Hypergeometric motives¶
This is largely a port of the corresponding package in Magma. One important conventional difference: the motivic parameter t has been replaced with 1/t to match the classical literature on hypergeometric series. (E.g., see [BeukersHeckman])
The computation of Euler factors is currently only supported for primes p of good reduction. That is, it is required that vp(t)=vp(t−1)=0.
AUTHORS:
- Frédéric Chapoton
- Kiran S. Kedlaya
EXAMPLES:
sage: from sage.modular.hypergeometric_motive import HypergeometricData as Hyp
sage: H = Hyp(cyclotomic=([30], [1,2,3,5]))
sage: H.alpha_beta()
([1/30, 7/30, 11/30, 13/30, 17/30, 19/30, 23/30, 29/30],
[0, 1/5, 1/3, 2/5, 1/2, 3/5, 2/3, 4/5])
sage: H.M_value() == 30**30 / (15**15 * 10**10 * 6**6)
True
sage: H.euler_factor(2, 7)
T^8 + T^5 + T^3 + 1
REFERENCES:
- [BeukersHeckman]
- [Benasque2009]
- [Kat1991]
- [MagmaHGM]
- [Fedorov2015]
- [Roberts2017]
- [Roberts2015]
- [BeCoMe]
- [Watkins]
-
class
sage.modular.hypergeometric_motive.
HypergeometricData
(cyclotomic=None, alpha_beta=None, gamma_list=None)¶ Bases:
object
Creation of hypergeometric motives.
INPUT:
three possibilities are offered, each describing a quotient of products of cyclotomic polynomials.
cyclotomic
– a pair of lists of nonnegative integers, each integer k represents a cyclotomic polynomial Φkalpha_beta
– a pair of lists of rationals, each rational represents a root of unitygamma_list
– a pair of lists of nonnegative integers, each integer n represents a polynomial xn−1
In the last case, it is also allowed to send just one list of signed integers where signs indicate to which part the integer belongs to.
EXAMPLES:
sage: from sage.modular.hypergeometric_motive import HypergeometricData as Hyp sage: Hyp(cyclotomic=([2],[1])) Hypergeometric data for [1/2] and [0] sage: Hyp(alpha_beta=([1/2],[0])) Hypergeometric data for [1/2] and [0] sage: Hyp(alpha_beta=([1/5,2/5,3/5,4/5],[0,0,0,0])) Hypergeometric data for [1/5, 2/5, 3/5, 4/5] and [0, 0, 0, 0] sage: Hyp(gamma_list=([5],[1,1,1,1,1])) Hypergeometric data for [1/5, 2/5, 3/5, 4/5] and [0, 0, 0, 0] sage: Hyp(gamma_list=([5,-1,-1,-1,-1,-1])) Hypergeometric data for [1/5, 2/5, 3/5, 4/5] and [0, 0, 0, 0]
-
H_value
(p, f, t, ring=None)¶ Return the trace of the Frobenius, computed in terms of Gauss sums using the hypergeometric trace formula.
INPUT:
- p – a prime number
- f – an integer such that q=pf
- t – a rational parameter
ring
– optional (defaultUniversalCyclotomicfield
)
The ring could be also
ComplexField(n)
orQQbar
.OUTPUT:
an integer
Warning
This is apparently working correctly as can be tested using ComplexField(70) as value ring.
Using instead UniversalCyclotomicfield, this is much slower than the p-adic version
padic_H_value()
.EXAMPLES:
With values in the UniversalCyclotomicField (slow):
sage: from sage.modular.hypergeometric_motive import HypergeometricData as Hyp sage: H = Hyp(alpha_beta=([1/2]*4,[0]*4)) sage: [H.H_value(3,i,-1) for i in range(1,3)] [0, -12] sage: [H.H_value(5,i,-1) for i in range(1,3)] [-4, 276] sage: [H.H_value(7,i,-1) for i in range(1,3)] # not tested [0, -476] sage: [H.H_value(11,i,-1) for i in range(1,3)] # not tested [0, -4972] sage: [H.H_value(13,i,-1) for i in range(1,3)] # not tested [-84, -1420]
With values in ComplexField:
sage: [H.H_value(5,i,-1, ComplexField(60)) for i in range(1,3)] [-4, 276]
Check issue from trac ticket #28404:
sage: H1 = Hyp(cyclotomic=([1,1,1],[6,2])) sage: H2 = Hyp(cyclotomic=([6,2],[1,1,1])) sage: [H1.H_value(5,1,i) for i in range(2,5)] [1, -4, -4] sage: [H2.H_value(5,1,QQ(i)) for i in range(2,5)] [-4, 1, -4]
REFERENCES:
- [BeCoMe] (Theorem 1.3)
- [Benasque2009]
-
M_value
()¶ Return the M coefficient that appears in the trace formula.
OUTPUT:
a rational
See also
EXAMPLES:
sage: from sage.modular.hypergeometric_motive import HypergeometricData as Hyp sage: H = Hyp(alpha_beta=([1/6,1/3,2/3,5/6],[1/8,3/8,5/8,7/8])) sage: H.M_value() 729/4096 sage: Hyp(alpha_beta=(([1/2,1/2,1/2,1/2],[0,0,0,0]))).M_value() 256 sage: Hyp(cyclotomic=([5],[1,1,1,1])).M_value() 3125
-
alpha
()¶ Return the first tuple of rational arguments.
EXAMPLES:
sage: from sage.modular.hypergeometric_motive import HypergeometricData as Hyp sage: Hyp(alpha_beta=([1/2],[0])).alpha() [1/2]
-
alpha_beta
()¶ Return the pair of lists of rational arguments.
EXAMPLES:
sage: from sage.modular.hypergeometric_motive import HypergeometricData as Hyp sage: Hyp(alpha_beta=([1/2],[0])).alpha_beta() ([1/2], [0])
-
beta
()¶ Return the second tuple of rational arguments.
EXAMPLES:
sage: from sage.modular.hypergeometric_motive import HypergeometricData as Hyp sage: Hyp(alpha_beta=([1/2],[0])).beta() [0]
-
canonical_scheme
(t=None)¶ Return the canonical scheme.
This is a scheme that contains this hypergeometric motive in its cohomology.
EXAMPLES:
sage: from sage.modular.hypergeometric_motive import HypergeometricData as Hyp sage: H = Hyp(cyclotomic=([3],[4])) sage: H.gamma_list() [-1, 2, 3, -4] sage: H.canonical_scheme() Spectrum of Quotient of Multivariate Polynomial Ring in X0, X1, Y0, Y1 over Fraction Field of Univariate Polynomial Ring in t over Rational Field by the ideal (X0 + X1 - 1, Y0 + Y1 - 1, (-t)*X0^2*X1^3 + 27/64*Y0*Y1^4) sage: H = Hyp(gamma_list=[-2, 3, 4, -5]) sage: H.canonical_scheme() Spectrum of Quotient of Multivariate Polynomial Ring in X0, X1, Y0, Y1 over Fraction Field of Univariate Polynomial Ring in t over Rational Field by the ideal (X0 + X1 - 1, Y0 + Y1 - 1, (-t)*X0^3*X1^4 + 1728/3125*Y0^2*Y1^5)
REFERENCES:
[Kat1991], section 5.4
-
cyclotomic_data
()¶ Return the pair of tuples of indices of cyclotomic polynomials.
EXAMPLES:
sage: from sage.modular.hypergeometric_motive import HypergeometricData as Hyp sage: Hyp(alpha_beta=([1/2],[0])).cyclotomic_data() ([2], [1])
-
defining_polynomials
()¶ Return the pair of products of cyclotomic polynomials.
EXAMPLES:
sage: from sage.modular.hypergeometric_motive import HypergeometricData as Hyp sage: Hyp(alpha_beta=([1/4,3/4],[0,0])).defining_polynomials() (x^2 + 1, x^2 - 2*x + 1)
-
degree
()¶ Return the degree.
This is the sum of the Hodge numbers.
See also
EXAMPLES:
sage: from sage.modular.hypergeometric_motive import HypergeometricData as Hyp sage: Hyp(alpha_beta=([1/2],[0])).degree() 1 sage: Hyp(gamma_list=([2,2,4],[8])).degree() 4 sage: Hyp(cyclotomic=([5,6],[1,1,2,2,3])).degree() 6 sage: Hyp(cyclotomic=([3,8],[1,1,1,2,6])).degree() 6 sage: Hyp(cyclotomic=([3,3],[2,2,4])).degree() 4
-
euler_factor
(t, p)¶ Return the Euler factor of the motive Ht at prime p.
INPUT:
- t – rational number, not 0 or 1
- p – prime number of good reduction
OUTPUT:
a polynomial
See [Benasque2009] for explicit examples of Euler factors.
For odd weight, the sign of the functional equation is +1. For even weight, the sign is computed by a recipe found in 11.1 of [Watkins].
EXAMPLES:
sage: from sage.modular.hypergeometric_motive import HypergeometricData as Hyp sage: H = Hyp(alpha_beta=([1/2]*4,[0]*4)) sage: H.euler_factor(-1, 5) 15625*T^4 + 500*T^3 - 130*T^2 + 4*T + 1 sage: H = Hyp(gamma_list=[-6,-1,4,3]) sage: H.weight(), H.degree() (1, 2) sage: t = 189/125 sage: [H.euler_factor(1/t,p) for p in [11,13,17,19,23,29]] [11*T^2 + 4*T + 1, 13*T^2 + 1, 17*T^2 + 1, 19*T^2 + 1, 23*T^2 + 8*T + 1, 29*T^2 + 2*T + 1] sage: H = Hyp(cyclotomic=([6,2],[1,1,1])) sage: H.weight(), H.degree() (2, 3) sage: [H.euler_factor(1/4,p) for p in [5,7,11,13,17,19]] [125*T^3 + 20*T^2 + 4*T + 1, 343*T^3 - 42*T^2 - 6*T + 1, -1331*T^3 - 22*T^2 + 2*T + 1, -2197*T^3 - 156*T^2 + 12*T + 1, 4913*T^3 + 323*T^2 + 19*T + 1, 6859*T^3 - 57*T^2 - 3*T + 1] sage: H = Hyp(alpha_beta=([1/12,5/12,7/12,11/12],[0,1/2,1/2,1/2])) sage: H.weight(), H.degree() (2, 4) sage: t = -5 sage: [H.euler_factor(1/t,p) for p in [11,13,17,19,23,29]] [-14641*T^4 - 1210*T^3 + 10*T + 1, -28561*T^4 - 2704*T^3 + 16*T + 1, -83521*T^4 - 4046*T^3 + 14*T + 1, 130321*T^4 + 14440*T^3 + 969*T^2 + 40*T + 1, 279841*T^4 - 25392*T^3 + 1242*T^2 - 48*T + 1, 707281*T^4 - 7569*T^3 + 696*T^2 - 9*T + 1]
REFERENCES:
-
gamma_array
()¶ Return the dictionary {v:γv} for the expression
∏v(Tv−1)γvEXAMPLES:
sage: from sage.modular.hypergeometric_motive import HypergeometricData as Hyp sage: Hyp(alpha_beta=([1/2],[0])).gamma_array() {1: -2, 2: 1} sage: Hyp(cyclotomic=([6,2],[1,1,1])).gamma_array() {1: -3, 3: -1, 6: 1}
-
gamma_list
()¶ Return a list of integers describing the xn−1 factors.
Each integer n stands for (x|n|−1)sgn(n).
EXAMPLES:
sage: from sage.modular.hypergeometric_motive import HypergeometricData as Hyp sage: Hyp(alpha_beta=([1/2],[0])).gamma_list() [-1, -1, 2] sage: Hyp(cyclotomic=([6,2],[1,1,1])).gamma_list() [-1, -1, -1, -3, 6] sage: Hyp(cyclotomic=([3],[4])).gamma_list() [-1, 2, 3, -4]
-
has_symmetry_at_one
()¶ If
True
, the motive H(t=1) is a direct sum of two motives.Note that simultaneous exchange of (t,1/t) and (alpha,beta) always gives the same motive.
EXAMPLES:
sage: from sage.modular.hypergeometric_motive import HypergeometricData as Hyp sage: Hyp(alpha_beta=[[1/2]*16,[0]*16]).has_symmetry_at_one() True
REFERENCES:
-
hodge_function
(x)¶ Evaluate the Hodge polygon as a function.
See also
hodge_numbers()
,hodge_polynomial()
,hodge_polygon_vertices()
sage: from sage.modular.hypergeometric_motive import HypergeometricData as Hyp sage: H = Hyp(cyclotomic=([6,10],[3,12])) sage: H.hodge_function(3) 2 sage: H.hodge_function(4) 4
-
hodge_numbers
()¶ Return the Hodge numbers.
See also
degree()
,hodge_polynomial()
,hodge_polygon()
EXAMPLES:
sage: from sage.modular.hypergeometric_motive import HypergeometricData as Hyp sage: H = Hyp(cyclotomic=([3],[6])) sage: H.hodge_numbers() [1, 1] sage: H = Hyp(cyclotomic=([4],[1,2])) sage: H.hodge_numbers() [2] sage: H = Hyp(gamma_list=([8,2,2,2],[6,4,3,1])) sage: H.hodge_numbers() [1, 2, 2, 1] sage: H = Hyp(gamma_list=([5],[1,1,1,1,1])) sage: H.hodge_numbers() [1, 1, 1, 1] sage: H = Hyp(gamma_list=[6,1,-4,-3]) sage: H.hodge_numbers() [1, 1] sage: H = Hyp(gamma_list=[-3]*4 + [1]*12) sage: H.hodge_numbers() [1, 1, 1, 1, 1, 1, 1, 1]
REFERENCES:
-
hodge_polygon_vertices
()¶ Return the vertices of the Hodge polygon.
See also
EXAMPLES:
sage: from sage.modular.hypergeometric_motive import HypergeometricData as Hyp sage: H = Hyp(cyclotomic=([6,10],[3,12])) sage: H.hodge_polygon_vertices() [(0, 0), (1, 0), (3, 2), (5, 6), (6, 9)] sage: H = Hyp(cyclotomic=([2,2,2,2,3,3,3,6,6],[1,1,4,5,9])) sage: H.hodge_polygon_vertices() [(0, 0), (1, 0), (4, 3), (7, 9), (10, 18), (13, 30), (14, 35)]
-
hodge_polynomial
()¶ Return the Hodge polynomial.
EXAMPLES:
sage: from sage.modular.hypergeometric_motive import HypergeometricData as Hyp sage: H = Hyp(cyclotomic=([6,10],[3,12])) sage: H.hodge_polynomial() (T^3 + 2*T^2 + 2*T + 1)/T^2 sage: H = Hyp(cyclotomic=([2,2,2,2,3,3,3,6,6],[1,1,4,5,9])) sage: H.hodge_polynomial() (T^5 + 3*T^4 + 3*T^3 + 3*T^2 + 3*T + 1)/T^2
-
is_primitive
()¶ Return whether this data is primitive.
See also
EXAMPLES:
sage: from sage.modular.hypergeometric_motive import HypergeometricData as Hyp sage: Hyp(cyclotomic=([3],[4])).is_primitive() True sage: Hyp(gamma_list=[-2, 4, 6, -8]).is_primitive() False sage: Hyp(gamma_list=[-3, 6, 9, -12]).is_primitive() False
-
padic_H_value
(p, f, t, prec=None)¶ Return the p-adic trace of Frobenius, computed using the Gross-Koblitz formula.
If left unspecified, prec is set to the minimum p-adic precision needed to recover the Euler factor.
INPUT:
- p – a prime number
- f – an integer such that q=pf
- t – a rational parameter
prec
– precision (optional)
OUTPUT:
an integer
EXAMPLES:
From Benasque report [Benasque2009], page 8:
sage: from sage.modular.hypergeometric_motive import HypergeometricData as Hyp sage: H = Hyp(alpha_beta=([1/2]*4,[0]*4)) sage: [H.padic_H_value(3,i,-1) for i in range(1,3)] [0, -12] sage: [H.padic_H_value(5,i,-1) for i in range(1,3)] [-4, 276] sage: [H.padic_H_value(7,i,-1) for i in range(1,3)] [0, -476] sage: [H.padic_H_value(11,i,-1) for i in range(1,3)] [0, -4972]
From [Roberts2015] (but note conventions regarding t):
sage: H = Hyp(gamma_list=[-6,-1,4,3]) sage: t = 189/125 sage: H.padic_H_value(13,1,1/t) 0
Check issue from trac ticket #28404:
sage: H1 = Hyp(cyclotomic=([1,1,1],[6,2])) sage: H2 = Hyp(cyclotomic=([6,2],[1,1,1])) sage: [H1.padic_H_value(5,1,i) for i in range(2,5)] [1, -4, -4] sage: [H2.padic_H_value(5,1,i) for i in range(2,5)] [-4, 1, -4]
REFERENCES:
-
primitive_data
()¶ Return a primitive version.
See also
EXAMPLES:
sage: from sage.modular.hypergeometric_motive import HypergeometricData as Hyp sage: H = Hyp(cyclotomic=([3],[4])) sage: H2 = Hyp(gamma_list=[-2, 4, 6, -8]) sage: H2.primitive_data() == H True
-
primitive_index
()¶ Return the primitive index.
See also
EXAMPLES:
sage: from sage.modular.hypergeometric_motive import HypergeometricData as Hyp sage: Hyp(cyclotomic=([3],[4])).primitive_index() 1 sage: Hyp(gamma_list=[-2, 4, 6, -8]).primitive_index() 2 sage: Hyp(gamma_list=[-3, 6, 9, -12]).primitive_index() 3
-
sign
(t, p)¶ Return the sign of the functional equation for the Euler factor of the motive Ht at the prime p.
For odd weight, the sign of the functional equation is +1. For even weight, the sign is computed by a recipe found in 11.1 of [Watkins] (when 0 is not in alpha).
EXAMPLES:
sage: from sage.modular.hypergeometric_motive import HypergeometricData as Hyp sage: H = Hyp(cyclotomic=([6,2],[1,1,1])) sage: H.weight(), H.degree() (2, 3) sage: [H.sign(1/4,p) for p in [5,7,11,13,17,19]] [1, 1, -1, -1, 1, 1] sage: H = Hyp(alpha_beta=([1/12,5/12,7/12,11/12],[0,1/2,1/2,1/2])) sage: H.weight(), H.degree() (2, 4) sage: t = -5 sage: [H.sign(1/t,p) for p in [11,13,17,19,23,29]] [-1, -1, -1, 1, 1, 1]
We check that trac ticket #28404 is fixed:
sage: H = Hyp(cyclotomic=([1,1,1],[6,2])) sage: [H.sign(4,p) for p in [5,7,11,13,17,19]] [1, 1, -1, -1, 1, 1]
-
swap_alpha_beta
()¶ Return the hypergeometric data with
alpha
andbeta
exchanged.EXAMPLES:
sage: from sage.modular.hypergeometric_motive import HypergeometricData as Hyp sage: H = Hyp(alpha_beta=([1/2],[0])) sage: H.swap_alpha_beta() Hypergeometric data for [0] and [1/2]
-
twist
()¶ Return the twist of this data.
This is defined by adding 1/2 to each rational in α and β.
This is an involution.
EXAMPLES:
sage: from sage.modular.hypergeometric_motive import HypergeometricData as Hyp sage: H = Hyp(alpha_beta=([1/2],[0])) sage: H.twist() Hypergeometric data for [0] and [1/2] sage: H.twist().twist() == H True sage: Hyp(cyclotomic=([6],[1,2])).twist().cyclotomic_data() ([3], [1, 2])
-
weight
()¶ Return the motivic weight of this motivic data.
EXAMPLES:
With rational inputs:
sage: from sage.modular.hypergeometric_motive import HypergeometricData as Hyp sage: Hyp(alpha_beta=([1/2],[0])).weight() 0 sage: Hyp(alpha_beta=([1/4,3/4],[0,0])).weight() 1 sage: Hyp(alpha_beta=([1/6,1/3,2/3,5/6],[0,0,1/4,3/4])).weight() 1 sage: H = Hyp(alpha_beta=([1/6,1/3,2/3,5/6],[1/8,3/8,5/8,7/8])) sage: H.weight() 1
With cyclotomic inputs:
sage: Hyp(cyclotomic=([6,2],[1,1,1])).weight() 2 sage: Hyp(cyclotomic=([6],[1,2])).weight() 0 sage: Hyp(cyclotomic=([8],[1,2,3])).weight() 0 sage: Hyp(cyclotomic=([5],[1,1,1,1])).weight() 3 sage: Hyp(cyclotomic=([5,6],[1,1,2,2,3])).weight() 1 sage: Hyp(cyclotomic=([3,8],[1,1,1,2,6])).weight() 2 sage: Hyp(cyclotomic=([3,3],[2,2,4])).weight() 1
With gamma list input:
sage: Hyp(gamma_list=([8,2,2,2],[6,4,3,1])).weight() 3
-
zigzag
(x, flip_beta=False)¶ Count
alpha
’s at mostx
minusbeta
’s at mostx
.This function is used to compute the weight and the Hodge numbers. With flipbeta set to True, replace each b in β with 1−b.
See also
EXAMPLES:
sage: from sage.modular.hypergeometric_motive import HypergeometricData as Hyp sage: H = Hyp(alpha_beta=([1/6,1/3,2/3,5/6],[1/8,3/8,5/8,7/8])) sage: [H.zigzag(x) for x in [0, 1/3, 1/2]] [0, 1, 0] sage: H = Hyp(cyclotomic=([5],[1,1,1,1])) sage: [H.zigzag(x) for x in [0,1/6,1/4,1/2,3/4,5/6]] [-4, -4, -3, -2, -1, 0]
-
sage.modular.hypergeometric_motive.
alpha_to_cyclotomic
(alpha)¶ Convert from a list of rationals arguments to a list of integers.
The input represents arguments of some roots of unity.
The output represent a product of cyclotomic polynomials with exactly the given roots. Note that the multiplicity of r/s in the list must be independent of r; otherwise, a
ValueError
will be raised.This is the inverse of
cyclotomic_to_alpha()
.EXAMPLES:
sage: from sage.modular.hypergeometric_motive import alpha_to_cyclotomic sage: alpha_to_cyclotomic([0]) [1] sage: alpha_to_cyclotomic([1/2]) [2] sage: alpha_to_cyclotomic([1/5,2/5,3/5,4/5]) [5] sage: alpha_to_cyclotomic([0, 1/6, 1/3, 1/2, 2/3, 5/6]) [1, 2, 3, 6] sage: alpha_to_cyclotomic([1/3,2/3,1/2]) [2, 3]
-
sage.modular.hypergeometric_motive.
capital_M
(n)¶ Auxiliary function, used to describe the canonical scheme.
INPUT:
n
– an integer
OUTPUT:
a rational
EXAMPLES:
sage: from sage.modular.hypergeometric_motive import capital_M sage: [capital_M(i) for i in range(1,8)] [1, 4, 27, 64, 3125, 432, 823543]
-
sage.modular.hypergeometric_motive.
characteristic_polynomial_from_traces
(traces, d, q, i, sign)¶ Given a sequence of traces t1,…,tk, return the corresponding characteristic polynomial with Weil numbers as roots.
The characteristic polynomial is defined by the generating series
P(T)=exp(−∑k≥1tkTkk)and should have the property that reciprocals of all roots have absolute value qi/2.
INPUT:
traces
– a list of integers t1,…,tkd
– the degree of the characteristic polynomialq
– power of a prime numberi
– integer, the weight in the motivic sensesign
– integer, the sign
OUTPUT:
a polynomial
EXAMPLES:
sage: from sage.modular.hypergeometric_motive import characteristic_polynomial_from_traces sage: characteristic_polynomial_from_traces([1, 1], 1, 3, 0, -1) -T + 1 sage: characteristic_polynomial_from_traces([25], 1, 5, 4, -1) -25*T + 1 sage: characteristic_polynomial_from_traces([3], 2, 5, 1, 1) 5*T^2 - 3*T + 1 sage: characteristic_polynomial_from_traces([1], 2, 7, 1, 1) 7*T^2 - T + 1 sage: characteristic_polynomial_from_traces([20], 3, 29, 2, 1) 24389*T^3 - 580*T^2 - 20*T + 1 sage: characteristic_polynomial_from_traces([12], 3, 13, 2, -1) -2197*T^3 + 156*T^2 - 12*T + 1 sage: characteristic_polynomial_from_traces([36,7620], 4, 17, 3, 1) 24137569*T^4 - 176868*T^3 - 3162*T^2 - 36*T + 1 sage: characteristic_polynomial_from_traces([-4,276], 4, 5, 3, 1) 15625*T^4 + 500*T^3 - 130*T^2 + 4*T + 1 sage: characteristic_polynomial_from_traces([4,-276], 4, 5, 3, 1) 15625*T^4 - 500*T^3 + 146*T^2 - 4*T + 1 sage: characteristic_polynomial_from_traces([22, 484], 4, 31, 2, -1) -923521*T^4 + 21142*T^3 - 22*T + 1
-
sage.modular.hypergeometric_motive.
cyclotomic_to_alpha
(cyclo)¶ Convert a list of indices of cyclotomic polynomials to a list of rational numbers.
The input represents a product of cyclotomic polynomials.
The output is the list of arguments of the roots of the given product of cyclotomic polynomials.
This is the inverse of
alpha_to_cyclotomic()
.EXAMPLES:
sage: from sage.modular.hypergeometric_motive import cyclotomic_to_alpha sage: cyclotomic_to_alpha([1]) [0] sage: cyclotomic_to_alpha([2]) [1/2] sage: cyclotomic_to_alpha([5]) [1/5, 2/5, 3/5, 4/5] sage: cyclotomic_to_alpha([1,2,3,6]) [0, 1/6, 1/3, 1/2, 2/3, 5/6] sage: cyclotomic_to_alpha([2,3]) [1/3, 1/2, 2/3]
-
sage.modular.hypergeometric_motive.
cyclotomic_to_gamma
(cyclo_up, cyclo_down)¶ Convert a quotient of products of cyclotomic polynomials to a quotient of products of polynomials xn−1.
INPUT:
cyclo_up
– list of indices of cyclotomic polynomials in the numeratorcyclo_down
– list of indices of cyclotomic polynomials in the denominator
OUTPUT:
a dictionary mapping an integer n to the power of xn−1 that appears in the given product
EXAMPLES:
sage: from sage.modular.hypergeometric_motive import cyclotomic_to_gamma sage: cyclotomic_to_gamma([6], [1]) {2: -1, 3: -1, 6: 1}
-
sage.modular.hypergeometric_motive.
enumerate_hypergeometric_data
(d, weight=None)¶ Return an iterator over parameters of hypergeometric motives (up to swapping).
INPUT:
d
– the degreeweight
– optional integer, to specify the motivic weight
EXAMPLES:
sage: from sage.modular.hypergeometric_motive import enumerate_hypergeometric_data as enum sage: l = [H for H in enum(6, weight=2) if H.hodge_numbers()[0] == 1] sage: len(l) 112
-
sage.modular.hypergeometric_motive.
gamma_list_to_cyclotomic
(galist)¶ Convert a quotient of products of polynomials xn−1 to a quotient of products of cyclotomic polynomials.
INPUT:
galist
– a list of integers, where an integer n represents the power (x|n|−1)sgn(n)
OUTPUT:
a pair of list of integers, where k represents the cyclotomic polynomial Φk
EXAMPLES:
sage: from sage.modular.hypergeometric_motive import gamma_list_to_cyclotomic sage: gamma_list_to_cyclotomic([-1, -1, 2]) ([2], [1]) sage: gamma_list_to_cyclotomic([-1, -1, -1, -3, 6]) ([2, 6], [1, 1, 1]) sage: gamma_list_to_cyclotomic([-1, 2, 3, -4]) ([3], [4]) sage: gamma_list_to_cyclotomic([8,2,2,2,-6,-4,-3,-1]) ([2, 2, 8], [3, 3, 6])
-
sage.modular.hypergeometric_motive.
possible_hypergeometric_data
(d, weight=None)¶ Return the list of possible parameters of hypergeometric motives (up to swapping).
INPUT:
d
– the degreeweight
– optional integer, to specify the motivic weight
EXAMPLES:
sage: from sage.modular.hypergeometric_motive import possible_hypergeometric_data as P sage: [len(P(i,weight=2)) for i in range(1, 7)] [0, 0, 10, 30, 93, 234]