Pollack-Stevens’ Modular Symbols Spaces¶
This module contains a class for spaces of modular symbols that use Glenn Stevens’ conventions, as explained in [PS2011].
There are two main differences between the modular symbols in this directory
and the ones in sage.modular.modsym
:
- There is a shift in the weight: weight \(k=0\) here corresponds to weight \(k=2\) there.
- There is a duality: these modular symbols are functions from \(\textrm{Div}^0(P^1(\QQ))\) (cohomological objects), the others are formal linear combinations of \(\textrm{Div}^0(P^1(\QQ))\) (homological objects).
EXAMPLES:
First we create the space of modular symbols of weight 0 (\(k=2\)) and level 11:
sage: M = PollackStevensModularSymbols(Gamma0(11), 0); M
Space of modular symbols for Congruence Subgroup Gamma0(11) with sign 0 and values in Sym^0 Q^2
One can also create a space of overconvergent modular symbols, by specifying a prime and a precision:
sage: M = PollackStevensModularSymbols(Gamma0(11), p = 5, prec_cap = 10, weight = 0); M
Space of overconvergent modular symbols for Congruence Subgroup Gamma0(11) with sign 0 and values in Space of 5-adic distributions with k=0 action and precision cap 10
Currently not much functionality is available on the whole space, and these spaces are mainly used as parents for the modular symbols. These can be constructed from the corresponding classical modular symbols (or even elliptic curves) as follows:
sage: A = ModularSymbols(13, sign=1, weight=4).decomposition()[0]
sage: A.is_cuspidal()
True
sage: from sage.modular.pollack_stevens.space import ps_modsym_from_simple_modsym_space
sage: f = ps_modsym_from_simple_modsym_space(A); f
Modular symbol of level 13 with values in Sym^2 Q^2
sage: f.values()
[(-13, 0, -1),
(247/2, 13/2, -6),
(39/2, 117/2, 42),
(-39/2, 39, 111/2),
(-247/2, -117, -209/2)]
sage: f.parent()
Space of modular symbols for Congruence Subgroup Gamma0(13) with sign 1 and values in Sym^2 Q^2
sage: E = EllipticCurve('37a1')
sage: phi = E.pollack_stevens_modular_symbol(); phi
Modular symbol of level 37 with values in Sym^0 Q^2
sage: phi.values()
[0, 1, 0, 0, 0, -1, 1, 0, 0]
sage: phi.parent()
Space of modular symbols for Congruence Subgroup Gamma0(37) with sign 0 and values in Sym^0 Q^2
-
class
sage.modular.pollack_stevens.space.
PollackStevensModularSymbols_factory
¶ Bases:
sage.structure.factory.UniqueFactory
Create a space of Pollack-Stevens modular symbols.
INPUT:
group
– integer or congruence subgroupweight
– integer \(\ge 0\), orNone
sign
– integer; -1, 0, 1base_ring
– ring orNone
p
– prime orNone
prec_cap
– positive integer orNone
coefficients
– the coefficient module (a special type of module, typically distributions), orNone
If an explicit coefficient module is given, then the arguments
weight
,base_ring
,prec_cap
, andp
are redundant and must beNone
. They are only relevant ifcoefficients
isNone
, in which case the coefficient module is inferred from the other data.Note
We emphasize that in the Pollack-Stevens notation, the
weight
is the usual weight minus 2, so a classical weight 2 modular form corresponds to a modular symbol of “weight 0”.EXAMPLES:
sage: M = PollackStevensModularSymbols(Gamma0(7), weight=0, prec_cap = None); M Space of modular symbols for Congruence Subgroup Gamma0(7) with sign 0 and values in Sym^0 Q^2
An example with an explicit coefficient module:
sage: D = OverconvergentDistributions(3, 7, prec_cap=10) sage: M = PollackStevensModularSymbols(Gamma0(7), coefficients=D); M Space of overconvergent modular symbols for Congruence Subgroup Gamma0(7) with sign 0 and values in Space of 7-adic distributions with k=3 action and precision cap 10
-
create_key
(group, weight=None, sign=0, base_ring=None, p=None, prec_cap=None, coefficients=None)¶ Sanitize input.
EXAMPLES:
sage: D = OverconvergentDistributions(3, 7, prec_cap=10) sage: M = PollackStevensModularSymbols(Gamma0(7), coefficients=D) # indirect doctest
-
create_object
(version, key)¶ Create a space of modular symbols from
key
.INPUT:
version
– the version of the object to createkey
– a tuple of parameters, as created bycreate_key()
EXAMPLES:
sage: D = OverconvergentDistributions(5, 7, 15) sage: M = PollackStevensModularSymbols(Gamma0(7), coefficients=D) # indirect doctest sage: M2 = PollackStevensModularSymbols(Gamma0(7), coefficients=D) # indirect doctest sage: M is M2 True
-
class
sage.modular.pollack_stevens.space.
PollackStevensModularSymbolspace
(group, coefficients, sign=0)¶ Bases:
sage.modules.module.Module
A class for spaces of modular symbols that use Glenn Stevens’ conventions. This class should not be instantiated directly by the user: this is handled by the factory object
PollackStevensModularSymbols_factory
.INPUT:
group
– congruence subgroupcoefficients
– a coefficient modulesign
– (default: 0); 0, -1, or 1
EXAMPLES:
sage: D = OverconvergentDistributions(2, 11) sage: M = PollackStevensModularSymbols(Gamma0(2), coefficients=D); M.sign() 0 sage: M = PollackStevensModularSymbols(Gamma0(2), coefficients=D, sign=-1); M.sign() -1 sage: M = PollackStevensModularSymbols(Gamma0(2), coefficients=D, sign=1); M.sign() 1
-
change_ring
(new_base_ring)¶ Change the base ring of this space to
new_base_ring
.INPUT:
new_base_ring
– a ring
OUTPUT:
A space of modular symbols over the specified base.
EXAMPLES:
sage: from sage.modular.pollack_stevens.distributions import Symk sage: D = Symk(4) sage: M = PollackStevensModularSymbols(Gamma(6), coefficients=D); M Space of modular symbols for Congruence Subgroup Gamma(6) with sign 0 and values in Sym^4 Q^2 sage: M.change_ring(Qp(5,8)) Space of modular symbols for Congruence Subgroup Gamma(6) with sign 0 and values in Sym^4 Q_5^2
-
coefficient_module
()¶ Return the coefficient module of this space.
EXAMPLES:
sage: D = OverconvergentDistributions(2, 11) sage: M = PollackStevensModularSymbols(Gamma0(2), coefficients=D) sage: M.coefficient_module() Space of 11-adic distributions with k=2 action and precision cap 20 sage: M.coefficient_module() is D True
-
group
()¶ Return the congruence subgroup of this space.
EXAMPLES:
sage: D = OverconvergentDistributions(2, 5) sage: G = Gamma0(23) sage: M = PollackStevensModularSymbols(G, coefficients=D) sage: M.group() Congruence Subgroup Gamma0(23) sage: D = Symk(4) sage: G = Gamma1(11) sage: M = PollackStevensModularSymbols(G, coefficients=D) sage: M.group() Congruence Subgroup Gamma1(11)
-
level
()¶ Return the level \(N\), where this space is of level \(\Gamma_0(N)\).
EXAMPLES:
sage: D = OverconvergentDistributions(7, 11) sage: M = PollackStevensModularSymbols(Gamma1(14), coefficients=D) sage: M.level() 14
-
ncoset_reps
()¶ Return the number of coset representatives defining the domain of the modular symbols in this space.
OUTPUT:
The number of coset representatives stored in the manin relations. (Just the size of \(P^1(\ZZ/N\ZZ)\))
EXAMPLES:
sage: D = Symk(2) sage: M = PollackStevensModularSymbols(Gamma0(2), coefficients=D) sage: M.ncoset_reps() 3
-
ngens
()¶ Returns the number of generators defining this space.
EXAMPLES:
sage: D = OverconvergentDistributions(4, 29) sage: M = PollackStevensModularSymbols(Gamma1(12), coefficients=D) sage: M.ngens() 5 sage: D = Symk(2) sage: M = PollackStevensModularSymbols(Gamma0(2), coefficients=D) sage: M.ngens() 2
-
precision_cap
()¶ Return the number of moments of each element of this space.
EXAMPLES:
sage: D = OverconvergentDistributions(2, 5) sage: M = PollackStevensModularSymbols(Gamma1(13), coefficients=D) sage: M.precision_cap() 20 sage: D = OverconvergentDistributions(3, 7, prec_cap=10) sage: M = PollackStevensModularSymbols(Gamma0(7), coefficients=D) sage: M.precision_cap() 10
-
prime
()¶ Return the prime of this space.
EXAMPLES:
sage: D = OverconvergentDistributions(2, 11) sage: M = PollackStevensModularSymbols(Gamma(2), coefficients=D) sage: M.prime() 11
-
random_element
(M=None)¶ Return a random overconvergent modular symbol in this space with \(M\) moments
INPUT:
M
– positive integer
OUTPUT:
An element of the modular symbol space with \(M\) moments
Returns a random element in this space by randomly choosing values of distributions on all but one divisor, and solves the difference equation to determine the value on the last divisor.
sage: D = OverconvergentDistributions(2, 11) sage: M = PollackStevensModularSymbols(Gamma0(11), coefficients=D) sage: M.random_element(10) Traceback (most recent call last): ... NotImplementedError
-
sign
()¶ Return the sign of this space.
EXAMPLES:
sage: D = OverconvergentDistributions(3, 17) sage: M = PollackStevensModularSymbols(Gamma(5), coefficients=D) sage: M.sign() 0 sage: D = Symk(4) sage: M = PollackStevensModularSymbols(Gamma1(8), coefficients=D, sign=-1) sage: M.sign() -1
-
source
()¶ Return the domain of the modular symbols in this space.
OUTPUT:
A
sage.modular.pollack_stevens.fund_domain.PollackStevensModularDomain
EXAMPLES:
sage: D = OverconvergentDistributions(2, 11) sage: M = PollackStevensModularSymbols(Gamma0(2), coefficients=D) sage: M.source() Manin Relations of level 2
-
weight
()¶ Return the weight of this space.
Warning
We emphasize that in the Pollack-Stevens notation, this is the usual weight minus 2, so a classical weight 2 modular form corresponds to a modular symbol of “weight 0”.
EXAMPLES:
sage: D = Symk(5) sage: M = PollackStevensModularSymbols(Gamma1(7), coefficients=D) sage: M.weight() 5
-
sage.modular.pollack_stevens.space.
cusps_from_mat
(g)¶ Return the cusps associated to an element of a congruence subgroup.
INPUT:
g
– an element of a congruence subgroup or a matrix
OUTPUT:
A tuple of cusps associated to
g
.EXAMPLES:
sage: from sage.modular.pollack_stevens.space import cusps_from_mat sage: g = SL2Z.one() sage: cusps_from_mat(g) (+Infinity, 0)
You can also just give the matrix of
g
:sage: type(g) <type 'sage.modular.arithgroup.arithgroup_element.ArithmeticSubgroupElement'> sage: cusps_from_mat(g.matrix()) (+Infinity, 0)
Another example:
sage: from sage.modular.pollack_stevens.space import cusps_from_mat sage: g = GammaH(3, [2]).generators()[1].matrix(); g [-1 1] [-3 2] sage: cusps_from_mat(g) (1/3, 1/2)
-
sage.modular.pollack_stevens.space.
ps_modsym_from_elliptic_curve
(E, sign=0, implementation='eclib')¶ Return the overconvergent modular symbol associated to an elliptic curve defined over the rationals.
INPUT:
E
– an elliptic curve defined over the rationalssign
– the sign (default: 0). If nonzero, returns either the plus (ifsign
== 1) or the minus (ifsign
== -1) modular symbol. The default of 0 returns the sum of the plus and minus symbols.implementation
– either ‘eclib’ (default) or ‘sage’. This determines which implementation of the underlying classical modular symbols is used.
OUTPUT:
The overconvergent modular symbol associated to
E
EXAMPLES:
sage: E = EllipticCurve('113a1') sage: symb = E.pollack_stevens_modular_symbol() # indirect doctest sage: symb Modular symbol of level 113 with values in Sym^0 Q^2 sage: symb.values() [-1/2, 1, -1, 0, 0, 1, 1, -1, 0, -1, 0, 0, 0, 1, -1, 0, 0, 0, 1, 0, 0] sage: E = EllipticCurve([0,1]) sage: symb = E.pollack_stevens_modular_symbol() sage: symb.values() [-1/6, 1/3, 1/2, 1/6, -1/6, 1/3, -1/3, -1/2, -1/6, 1/6, 0, -1/6, -1/6]
-
sage.modular.pollack_stevens.space.
ps_modsym_from_simple_modsym_space
(A, name='alpha')¶ Returns some choice – only well defined up a nonzero scalar (!) – of an overconvergent modular symbol that corresponds to
A
.INPUT:
A
– nonzero simple Hecke equivariant new space of modular symbols, which need not be cuspidal.
OUTPUT:
A choice of corresponding overconvergent modular symbols; when dim(A)>1, we make an arbitrary choice of defining polynomial for the codomain field.
EXAMPLES:
The level 11 example:
sage: from sage.modular.pollack_stevens.space import ps_modsym_from_simple_modsym_space sage: A = ModularSymbols(11, sign=1, weight=2).decomposition()[0] sage: A.is_cuspidal() True sage: f = ps_modsym_from_simple_modsym_space(A); f Modular symbol of level 11 with values in Sym^0 Q^2 sage: f.values() [1, -5/2, -5/2] sage: f.weight() # this is A.weight()-2 !!!!!! 0
And the -1 sign for the level 11 example:
sage: A = ModularSymbols(11, sign=-1, weight=2).decomposition()[0] sage: f = ps_modsym_from_simple_modsym_space(A); f.values() [0, 1, -1]
A does not have to be cuspidal; it can be Eisenstein:
sage: A = ModularSymbols(11, sign=1, weight=2).decomposition()[1] sage: A.is_cuspidal() False sage: f = ps_modsym_from_simple_modsym_space(A); f Modular symbol of level 11 with values in Sym^0 Q^2 sage: f.values() [1, 0, 0]
We create the simplest weight 2 example in which
A
has dimension bigger than 1:sage: A = ModularSymbols(23, sign=1, weight=2).decomposition()[0] sage: f = ps_modsym_from_simple_modsym_space(A); f.values() [1, 0, 0, 0, 0] sage: A = ModularSymbols(23, sign=-1, weight=2).decomposition()[0] sage: f = ps_modsym_from_simple_modsym_space(A); f.values() [0, 1, -alpha, alpha, -1] sage: f.base_ring() Number Field in alpha with defining polynomial x^2 + x - 1
We create the +1 modular symbol attached to the weight 12 modular form
Delta
:sage: A = ModularSymbols(1, sign=+1, weight=12).decomposition()[0] sage: f = ps_modsym_from_simple_modsym_space(A); f Modular symbol of level 1 with values in Sym^10 Q^2 sage: f.values() [(-1620/691, 0, 1, 0, -9/14, 0, 9/14, 0, -1, 0, 1620/691), (1620/691, 1620/691, 929/691, -453/691, -29145/9674, -42965/9674, -2526/691, -453/691, 1620/691, 1620/691, 0), (0, -1620/691, -1620/691, 453/691, 2526/691, 42965/9674, 29145/9674, 453/691, -929/691, -1620/691, -1620/691)]
And, the -1 modular symbol attached to
Delta
:sage: A = ModularSymbols(1, sign=-1, weight=12).decomposition()[0] sage: f = ps_modsym_from_simple_modsym_space(A); f Modular symbol of level 1 with values in Sym^10 Q^2 sage: f.values() [(0, 1, 0, -25/48, 0, 5/12, 0, -25/48, 0, 1, 0), (0, -1, -2, -119/48, -23/12, -5/24, 23/12, 3, 2, 0, 0), (0, 0, 2, 3, 23/12, -5/24, -23/12, -119/48, -2, -1, 0)]
A consistency check with
sage.modular.pollack_stevens.space.ps_modsym_from_simple_modsym_space()
:sage: from sage.modular.pollack_stevens.space import ps_modsym_from_simple_modsym_space sage: E = EllipticCurve('11a') sage: f_E = E.pollack_stevens_modular_symbol(); f_E.values() [-1/5, 1, 0] sage: A = ModularSymbols(11, sign=1, weight=2).decomposition()[0] sage: f_plus = ps_modsym_from_simple_modsym_space(A); f_plus.values() [1, -5/2, -5/2] sage: A = ModularSymbols(11, sign=-1, weight=2).decomposition()[0] sage: f_minus = ps_modsym_from_simple_modsym_space(A); f_minus.values() [0, 1, -1]
We find that a linear combination of the plus and minus parts equals the Pollack-Stevens symbol attached to
E
. This illustrates howps_modsym_from_simple_modsym_space
is only well-defined up to a nonzero scalar:sage: (-1/5)*vector(QQ, f_plus.values()) + (1/2)*vector(QQ, f_minus.values()) (-1/5, 1, 0) sage: vector(QQ, f_E.values()) (-1/5, 1, 0)
The next few examples all illustrate the ways in which exceptions are raised if A does not satisfy various constraints.
First,
A
must be new:sage: A = ModularSymbols(33,sign=1).cuspidal_subspace().old_subspace() sage: ps_modsym_from_simple_modsym_space(A) Traceback (most recent call last): ... ValueError: A must be new
A
must be simple:sage: A = ModularSymbols(43,sign=1).cuspidal_subspace() sage: ps_modsym_from_simple_modsym_space(A) Traceback (most recent call last): ... ValueError: A must be simple
A
must have sign -1 or +1 in order to be simple:sage: A = ModularSymbols(11).cuspidal_subspace() sage: ps_modsym_from_simple_modsym_space(A) Traceback (most recent call last): ... ValueError: A must have sign +1 or -1 (otherwise it is not simple)
The dimension must be positive:
sage: A = ModularSymbols(10).cuspidal_subspace(); A Modular Symbols subspace of dimension 0 of Modular Symbols space of dimension 3 for Gamma_0(10) of weight 2 with sign 0 over Rational Field sage: ps_modsym_from_simple_modsym_space(A) Traceback (most recent call last): ... ValueError: A must have positive dimension
We check that forms of nontrivial character are getting handled correctly:
sage: from sage.modular.pollack_stevens.space import ps_modsym_from_simple_modsym_space sage: f = Newforms(Gamma1(13), names='a')[0] sage: phi = ps_modsym_from_simple_modsym_space(f.modular_symbols(1)) sage: phi.hecke(7) Modular symbol of level 13 with values in Sym^0 (Number Field in alpha with defining polynomial x^2 + 3*x + 3)^2 twisted by Dirichlet character modulo 13 of conductor 13 mapping 2 |--> -alpha - 1 sage: phi.hecke(7).values() [0, 0, 0, 0, 0]