITHM: Uses Pari function pari:ideallog, and (if
gens
is not None) a Hermite normal form calculation to express the result in terms of the generatorsgens
.
-
idealstar
(flag=1)¶ Returns the finite abelian group \((O_K/I)^*\), where I is the ideal self of the number field K, and \(O_K\) is the ring of integers of K.
INPUT:
flag
(int default 1) – whenflag
=2, it also computes the generators of the group \((O_K/I)^*\), which takes more time. By defaultflag
=1 (no generators are computed). In both cases the special pari structurebid
is computed as well. Ifflag
=0 (deprecated) it computes only the group structure of \((O_K/I)^*\) (with generators) and not the specialbid
structure.
OUTPUT:
The finite abelian group \((O_K/I)^*\).
Note
Uses the pari function pari:idealstar. The pari function outputs a special
bid
structure which is stored in the internal field_bid
of the ideal (when flag=1,2). The special structurebid
is used in the pari function pari:ideallog to compute discrete logarithms.EXAMPLES:
sage: k.<a> = NumberField(x^3 - 11) sage: A = k.ideal(5) sage: G = A.idealstar(); G Multiplicative Abelian group isomorphic to C24 x C4 sage: G.gens() (f0, f1) sage: G = A.idealstar(2) sage: G.gens() (f0, f1) sage: G.gens_values() # random output (2*a^2 - 1, 2*a^2 + 2*a - 2) sage: all(G.gen(i).value() in k for i in range(G.ngens())) True
ALGORITHM: Uses Pari function pari:idealstar
-
invertible_residues
(reduce=True)¶ Returns a iterator through a list of invertible residues modulo this integral ideal.
An error is raised if this fractional ideal is not integral.
INPUT:
reduce
- bool. If True (default), usesmall_residue
to get small representatives of the residues.
OUTPUT:
- An iterator through a list of invertible residues modulo this ideal \(I\), i.e. a list of elements in the ring of integers \(R\) representing the elements of \((R/I)^*\).
ALGORITHM: Use pari:idealstar to find the group structure and generators of the multiplicative group modulo the ideal.
EXAMPLES:
sage: K.<i>=NumberField(x^2+1) sage: ires = K.ideal(2).invertible_residues(); ires xmrange_iter([[0, 1]], <function ...<lambda> at 0x...>) sage: list(ires) [1, -i] sage: list(K.ideal(2+i).invertible_residues()) [1, 2, 4, 3] sage: list(K.ideal(i).residues()) [0] sage: list(K.ideal(i).invertible_residues()) [1] sage: I = K.ideal(3+6*i) sage: units=I.invertible_residues() sage: len(list(units))==I.euler_phi() True sage: K.<a> = NumberField(x^3-10) sage: I = K.ideal(a-1) sage: len(list(I.invertible_residues())) == I.euler_phi() True sage: K.<z> = CyclotomicField(10) sage: len(list(K.primes_above(3)[0].invertible_residues())) 80
AUTHOR: John Cremona
-
invertible_residues_mod
(subgp_gens=[], reduce=True)¶ Returns a iterator through a list of representatives for the invertible residues modulo this integral ideal, modulo the subgroup generated by the elements in the list
subgp_gens
.INPUT:
subgp_gens
- either None or a list of elements of the number field of self. These need not be integral, but should be coprime to the ideal self. If the list is empty or None, the function returns an iterator through a list of representatives for the invertible residues modulo the integral ideal self.reduce
- bool. If True (default), usesmall_residues
to get small representatives of the residues.
Note
See also invertible_residues() for a simpler version without the subgroup.
OUTPUT:
- An iterator through a list of representatives for the invertible
residues modulo self and modulo the group generated by
subgp_gens
, i.e. a list of elements in the ring of integers \(R\) representing the elements of \((R/I)^*/U\), where \(I\) is this ideal and \(U\) is the subgroup of \((R/I)^*\) generated bysubgp_gens
.
EXAMPLES:
sage: k.<a> = NumberField(x^2 +23) sage: I = k.ideal(a) sage: list(I.invertible_residues_mod([-1])) [1, 5, 2, 10, 4, 20, 8, 17, 16, 11, 9] sage: list(I.invertible_residues_mod([1/2])) [1, 5] sage: list(I.invertible_residues_mod([23])) Traceback (most recent call last): ... TypeError: the element must be invertible mod the ideal
sage: K.<a> = NumberField(x^3-10) sage: I = K.ideal(a-1) sage: len(list(I.invertible_residues_mod([]))) == I.euler_phi() True sage: I = K.ideal(1) sage: list(I.invertible_residues_mod([])) [1]
sage: K.<z> = CyclotomicField(10) sage: len(list(K.primes_above(3)[0].invertible_residues_mod([]))) 80
AUTHOR: Maite Aranes.
-
is_S_integral
(S)¶ Return True if this fractional ideal is integral with respect to the list of primes
S
.INPUT:
- \(S\) - a list of prime ideals (not checked if they are indeed prime).
Note
This function assumes that \(S\) is a list of prime ideals, but does not check this. This function will fail if \(S\) is not a list of prime ideals.
OUTPUT:
True, if the ideal is \(S\)-integral: that is, if the valuations of the ideal at all primes not in \(S\) are non-negative. False, otherwise.
EXAMPLES:
sage: K.<a> = NumberField(x^2+23) sage: I = K.ideal(1/2) sage: P = K.ideal(2,1/2*a - 1/2) sage: I.is_S_integral([P]) False sage: J = K.ideal(1/5) sage: J.is_S_integral([K.ideal(5)]) True
-
is_S_unit
(S)¶ Return True if this fractional ideal is a unit with respect to the list of primes
S
.INPUT:
- \(S\) - a list of prime ideals (not checked if they are indeed prime).
Note
This function assumes that \(S\) is a list of prime ideals, but does not check this. This function will fail if \(S\) is not a list of prime ideals.
OUTPUT:
True, if the ideal is an \(S\)-unit: that is, if the valuations of the ideal at all primes not in \(S\) are zero. False, otherwise.
EXAMPLES:
sage: K.<a> = NumberField(x^2+23) sage: I = K.ideal(2) sage: P = I.factor()[0][0] sage: I.is_S_unit([P]) False
-
is_coprime
(other)¶ Returns True if this ideal is coprime to the other, else False.
INPUT:
other
– another ideal of the same field, or generators of an ideal.
OUTPUT:
True if self and other are coprime, else False.
Note
This function works for fractional ideals as well as integral ideals.
AUTHOR: John Cremona
EXAMPLES:
sage: K.<i>=NumberField(x^2+1) sage: I = K.ideal(2+i) sage: J = K.ideal(2-i) sage: I.is_coprime(J) True sage: (I^-1).is_coprime(J^3) True sage: I.is_coprime(5) False sage: I.is_coprime(6+i) True
See trac ticket #4536:
sage: E.<a> = NumberField(x^5 + 7*x^4 + 18*x^2 + x - 3) sage: OE = E.ring_of_integers() sage: i,j,k = [u[0] for u in factor(3*OE)] sage: (i/j).is_coprime(j/k) False sage: (j/k).is_coprime(j/k) False sage: F.<a, b> = NumberField([x^2 - 2, x^2 - 3]) sage: F.ideal(3 - a*b).is_coprime(F.ideal(3)) False
-
is_maximal
()¶ Return True if this ideal is maximal. This is equivalent to self being prime, since it is nonzero.
EXAMPLES:
sage: K.<a> = NumberField(x^3 + 3); K Number Field in a with defining polynomial x^3 + 3 sage: K.ideal(5).is_maximal() False sage: K.ideal(7).is_maximal() True
-
is_trivial
(proof=None)¶ Returns True if this is a trivial ideal.
EXAMPLES:
sage: F.<a> = QuadraticField(-5) sage: I = F.ideal(3) sage: I.is_trivial() False sage: J = F.ideal(5) sage: J.is_trivial() False sage: (I+J).is_trivial() True
-
numerator
()¶ Return the numerator ideal of this fractional ideal.
Each fractional ideal has a unique expression as \(N/D\) where \(N\), \(D\) are coprime integral ideals. The numerator is \(N\).
EXAMPLES:
sage: K.<i>=NumberField(x^2+1) sage: I = K.ideal((3+4*i)/5); I Fractional ideal (4/5*i + 3/5) sage: I.denominator() Fractional ideal (2*i + 1) sage: I.numerator() Fractional ideal (-i - 2) sage: I.numerator().is_integral() and I.denominator().is_integral() True sage: I.numerator() + I.denominator() == K.unit_ideal() True sage: I.numerator()/I.denominator() == I True
-
prime_factors
()¶ Return a list of the prime ideal factors of self
- OUTPUT:
- list – list of prime ideals (a new list is returned each time this function is called)
EXAMPLES:
sage: K.<w> = NumberField(x^2 + 23) sage: I = ideal(w+1) sage: I.prime_factors() [Fractional ideal (2, 1/2*w - 1/2), Fractional ideal (2, 1/2*w + 1/2), Fractional ideal (3, 1/2*w + 1/2)]
-
prime_to_S_part
(S)¶ Return the part of this fractional ideal which is coprime to the prime ideals in the list
S
.Note
This function assumes that \(S\) is a list of prime ideals, but does not check this. This function will fail if \(S\) is not a list of prime ideals.
INPUT:
- \(S\) – a list of prime ideals
OUTPUT:
A fractional ideal coprime to the primes in \(S\), whose prime factorization is that of
self
with the primes in \(S\) removed.EXAMPLES:
sage: K.<a> = NumberField(x^2-23) sage: I = K.ideal(24) sage: S = [K.ideal(-a+5),K.ideal(5)] sage: I.prime_to_S_part(S) Fractional ideal (3) sage: J = K.ideal(15) sage: J.prime_to_S_part(S) Fractional ideal (3) sage: K.<a> = NumberField(x^5-23) sage: I = K.ideal(24) sage: S = [K.ideal(15161*a^4 + 28383*a^3 + 53135*a^2 + 99478*a + 186250),K.ideal(2*a^4 + 3*a^3 + 4*a^2 + 15*a + 11), K.ideal(101)] sage: I.prime_to_S_part(S) Fractional ideal (24)
-
prime_to_idealM_part
(M)¶ Version for integral ideals of the
prime_to_m_part
function over \(\ZZ\). Returns the largest divisor of self that is coprime to the idealM
.INPUT:
M
– an integral ideal of the same field, or generators of an ideal
OUTPUT:
An ideal which is the largest divisor of self that is coprime to \(M\).
AUTHOR: Maite Aranes
EXAMPLES:
sage: k.<a> = NumberField(x^2 + 23) sage: I = k.ideal(a+1) sage: M = k.ideal(2, 1/2*a - 1/2) sage: J = I.prime_to_idealM_part(M); J Fractional ideal (12, 1/2*a + 13/2) sage: J.is_coprime(M) True sage: J = I.prime_to_idealM_part(2); J Fractional ideal (3, 1/2*a + 1/2) sage: J.is_coprime(M) True
-
ramification_index
()¶ Return the ramification index of this fractional ideal, assuming it is prime. Otherwise, raise a ValueError.
The ramification index is the power of this prime appearing in the factorization of the prime in \(\ZZ\) that this prime lies over.
EXAMPLES:
sage: K.<a> = NumberField(x^2 + 2); K Number Field in a with defining polynomial x^2 + 2 sage: f = K.factor(2); f (Fractional ideal (a))^2 sage: f[0][0].ramification_index() 2 sage: K.ideal(13).ramification_index() 1 sage: K.ideal(17).ramification_index() Traceback (most recent call last): ... ValueError: Fractional ideal (17) is not a prime ideal
-
ray_class_number
()¶ Return the order of the ray class group modulo this ideal. This is a wrapper around Pari’s pari:bnrclassno function.
EXAMPLES:
sage: K.<z> = QuadraticField(-23) sage: p = K.primes_above(3)[0] sage: p.ray_class_number() 3 sage: x = polygen(K) sage: L.<w> = K.extension(x^3 - z) sage: I = L.ideal(5) sage: I.ray_class_number() 5184
-
reduce
(f)¶ Return the canonical reduction of the element of \(f\) modulo the ideal \(I\) (=self). This is an element of \(R\) (the ring of integers of the number field) that is equivalent modulo \(I\) to \(f\).
An error is raised if this fractional ideal is not integral or the element \(f\) is not integral.
INPUT:
f
- an integral element of the number field
OUTPUT:
An integral element \(g\), such that \(f - g\) belongs to the ideal self and such that \(g\) is a canonical reduced representative of the coset \(f + I\) (\(I\) =self) as described in the
residues
function, namely an integral element with coordinates \((r_0, \dots,r_{n-1})\), where:- \(r_i\) is reduced modulo \(d_i\)
- \(d_i = b_i[i]\), with \({b_0, b_1, \dots, b_n}\) HNF basis of the ideal self.
Note
The reduced element \(g\) is not necessarily small. To get a small \(g\) use the method
small_residue
.EXAMPLES:
sage: k.<a> = NumberField(x^3 + 11) sage: I = k.ideal(5, a^2 - a + 1) sage: c = 4*a + 9 sage: I.reduce(c) a^2 - 2*a sage: c - I.reduce(c) in I True
The reduced element is in the list of canonical representatives returned by the
residues
method:sage: I.reduce(c) in list(I.residues()) True
The reduced element does not necessarily have smaller norm (use
small_residue
for that)sage: c.norm() 25 sage: (I.reduce(c)).norm() 209 sage: (I.small_residue(c)).norm() 10
Sometimes the canonical reduced representative of \(1\) won’t be \(1\) (it depends on the choice of basis for the ring of integers):
sage: k.<a> = NumberField(x^2 + 23) sage: I = k.ideal(3) sage: I.reduce(3*a + 1) -3/2*a - 1/2 sage: k.ring_of_integers().basis() [1/2*a + 1/2, a]
AUTHOR: Maite Aranes.
-
residue_class_degree
()¶ Return the residue class degree of this fractional ideal, assuming it is prime. Otherwise, raise a ValueError.
The residue class degree of a prime ideal \(I\) is the degree of the extension \(O_K/I\) of its prime subfield.
EXAMPLES:
sage: K.<a> = NumberField(x^5 + 2); K Number Field in a with defining polynomial x^5 + 2 sage: f = K.factor(19); f (Fractional ideal (a^2 + a - 3)) * (Fractional ideal (-2*a^4 - a^2 + 2*a - 1)) * (Fractional ideal (a^2 + a - 1)) sage: [i.residue_class_degree() for i, _ in f] [2, 2, 1]
-
residue_field
(names=None)¶ Return the residue class field of this fractional ideal, which must be prime.
EXAMPLES:
sage: K.<a> = NumberField(x^3-7) sage: P = K.ideal(29).factor()[0][0] sage: P.residue_field() Residue field in abar of Fractional ideal (2*a^2 + 3*a - 10) sage: P.residue_field('z') Residue field in z of Fractional ideal (2*a^2 + 3*a - 10)
Another example:
sage: K.<a> = NumberField(x^3-7) sage: P = K.ideal(389).factor()[0][0]; P Fractional ideal (389, a^2 - 44*a - 9) sage: P.residue_class_degree() 2 sage: P.residue_field() Residue field in abar of Fractional ideal (389, a^2 - 44*a - 9) sage: P.residue_field('z') Residue field in z of Fractional ideal (389, a^2 - 44*a - 9) sage: FF.<w> = P.residue_field() sage: FF Residue field in w of Fractional ideal (389, a^2 - 44*a - 9) sage: FF((a+1)^390) 36 sage: FF(a) w
An example of reduction maps to the residue field: these are defined on the whole valuation ring, i.e. the subring of the number field consisting of elements with non-negative valuation. This shows that the issue raised in trac ticket #1951 has been fixed:
sage: K.<i> = NumberField(x^2 + 1) sage: P1, P2 = [g[0] for g in K.factor(5)]; (P1,P2) (Fractional ideal (-i - 2), Fractional ideal (2*i + 1)) sage: a = 1/(1+2*i) sage: F1, F2 = [g.residue_field() for g in [P1,P2]]; (F1,F2) (Residue field of Fractional ideal (-i - 2), Residue field of Fractional ideal (2*i + 1)) sage: a.valuation(P1) 0 sage: F1(i/7) 4 sage: F1(a) 3 sage: a.valuation(P2) -1 sage: F2(a) Traceback (most recent call last): ZeroDivisionError: Cannot reduce field element -2/5*i + 1/5 modulo Fractional ideal (2*i + 1): it has negative valuation
An example with a relative number field:
sage: L.<a,b> = NumberField([x^2 + 1, x^2 - 5]) sage: p = L.ideal((-1/2*b - 1/2)*a + 1/2*b - 1/2) sage: R = p.residue_field(); R Residue field in abar of Fractional ideal ((-1/2*b - 1/2)*a + 1/2*b - 1/2) sage: R.cardinality() 9 sage: R(17) 2 sage: R((a + b)/17) abar sage: R(1/b) 2*abar
We verify that trac ticket #8721 is fixed:
sage: L.<a, b> = NumberField([x^2 - 3, x^2 - 5]) sage: L.ideal(a).residue_field() Residue field in abar of Fractional ideal (a)
-
residues
()¶ Return a iterator through a complete list of residues modulo this integral ideal.
An error is raised if this fractional ideal is not integral.
OUTPUT:
An iterator through a complete list of residues modulo the integral ideal self. This list is the set of canonical reduced representatives given by all integral elements with coordinates \((r_0, \dots,r_{n-1})\), where:
- \(r_i\) is reduced modulo \(d_i\)
- \(d_i = b_i[i]\), with \({b_0, b_1, \dots, b_n}\) HNF basis of the ideal.
AUTHOR: John Cremona (modified by Maite Aranes)
EXAMPLES:
sage: K.<i>=NumberField(x^2+1) sage: res = K.ideal(2).residues(); res xmrange_iter([[0, 1], [0, 1]], <function ...<lambda> at 0x...>) sage: list(res) [0, i, 1, i + 1] sage: list(K.ideal(2+i).residues()) [-2*i, -i, 0, i, 2*i] sage: list(K.ideal(i).residues()) [0] sage: I = K.ideal(3+6*i) sage: reps=I.residues() sage: len(list(reps)) == I.norm() True sage: all(r == s or not (r-s) in I for r in reps for s in reps) # long time (6s on sage.math, 2011) True sage: K.<a> = NumberField(x^3-10) sage: I = K.ideal(a-1) sage: len(list(I.residues())) == I.norm() True sage: K.<z> = CyclotomicField(11) sage: len(list(K.primes_above(3)[0].residues())) == 3**5 # long time (5s on sage.math, 2011) True
-
small_residue
(f)¶ Given an element \(f\) of the ambient number field, returns an element \(g\) such that \(f - g\) belongs to the ideal self (which must be integral), and \(g\) is small.
Note
The reduced representative returned is not uniquely determined.
ALGORITHM: Uses Pari function pari:nfeltreduce.
EXAMPLES:
sage: k.<a> = NumberField(x^2 + 5) sage: I = k.ideal(a) sage: I.small_residue(14) 4
sage: K.<a> = NumberField(x^5 + 7*x^4 + 18*x^2 + x - 3) sage: I = K.ideal(5) sage: I.small_residue(a^2 -13) a^2 + 5*a - 3
-
-
class
sage.rings.number_field.number_field_ideal.
NumberFieldIdeal
(field, gens, coerce=True)¶ Bases:
sage.rings.ideal.Ideal_generic
An ideal of a number field.
-
S_ideal_class_log
(S)¶ S-class group version of
ideal_class_log()
.EXAMPLES:
sage: K.<a> = QuadraticField(-14) sage: S = K.primes_above(2) sage: I = K.ideal(3, a + 1) sage: I.S_ideal_class_log(S) [1] sage: I.S_ideal_class_log([]) [3]
-
absolute_norm
()¶ A synonym for norm.
EXAMPLES:
sage: K.<i> = NumberField(x^2 + 1) sage: K.ideal(1 + 2*i).absolute_norm() 5
-
absolute_ramification_index
()¶ A synonym for ramification_index.
EXAMPLES:
sage: K.<i> = NumberField(x^2 + 1) sage: K.ideal(1 + i).absolute_ramification_index() 2
-
artin_symbol
()¶ Return the Artin symbol \(( K / \QQ, P)\), where \(K\) is the number field of \(P\) =self. This is the unique element \(s\) of the decomposition group of \(P\) such that \(s(x) = x^p \pmod{P}\) where \(p\) is the residue characteristic of \(P\). (Here \(P\) (self) should be prime and unramified.)
See the
artin_symbol
method of theGaloisGroup_v2
class for further documentation and examples.EXAMPLES:
sage: QuadraticField(-23, 'w').primes_above(7)[0].artin_symbol() (1,2)
-
basis
()¶ Return a basis for this ideal viewed as a \(\ZZ\) -module.
OUTPUT:
An immutable sequence of elements of this ideal (note: their parent is the number field) forming a basis for this ideal.
EXAMPLES:
sage: K.<z> = CyclotomicField(7) sage: I = K.factor(11)[0][0] sage: I.basis() # warning -- choice of basis can be somewhat random [11, 11*z, 11*z^2, z^3 + 5*z^2 + 4*z + 10, z^4 + z^2 + z + 5, z^5 + z^4 + z^3 + 2*z^2 + 6*z + 5]
An example of a non-integral ideal.:
sage: J = 1/I sage: J # warning -- choice of generators can be somewhat random Fractional ideal (2/11*z^5 + 2/11*z^4 + 3/11*z^3 + 2/11) sage: J.basis() # warning -- choice of basis can be somewhat random [1, z, z^2, 1/11*z^3 + 7/11*z^2 + 6/11*z + 10/11, 1/11*z^4 + 1/11*z^2 + 1/11*z + 7/11, 1/11*z^5 + 1/11*z^4 + 1/11*z^3 + 2/11*z^2 + 8/11*z + 7/11]
Number fields defined by non-monic and non-integral polynomials are supported (trac ticket #252):
sage: K.<a> = NumberField(2*x^2 - 1/3) sage: K.ideal(a).basis() [1, a]
-
coordinates
(x)¶ Returns the coordinate vector of \(x\) with respect to this ideal.
- INPUT:
x
– an element of the number field (or ring of integers) of this ideal.- OUTPUT:
- List giving the coordinates of \(x\) with respect to the integral basis of the ideal. In general this will be a vector of rationals; it will consist of integers if and only if \(x\) is in the ideal.
AUTHOR: John Cremona 2008-10-31
ALGORITHM:
Uses linear algebra. Provides simpler implementations for
_contains_()
,is_integral()
andsmallest_integer()
.EXAMPLES:
sage: K.<i> = QuadraticField(-1) sage: I = K.ideal(7+3*i) sage: Ibasis = I.integral_basis(); Ibasis [58, i + 41] sage: a = 23-14*i sage: acoords = I.coordinates(a); acoords (597/58, -14) sage: sum([Ibasis[j]*acoords[j] for j in range(2)]) == a True sage: b = 123+456*i sage: bcoords = I.coordinates(b); bcoords (-18573/58, 456) sage: sum([Ibasis[j]*bcoords[j] for j in range(2)]) == b True sage: J = K.ideal(0) sage: J.coordinates(0) () sage: J.coordinates(1) Traceback (most recent call last): ... TypeError: vector is not in free module
-
decomposition_group
()¶ Return the decomposition group of self, as a subset of the automorphism group of the number field of self. Raises an error if the field isn’t Galois. See the decomposition_group method of the
GaloisGroup_v2
class for further examples and doctests.EXAMPLES:
sage: QuadraticField(-23, 'w').primes_above(7)[0].decomposition_group() Galois group of Number Field in w with defining polynomial x^2 + 23 with w = 4.795831523312720?*I
-
free_module
()¶ Return the free \(\ZZ\)-module contained in the vector space associated to the ambient number field, that corresponds to this ideal.
EXAMPLES:
sage: K.<z> = CyclotomicField(7) sage: I = K.factor(11)[0][0]; I Fractional ideal (-2*z^4 - 2*z^2 - 2*z + 1) sage: A = I.free_module() sage: A # warning -- choice of basis can be somewhat random Free module of degree 6 and rank 6 over Integer Ring User basis matrix: [11 0 0 0 0 0] [ 0 11 0 0 0 0] [ 0 0 11 0 0 0] [10 4 5 1 0 0] [ 5 1 1 0 1 0] [ 5 6 2 1 1 1]
However, the actual \(\ZZ\)-module is not at all random:
sage: A.basis_matrix().change_ring(ZZ).echelon_form() [ 1 0 0 5 1 1] [ 0 1 0 1 1 7] [ 0 0 1 7 6 10] [ 0 0 0 11 0 0] [ 0 0 0 0 11 0] [ 0 0 0 0 0 11]
The ideal doesn’t have to be integral:
sage: J = I^(-1) sage: B = J.free_module() sage: B.echelonized_basis_matrix() [ 1/11 0 0 7/11 1/11 1/11] [ 0 1/11 0 1/11 1/11 5/11] [ 0 0 1/11 5/11 4/11 10/11] [ 0 0 0 1 0 0] [ 0 0 0 0 1 0] [ 0 0 0 0 0 1]
This also works for relative extensions:
sage: K.<a,b> = NumberField([x^2 + 1, x^2 + 2]) sage: I = K.fractional_ideal(4) sage: I.free_module() Free module of degree 4 and rank 4 over Integer Ring User basis matrix: [ 4 0 0 0] [ -3 7 -1 1] [ 3 7 1 1] [ 0 -10 0 -2] sage: J = I^(-1); J.free_module() Free module of degree 4 and rank 4 over Integer Ring User basis matrix: [ 1/4 0 0 0] [-3/16 7/16 -1/16 1/16] [ 3/16 7/16 1/16 1/16] [ 0 -5/8 0 -1/8]
An example of intersecting ideals by intersecting free modules.:
sage: K.<a> = NumberField(x^3 + x^2 - 2*x + 8) sage: I = K.factor(2) sage: p1 = I[0][0]; p2 = I[1][0] sage: N = p1.free_module().intersection(p2.free_module()); N Free module of degree 3 and rank 3 over Integer Ring Echelon basis matrix: [ 1 1/2 1/2] [ 0 1 1] [ 0 0 2] sage: N.index_in(p1.free_module()).abs() 2
-
gens_reduced
(proof=None)¶ Express this ideal in terms of at most two generators, and one if possible.
This function indirectly uses
bnfisprincipal
, so setproof=True
if you want to prove correctness (which is the default).EXAMPLES:
sage: R.<x> = PolynomialRing(QQ) sage: K.<a> = NumberField(x^2 + 5) sage: K.ideal(0).gens_reduced() (0,) sage: J = K.ideal([a+2, 9]) sage: J.gens() (a + 2, 9) sage: J.gens_reduced() # random sign (a + 2,) sage: K.ideal([a+2, 3]).gens_reduced() (3, a + 2)
-
gens_two
()¶ Express this ideal using exactly two generators, the first of which is a generator for the intersection of the ideal with \(Q\).
ALGORITHM: uses PARI’s pari:idealtwoelt function, which runs in randomized polynomial time and is very fast in practice.
EXAMPLES:
sage: R.<x> = PolynomialRing(QQ) sage: K.<a> = NumberField(x^2 + 5) sage: J = K.ideal([a+2, 9]) sage: J.gens() (a + 2, 9) sage: J.gens_two() (9, a + 2) sage: K.ideal([a+5, a+8]).gens_two() (3, a + 2) sage: K.ideal(0).gens_two() (0, 0)
The second generator is zero if and only if the ideal is generated by a rational, in contrast to the PARI function pari:idealtwoelt:
sage: I = K.ideal(12) sage: pari(K).idealtwoelt(I) # Note that second element is not zero [12, [0, 12]~] sage: I.gens_two() (12, 0)
-
ideal_class_log
(proof=None)¶ Return the output of PARI’s pari:bnfisprincipal for this ideal, i.e. a vector expressing the class of this ideal in terms of a set of generators for the class group.
Since it uses the PARI method pari:bnfisprincipal, specify
proof=True
(this is the default setting) to prove the correctness of the output.EXAMPLES:
When the class number is 1, the result is always the empty list:
sage: K.<a> = QuadraticField(-163) sage: J = K.primes_above(random_prime(10^6))[0] sage: J.ideal_class_log() []
An example with class group of order 2. The first ideal is not principal, the second one is:
sage: K.<a> = QuadraticField(-5) sage: J = K.ideal(23).factor()[0][0] sage: J.ideal_class_log() [1] sage: (J^10).ideal_class_log() [0]
An example with a more complicated class group:
sage: K.<a, b> = NumberField([x^3 - x + 1, x^2 + 26]) sage: K.class_group() Class group of order 18 with structure C6 x C3 of Number Field in a with defining polynomial x^3 - x + 1 over its base field sage: K.primes_above(7)[0].ideal_class_log() # random [1, 2]
-
inertia_group
()¶ Return the inertia group of self, i.e. the set of elements s of the Galois group of the number field of self (which we assume is Galois) such that s acts trivially modulo self. This is the same as the 0th ramification group of self. See the inertia_group method of the
GaloisGroup_v2
class for further examples and doctests.EXAMPLES:
sage: QuadraticField(-23, 'w').primes_above(23)[0].inertia_group() Galois group of Number Field in w with defining polynomial x^2 + 23 with w = 4.795831523312720?*I
-
integral_basis
()¶ Return a list of generators for this ideal as a \(\ZZ\)-module.
EXAMPLES:
sage: R.<x> = PolynomialRing(QQ) sage: K.<i> = NumberField(x^2 + 1) sage: J = K.ideal(i+1) sage: J.integral_basis() [2, i + 1]
-
integral_split
()¶ Return a tuple \((I, d)\), where \(I\) is an integral ideal, and \(d\) is the smallest positive integer such that this ideal is equal to \(I/d\).
EXAMPLES:
sage: R.<x> = PolynomialRing(QQ) sage: K.<a> = NumberField(x^2-5) sage: I = K.ideal(2/(5+a)) sage: I.is_integral() False sage: J,d = I.integral_split() sage: J Fractional ideal (-1/2*a + 5/2) sage: J.is_integral() True sage: d 5 sage: I == J/d True
-
intersection
(other)¶ Return the intersection of self and other.
EXAMPLES:
sage: K.<a> = QuadraticField(-11) sage: p = K.ideal((a + 1)/2); q = K.ideal((a + 3)/2) sage: p.intersection(q) == q.intersection(p) == K.ideal(a-2) True
An example with non-principal ideals:
sage: L.<a> = NumberField(x^3 - 7) sage: p = L.ideal(a^2 + a + 1, 2) sage: q = L.ideal(a+1) sage: p.intersection(q) == L.ideal(8, 2*a + 2) True
A relative example:
sage: L.<a,b> = NumberField([x^2 + 11, x^2 - 5]) sage: A = L.ideal([15, (-3/2*b + 7/2)*a - 8]) sage: B = L.ideal([6, (-1/2*b + 1)*a - b - 5/2]) sage: A.intersection(B) == L.ideal(-1/2*a - 3/2*b - 1) True
-
is_integral
()¶ Return True if this ideal is integral.
EXAMPLES:
sage: R.<x> = PolynomialRing(QQ) sage: K.<a> = NumberField(x^5-x+1) sage: K.ideal(a).is_integral() True sage: (K.ideal(1) / (3*a+1)).is_integral() False
-
is_maximal
()¶ Return True if this ideal is maximal. This is equivalent to self being prime and nonzero.
EXAMPLES:
sage: K.<a> = NumberField(x^3 + 3); K Number Field in a with defining polynomial x^3 + 3 sage: K.ideal(5).is_maximal() False sage: K.ideal(7).is_maximal() True
-
is_prime
()¶ Return True if this ideal is prime.
EXAMPLES:
sage: K.<a> = NumberField(x^2 - 17); K Number Field in a with defining polynomial x^2 - 17 sage: K.ideal(5).is_prime() # inert prime True sage: K.ideal(13).is_prime() # split False sage: K.ideal(17).is_prime() # ramified False
-
is_principal
(proof=None)¶ Return True if this ideal is principal.
Since it uses the PARI method pari:bnfisprincipal, specify
proof=True
(this is the default setting) to prove the correctness of the output.EXAMPLES:
sage: K = QuadraticField(-119,'a') sage: P = K.factor(2)[1][0] sage: P.is_principal() False sage: I = P^5 sage: I.is_principal() True sage: I # random Fractional ideal (-1/2*a + 3/2) sage: P = K.ideal([2]).factor()[1][0] sage: I = P^5 sage: I.is_principal() True
-
is_zero
()¶ Return True iff self is the zero ideal
Note that \((0)\) is a
NumberFieldIdeal
, not aNumberFieldFractionalIdeal
.EXAMPLES:
sage: K.<a> = NumberField(x^2 + 2); K Number Field in a with defining polynomial x^2 + 2 sage: K.ideal(3).is_zero() False sage: I=K.ideal(0); I.is_zero() True sage: I Ideal (0) of Number Field in a with defining polynomial x^2 + 2
-
norm
()¶ Return the norm of this fractional ideal as a rational number.
EXAMPLES:
sage: K.<a> = NumberField(x^4 + 23); K Number Field in a with defining polynomial x^4 + 23 sage: I = K.ideal(19); I Fractional ideal (19) sage: factor(I.norm()) 19^4 sage: F = I.factor() sage: F[0][0].norm().factor() 19^2
-
number_field
()¶ Return the number field that this is a fractional ideal in.
EXAMPLES:
sage: K.<a> = NumberField(x^2 + 2); K Number Field in a with defining polynomial x^2 + 2 sage: K.ideal(3).number_field() Number Field in a with defining polynomial x^2 + 2 sage: K.ideal(0).number_field() # not tested (not implemented) Number Field in a with defining polynomial x^2 + 2
-
pari_hnf
()¶ Return PARI’s representation of this ideal in Hermite normal form.
EXAMPLES:
sage: R.<x> = PolynomialRing(QQ) sage: K.<a> = NumberField(x^3 - 2) sage: I = K.ideal(2/(5+a)) sage: I.pari_hnf() [2, 0, 50/127; 0, 2, 244/127; 0, 0, 2/127]
-
pari_prime
()¶ Returns a PARI prime ideal corresponding to the ideal
self
.INPUT:
self
- a prime ideal.
OUTPUT: a PARI “prime ideal”, i.e. a five-component vector \([p,a,e,f,b]\) representing the prime ideal \(p O_K + a O_K\), \(e\), \(f\) as usual, \(a\) as vector of components on the integral basis, \(b\) Lenstra’s constant.
EXAMPLES:
sage: K.<i> = QuadraticField(-1) sage: K.ideal(3).pari_prime() [3, [3, 0]~, 1, 2, 1] sage: K.ideal(2+i).pari_prime() [5, [2, 1]~, 1, 1, [-2, -1; 1, -2]] sage: K.ideal(2).pari_prime() Traceback (most recent call last): ... ValueError: Fractional ideal (2) is not a prime ideal
-
ramification_group
(v)¶ Return the \(v\)’th ramification group of self, i.e. the set of elements \(s\) of the Galois group of the number field of self (which we assume is Galois) such that \(s\) acts trivially modulo the \((v+1)\)’st power of self. See the ramification_group method of the
GaloisGroup
class for further examples and doctests.EXAMPLES:
sage: QuadraticField(-23, 'w').primes_above(23)[0].ramification_group(0) Galois group of Number Field in w with defining polynomial x^2 + 23 with w = 4.795831523312720?*I sage: QuadraticField(-23, 'w').primes_above(23)[0].ramification_group(1) Subgroup [()] of Galois group of Number Field in w with defining polynomial x^2 + 23 with w = 4.795831523312720?*I
-
random_element
(*args, **kwds)¶ Return a random element of this order.
INPUT:
*args
,*kwds
- Parameters passed to the random integer function. See the documentation ofZZ.random_element()
for details.
OUTPUT:
A random element of this fractional ideal, computed as a random \(\ZZ\)-linear combination of the basis.
EXAMPLES:
sage: K.<a> = NumberField(x^3 + 2) sage: I = K.ideal(1-a) sage: I.random_element() # random output -a^2 - a - 19 sage: I.random_element(distribution="uniform") # random output a^2 - 2*a - 8 sage: I.random_element(-30,30) # random output -7*a^2 - 17*a - 75 sage: I.random_element(-100, 200).is_integral() True sage: I.random_element(-30,30).parent() is K True
A relative example:
sage: K.<a, b> = NumberField([x^2 + 2, x^2 + 1000*x + 1]) sage: I = K.ideal(1-a) sage: I.random_element() # random output 17/500002*a^3 + 737253/250001*a^2 - 1494505893/500002*a + 752473260/250001 sage: I.random_element().is_integral() True sage: I.random_element(-100, 200).parent() is K True
-
reduce_equiv
()¶ Return a small ideal that is equivalent to self in the group of fractional ideals modulo principal ideals. Very often (but not always) if self is principal then this function returns the unit ideal.
ALGORITHM: Calls pari:idealred function.
EXAMPLES:
sage: K.<w> = NumberField(x^2 + 23) sage: I = ideal(w*23^5); I Fractional ideal (6436343*w) sage: I.reduce_equiv() Fractional ideal (1) sage: I = K.class_group().0.ideal()^10; I Fractional ideal (1024, 1/2*w + 979/2) sage: I.reduce_equiv() Fractional ideal (2, 1/2*w - 1/2)
-
relative_norm
()¶ A synonym for norm.
EXAMPLES:
sage: K.<i> = NumberField(x^2 + 1) sage: K.ideal(1 + 2*i).relative_norm() 5
-
relative_ramification_index
()¶ A synonym for ramification_index.
EXAMPLES:
sage: K.<i> = NumberField(x^2 + 1) sage: K.ideal(1 + i).relative_ramification_index() 2
-
residue_symbol
(e, m, check=True)¶ The m-th power residue symbol for an element e and the proper ideal.
\[\left(\frac{\alpha}{\mathbf{P}}\right) \equiv \alpha^{\frac{N(\mathbf{P})-1}{m}} \operatorname{mod} \mathbf{P}\]Note
accepts m=1, in which case returns 1
Note
can also be called for an element from sage.rings.number_field_element.residue_symbol
Note
e is coerced into the number field of self
Note
if m=2, e is an integer, and self.number_field() has absolute degree 1 (i.e. it is a copy of the rationals), then this calls kronecker_symbol, which is implemented using GMP.
INPUT:
e
- element of the number fieldm
- positive integer
OUTPUT:
- an m-th root of unity in the number field
EXAMPLES:
Quadratic Residue (7 is not a square modulo 11):
sage: K.<a> = NumberField(x - 1) sage: K.ideal(11).residue_symbol(7,2) -1
Cubic Residue:
sage: K.<w> = NumberField(x^2 - x + 1) sage: K.ideal(17).residue_symbol(w^2 + 3,3) -w
The field must contain the m-th roots of unity:
sage: K.<w> = NumberField(x^2 - x + 1) sage: K.ideal(17).residue_symbol(w^2 + 3,5) Traceback (most recent call last): ... ValueError: The residue symbol to that power is not defined for the number field
-
smallest_integer
()¶ Return the smallest non-negative integer in \(I \cap \ZZ\), where \(I\) is this ideal. If \(I = 0\), returns 0.
EXAMPLES:
sage: R.<x> = PolynomialRing(QQ) sage: K.<a> = NumberField(x^2+6) sage: I = K.ideal([4,a])/7; I Fractional ideal (2/7, 1/7*a) sage: I.smallest_integer() 2
-
valuation
(p)¶ Return the valuation of self at
p
.INPUT:
p
– a prime ideal \(\mathfrak{p}\) of this number field.
OUTPUT:
(integer) The valuation of this fractional ideal at the prime \(\mathfrak{p}\). If \(\mathfrak{p}\) is not prime, raise a ValueError.
EXAMPLES:
sage: K.<a> = NumberField(x^5 + 2); K Number Field in a with defining polynomial x^5 + 2 sage: i = K.ideal(38); i Fractional ideal (38) sage: i.valuation(K.factor(19)[0][0]) 1 sage: i.valuation(K.factor(2)[0][0]) 5 sage: i.valuation(K.factor(3)[0][0]) 0 sage: i.valuation(0) Traceback (most recent call last): ... ValueError: p (= Ideal (0) of Number Field in a with defining polynomial x^5 + 2) must be nonzero sage: K.ideal(0).valuation(K.factor(2)[0][0]) +Infinity
-
-
class
sage.rings.number_field.number_field_ideal.
QuotientMap
(K, M_OK_change, Q, I)¶ Class to hold data needed by quotient maps from number field orders to residue fields. These are only partial maps: the exact domain is the appropriate valuation ring. For examples, see
residue_field()
.
-
sage.rings.number_field.number_field_ideal.
basis_to_module
(B, K)¶ Given a basis \(B\) of elements for a \(\ZZ\)-submodule of a number field \(K\), return the corresponding \(\ZZ\)-submodule.
EXAMPLES:
sage: K.<w> = NumberField(x^4 + 1) sage: from sage.rings.number_field.number_field_ideal import basis_to_module sage: basis_to_module([K.0, K.0^2 + 3], K) Free module of degree 4 and rank 2 over Integer Ring User basis matrix: [0 1 0 0] [3 0 1 0]
-
sage.rings.number_field.number_field_ideal.
is_NumberFieldFractionalIdeal
(x)¶ Return True if x is a fractional ideal of a number field.
EXAMPLES:
sage: from sage.rings.number_field.number_field_ideal import is_NumberFieldFractionalIdeal sage: is_NumberFieldFractionalIdeal(2/3) False sage: is_NumberFieldFractionalIdeal(ideal(5)) False sage: k.<a> = NumberField(x^2 + 2) sage: I = k.ideal([a + 1]); I Fractional ideal (a + 1) sage: is_NumberFieldFractionalIdeal(I) True sage: Z = k.ideal(0); Z Ideal (0) of Number Field in a with defining polynomial x^2 + 2 sage: is_NumberFieldFractionalIdeal(Z) False
-
sage.rings.number_field.number_field_ideal.
is_NumberFieldIdeal
(x)¶ Return True if x is an ideal of a number field.
EXAMPLES:
sage: from sage.rings.number_field.number_field_ideal import is_NumberFieldIdeal sage: is_NumberFieldIdeal(2/3) False sage: is_NumberFieldIdeal(ideal(5)) False sage: k.<a> = NumberField(x^2 + 2) sage: I = k.ideal([a + 1]); I Fractional ideal (a + 1) sage: is_NumberFieldIdeal(I) True sage: Z = k.ideal(0); Z Ideal (0) of Number Field in a with defining polynomial x^2 + 2 sage: is_NumberFieldIdeal(Z) True
-
sage.rings.number_field.number_field_ideal.
quotient_char_p
(I, p)¶ Given an integral ideal \(I\) that contains a prime number \(p\), compute a vector space \(V = (O_K \mod p) / (I \mod p)\), along with a homomorphism \(O_K \to V\) and a section \(V \to O_K\).
EXAMPLES:
sage: from sage.rings.number_field.number_field_ideal import quotient_char_p sage: K.<i> = NumberField(x^2 + 1); O = K.maximal_order(); I = K.fractional_ideal(15) sage: quotient_char_p(I, 5)[0] Vector space quotient V/W of dimension 2 over Finite Field of size 5 where V: Vector space of dimension 2 over Finite Field of size 5 W: Vector space of degree 2 and dimension 0 over Finite Field of size 5 Basis matrix: [] sage: quotient_char_p(I, 3)[0] Vector space quotient V/W of dimension 2 over Finite Field of size 3 where V: Vector space of dimension 2 over Finite Field of size 3 W: Vector space of degree 2 and dimension 0 over Finite Field of size 3 Basis matrix: [] sage: I = K.factor(13)[0][0]; I Fractional ideal (-3*i - 2) sage: I.residue_class_degree() 1 sage: quotient_char_p(I, 13)[0] Vector space quotient V/W of dimension 1 over Finite Field of size 13 where V: Vector space of dimension 2 over Finite Field of size 13 W: Vector space of degree 2 and dimension 1 over Finite Field of size 13 Basis matrix: [1 8]