Automatic Semigroups¶
Semigroups defined by generators living in an ambient semigroup and represented by an automaton.
AUTHORS:
- Nicolas M. Thiéry
- Aladin Virmaux
-
class
sage.monoids.automatic_semigroup.
AutomaticMonoid
(generators, ambient, one, mul, category)¶ Bases:
sage.monoids.automatic_semigroup.AutomaticSemigroup
-
gens
()¶ Return the family of monoid generators of
self
.EXAMPLES:
sage: from sage.monoids.automatic_semigroup import AutomaticSemigroup sage: R = IntegerModRing(28) sage: M = R.submonoid(Family({1: R(3), 2: R(5)})) sage: M.monoid_generators() Finite family {1: 3, 2: 5}
Note that the monoid generators do not include the unit, unlike the semigroup generators:
sage: M.semigroup_generators() Family (1, 3, 5)
-
monoid_generators
()¶ Return the family of monoid generators of
self
.EXAMPLES:
sage: from sage.monoids.automatic_semigroup import AutomaticSemigroup sage: R = IntegerModRing(28) sage: M = R.submonoid(Family({1: R(3), 2: R(5)})) sage: M.monoid_generators() Finite family {1: 3, 2: 5}
Note that the monoid generators do not include the unit, unlike the semigroup generators:
sage: M.semigroup_generators() Family (1, 3, 5)
-
one
()¶ Return the unit of
self
.EXAMPLES:
sage: from sage.monoids.automatic_semigroup import AutomaticSemigroup sage: R = IntegerModRing(21) sage: M = R.submonoid(()) sage: M.one() 1 sage: M.one().parent() is M True
-
semigroup_generators
()¶ Return the generators of
self
as a semigroup.The generators of a monoid \(M\) as a semigroup are the generators of \(M\) as a monoid and the unit.
EXAMPLES:
sage: M = Monoids().free([1,2,3]) sage: M.semigroup_generators() Family (1, F[1], F[2], F[3])
-
-
class
sage.monoids.automatic_semigroup.
AutomaticSemigroup
(generators, ambient, one, mul, category)¶ Bases:
sage.structure.unique_representation.UniqueRepresentation
,sage.structure.parent.Parent
Semigroups defined by generators living in an ambient semigroup.
This implementation lazily constructs all the elements of the semigroup, and the right Cayley graph relations between them, and uses the latter as an automaton.
EXAMPLES:
sage: from sage.monoids.automatic_semigroup import AutomaticSemigroup sage: R = IntegerModRing(12) sage: M = AutomaticSemigroup(Family({1: R(3), 2: R(5)}), one=R.one()) sage: M in Monoids() True sage: M.one() 1 sage: M.one() in M True sage: g = M._generators; g Finite family {1: 3, 2: 5} sage: g[1]*g[2] 3 sage: M.some_elements() [1, 3, 5, 9] sage: M.list() [1, 3, 5, 9] sage: M.idempotents() [1, 9]
As can be seen above, elements are represented by default the corresponding element in the ambient monoid. One can also represent the elements by their reduced word:
sage: M.repr_element_method("reduced_word") sage: M.list() [[], [1], [2], [1, 1]]
In case the reduced word has not yet been calculated, the element will be represented by the corresponding element in the ambient monoid:
sage: R = IntegerModRing(13) sage: N = AutomaticSemigroup(Family({1: R(3), 2: R(5)}), one=R.one()) sage: N.repr_element_method("reduced_word") sage: n = N.an_element() sage: n [1] sage: n*n 9
Calling
construct()
,cardinality()
, orlist()
, or iterating through the monoid will trigger its full construction and, as a side effect, compute all the reduced words. The order of the elements, and the induced choice of reduced word is currently length-lexicographic (i.e. the chosen reduced word is of minimal length, and then minimal lexicographically w.r.t. the order of the indices of the generators):sage: M.cardinality() 4 sage: M.list() [[], [1], [2], [1, 1]] sage: g = M._generators sage: g[1]*g[2] [1] sage: g[1].transition(1) [1, 1] sage: g[1] * g[1] [1, 1] sage: g[1] * g[1] * g[1] [1] sage: g[1].transition(2) [1] sage: g[1] * g[2] [1] sage: [ x.lift() for x in M.list() ] [1, 3, 5, 9] sage: G = M.cayley_graph(side = "twosided"); G Looped multi-digraph on 4 vertices sage: sorted(G.edges(), key=str) [([1, 1], [1, 1], (2, 'left')), ([1, 1], [1, 1], (2, 'right')), ([1, 1], [1], (1, 'left')), ([1, 1], [1], (1, 'right')), ([1], [1, 1], (1, 'left')), ([1], [1, 1], (1, 'right')), ([1], [1], (2, 'left')), ([1], [1], (2, 'right')), ([2], [1], (1, 'left')), ([2], [1], (1, 'right')), ([2], [], (2, 'left')), ([2], [], (2, 'right')), ([], [1], (1, 'left')), ([], [1], (1, 'right')), ([], [2], (2, 'left')), ([], [2], (2, 'right'))] sage: list(map(sorted, M.j_classes())) [[[1], [1, 1]], [[], [2]]] sage: M.j_classes_of_idempotents() [[[1, 1]], [[]]] sage: M.j_transversal_of_idempotents() [[1, 1], []] sage: list(map(attrcall('pseudo_order'), M.list())) [[1, 0], [3, 1], [2, 0], [2, 1]]
We can also use it to get submonoids from groups. We check that in the symmetric group, a transposition and a long cycle generate the whole group:
sage: G5 = SymmetricGroup(5) sage: N = AutomaticSemigroup(Family({1: G5([2,1,3,4,5]), 2: G5([2,3,4,5,1])}), one=G5.one()) sage: N.repr_element_method("reduced_word") sage: N.cardinality() == G5.cardinality() True sage: N.retract(G5((1,4,3,5,2))) [1, 2, 1, 2, 2, 1, 2, 1, 2, 2] sage: N.from_reduced_word([1, 2, 1, 2, 2, 1, 2, 1, 2, 2]).lift() (1,4,3,5,2)
We can also create a semigroup of matrices, where we define the multiplication as matrix multiplication:
sage: M1=matrix([[0,0,1],[1,0,0],[0,1,0]]) sage: M2=matrix([[0,0,0],[1,1,0],[0,0,1]]) sage: M1.set_immutable() sage: M2.set_immutable() sage: def prod_m(x,y): ....: z=x*y ....: z.set_immutable() ....: return z ....: sage: Mon = AutomaticSemigroup([M1,M2], mul=prod_m, category=Monoids().Finite().Subobjects()) sage: Mon.cardinality() 24 sage: C = Mon.cayley_graph() sage: C.is_directed_acyclic() False Let us construct and play with the 0-Hecke Monoid:: sage: W = WeylGroup(['A',4]); W.rename("W") sage: ambient_monoid = FiniteSetMaps(W, action="right") sage: pi = W.simple_projections(length_increasing=True).map(ambient_monoid) sage: M = AutomaticSemigroup(pi, one=ambient_monoid.one()); M A submonoid of (Maps from W to itself) with 4 generators sage: M.repr_element_method("reduced_word") sage: sorted(M._elements_set, key=str) [[1], [2], [3], [4], []] sage: M.construct(n=10) sage: sorted(M._elements_set, key=str) [[1, 2], [1, 3], [1, 4], [1], [2, 1], [2, 3], [2], [3], [4], []] sage: elt = M.from_reduced_word([3,1,2,4,2]) sage: M.construct(up_to=elt) sage: len(M._elements_set) 36 sage: M.cardinality() 120 We check that the 0-Hecke monoid is `J`-trivial and contains `2^4` idempotents:: sage: len(M.idempotents()) 16 sage: all(len(j) == 1 for j in M.j_classes()) True .. NOTE:: Unlike what the name of the class may suggest, this currently implements only a subclass of automatic semigroups; essentially the finite ones. See :wikipedia:`Automatic_semigroup`. .. WARNING:: :class:`AutomaticSemigroup` is designed primarily for finite semigroups. This property is not checked automatically (this would be too costly, if not undecidable). Use with care for an infinite semigroup, as certain features may require constructing all of it:: sage: M = AutomaticSemigroup([2], category = Monoids().Subobjects()); M A submonoid of (Integer Ring) with 1 generators sage: M.retract(2) 2 sage: M.retract(3) # not tested: runs forever trying to find 3
-
class
Element
(ambient_element, parent)¶ Bases:
sage.structure.element_wrapper.ElementWrapper
-
lift
()¶ Lift the element
self
into its ambient semigroup.EXAMPLES:
sage: from sage.monoids.automatic_semigroup import AutomaticSemigroup sage: R = IntegerModRing(18) sage: M = AutomaticSemigroup(Family({1: R(3), 2: R(5)})) sage: M.repr_element_method("reduced_word") sage: m = M.an_element(); m [1] sage: type(m) <class 'sage.monoids.automatic_semigroup.AutomaticSemigroup_with_category.element_class'> sage: m.lift() 3 sage: type(m.lift()) <type 'sage.rings.finite_rings.integer_mod.IntegerMod_int'>
-
reduced_word
()¶ Return the length-lexicographic shortest word of
self
.OUTPUT: a list of indexes of the generators
Obtaining the reduced word requires having constructed the Cayley graph of the semigroup up to
self
. If this is not the case, an error is raised.EXAMPLES:
sage: from sage.monoids.automatic_semigroup import AutomaticSemigroup sage: R = IntegerModRing(15) sage: M = AutomaticSemigroup(Family({1: R(3), 2: R(5)}), one=R.one()) sage: M.construct() sage: for m in M: print((m, m.reduced_word())) (1, []) (3, [1]) (5, [2]) (9, [1, 1]) (0, [1, 2]) (10, [2, 2]) (12, [1, 1, 1]) (6, [1, 1, 1, 1])
-
transition
(i)¶ The multiplication on the right by a generator.
INPUT:
i
– an element from the indexing set of the generators
This method computes
self * self._generators[i]
.EXAMPLES:
sage: from sage.monoids.automatic_semigroup import AutomaticSemigroup sage: R = IntegerModRing(17) sage: M = AutomaticSemigroup(Family({1: R(3), 2: R(5)}), one=R.one()) sage: M.repr_element_method("reduced_word") sage: M.construct() sage: a = M.an_element() sage: a.transition(1) [1, 1] sage: a.transition(2) [1, 2]
-
-
ambient
()¶ Return the ambient semigroup of
self
.EXAMPLES:
sage: from sage.monoids.automatic_semigroup import AutomaticSemigroup sage: R = IntegerModRing(12) sage: M = AutomaticSemigroup(Family({1: R(3), 2: R(5)}), one=R.one()) sage: M.ambient() Ring of integers modulo 12 sage: M1=matrix([[0,0,1],[1,0,0],[0,1,0]]) sage: M2=matrix([[0,0,0],[1,1,0],[0,0,1]]) sage: M1.set_immutable() sage: M2.set_immutable() sage: def prod_m(x,y): ....: z=x*y ....: z.set_immutable() ....: return z ....: sage: Mon = AutomaticSemigroup([M1,M2], mul=prod_m) sage: Mon.ambient() Full MatrixSpace of 3 by 3 dense matrices over Integer Ring
-
an_element
()¶ Return the first given generator of
self
.EXAMPLES:
sage: from sage.monoids.automatic_semigroup import AutomaticSemigroup sage: R = IntegerModRing(16) sage: M = AutomaticSemigroup(Family({1: R(3), 2: R(5)}), one=R.one()) sage: M.an_element() 3
-
cardinality
()¶ Return the cardinality of
self
.EXAMPLES:
sage: from sage.monoids.automatic_semigroup import AutomaticSemigroup sage: R = IntegerModRing(12) sage: M = AutomaticSemigroup(Family({1: R(3), 2: R(5)}), one=R.one()) sage: M.cardinality() 4
-
construct
(up_to=None, n=None)¶ Construct the elements of the
self
.INPUT:
up_to
– an element ofself
or of the ambient semigroup.n
– an integer orNone
(default:None
)
This construct all the elements of this semigroup, their reduced words, and the right Cayley graph. If \(n\) is specified, only the \(n\) first elements of the semigroup are constructed. If
element
is specified, only the elements up toambient_element
are constructed.EXAMPLES:
sage: from sage.monoids.automatic_semigroup import AutomaticSemigroup sage: W = WeylGroup(['A',3]); W.rename("W") sage: ambient_monoid = FiniteSetMaps(W, action="right") sage: pi = W.simple_projections(length_increasing=True).map(ambient_monoid) sage: M = AutomaticSemigroup(pi, one=ambient_monoid.one()); M A submonoid of (Maps from W to itself) with 3 generators sage: M.repr_element_method("reduced_word") sage: sorted(M._elements_set, key=str) [[1], [2], [3], []] sage: elt = M.from_reduced_word([2,3,1,2]) sage: M.construct(up_to=elt) sage: len(M._elements_set) 19 sage: M.cardinality() 24
-
from_reduced_word
(l)¶ Return the element of
self
obtained from the reduced wordl
.INPUT:
l
– a list of indices of the generators
Note
We do not save the given reduced word
l
as an attribute of the element, as some elements above in the branches may have not been explored by the iterator yet.EXAMPLES:
sage: from sage.monoids.automatic_semigroup import AutomaticSemigroup sage: G4 = SymmetricGroup(4) sage: M = AutomaticSemigroup(Family({1:G4((1,2)), 2:G4((1,2,3,4))}), one=G4.one()) sage: M.from_reduced_word([2, 1, 2, 2, 1]).lift() (1,3) sage: M.from_reduced_word([2, 1, 2, 2, 1]) == M.retract(G4((3,1))) True
-
gens
()¶ Return the family of generators of
self
.EXAMPLES:
sage: from sage.monoids.automatic_semigroup import AutomaticSemigroup sage: R = IntegerModRing(28) sage: M = AutomaticSemigroup(Family({1: R(3), 2: R(5)})) sage: M.semigroup_generators() Finite family {1: 3, 2: 5}
-
lift
(x)¶ Lift an element of
self
into its ambient space.EXAMPLES:
sage: from sage.monoids.automatic_semigroup import AutomaticSemigroup sage: R = IntegerModRing(15) sage: M = AutomaticSemigroup(Family({1: R(3), 2: R(5)}), one=R.one()) sage: a = M.an_element() sage: a.lift() in R True sage: a.lift() 3 sage: [m.lift() for m in M] [1, 3, 5, 9, 0, 10, 12, 6]
-
list
()¶ Return the list of elements of
self
.EXAMPLES:
sage: from sage.monoids.automatic_semigroup import AutomaticSemigroup sage: R = IntegerModRing(12) sage: M = AutomaticSemigroup(Family({1: R(3), 2: R(5)}), one=R.one()) sage: M.repr_element_method("reduced_word") sage: M.list() [[], [1], [2], [1, 1]]
-
product
(x, y)¶ Return the product of two elements in
self
. It is done by retracting the multiplication in the ambient semigroup.EXAMPLES:
sage: from sage.monoids.automatic_semigroup import AutomaticSemigroup sage: R = IntegerModRing(12) sage: M = AutomaticSemigroup(Family({1: R(3), 2: R(5)}), one=R.one()) sage: a = M[1] sage: b = M[2] sage: a*b [1]
-
repr_element_method
(style='ambient')¶ Sets the representation of the elements of the monoid.
INPUT:
style
– “ambient” or “reduced_word”
EXAMPLES:
sage: from sage.monoids.automatic_semigroup import AutomaticSemigroup sage: R = IntegerModRing(17) sage: M = AutomaticSemigroup(Family({1: R(3), 2: R(5)}), one=R.one()) sage: M.list() [1, 3, 5, 9, 15, 8, 10, 11, 7, 6, 13, 16, 4, 14, 12, 2] sage: M.repr_element_method("reduced_word") sage: M.list() [[], [1], [2], [1, 1], [1, 2], [2, 2], [1, 1, 1], [1, 1, 2], [1, 2, 2], [2, 2, 2], [1, 1, 1, 1], [1, 1, 1, 2], [1, 1, 2, 2], [1, 1, 1, 1, 2], [1, 1, 1, 2, 2], [1, 1, 1, 1, 2, 2]]
-
retract
(ambient_element, check=True)¶ Retract an element of the ambient semigroup into
self
.EXAMPLES:
sage: from sage.monoids.automatic_semigroup import AutomaticSemigroup sage: S5 = SymmetricGroup(5); S5.rename("S5") sage: M = AutomaticSemigroup(Family({1:S5((1,2)), 2:S5((1,2,3,4))}), one=S5.one()) sage: m = M.retract(S5((3,1))); m (1,3) sage: m.parent() is M True sage: M.retract(S5((4,5)), check=False) (4,5) sage: M.retract(S5((4,5))) Traceback (most recent call last): ... ValueError: (4,5) not in A subgroup of (S5) with 2 generators
-
semigroup_generators
()¶ Return the family of generators of
self
.EXAMPLES:
sage: from sage.monoids.automatic_semigroup import AutomaticSemigroup sage: R = IntegerModRing(28) sage: M = AutomaticSemigroup(Family({1: R(3), 2: R(5)})) sage: M.semigroup_generators() Finite family {1: 3, 2: 5}
-
class