The Eisenstein Subspace¶
-
class
sage.modular.modform.eisenstein_submodule.
EisensteinSubmodule
(ambient_space)¶ Bases:
sage.modular.modform.submodule.ModularFormsSubmodule
The Eisenstein submodule of an ambient space of modular forms.
-
eisenstein_submodule
()¶ Return the Eisenstein submodule of self. (Yes, this is just self.)
EXAMPLES:
sage: E = ModularForms(23,4).eisenstein_subspace() sage: E == E.eisenstein_submodule() True
-
modular_symbols
(sign=0)¶ Return the corresponding space of modular symbols with given sign. This will fail in weight 1.
Warning
If sign != 0, then the space of modular symbols will, in general, only correspond to a subspace of this space of modular forms. This can be the case for both sign +1 or -1.
EXAMPLES:
sage: E = ModularForms(11,2).eisenstein_submodule() sage: M = E.modular_symbols(); M Modular Symbols subspace of dimension 1 of Modular Symbols space of dimension 3 for Gamma_0(11) of weight 2 with sign 0 over Rational Field sage: M.sign() 0 sage: M = E.modular_symbols(sign=-1); M Modular Symbols subspace of dimension 0 of Modular Symbols space of dimension 1 for Gamma_0(11) of weight 2 with sign -1 over Rational Field sage: E = ModularForms(1,12).eisenstein_submodule() sage: E.modular_symbols() Modular Symbols subspace of dimension 1 of Modular Symbols space of dimension 3 for Gamma_0(1) of weight 12 with sign 0 over Rational Field sage: eps = DirichletGroup(13).0 sage: E = EisensteinForms(eps^2, 2) sage: E.modular_symbols() Modular Symbols subspace of dimension 2 of Modular Symbols space of dimension 4 and level 13, weight 2, character [zeta6], sign 0, over Cyclotomic Field of order 6 and degree 2 sage: E = EisensteinForms(eps, 1); E Eisenstein subspace of dimension 1 of Modular Forms space of character [zeta12] and weight 1 over Cyclotomic Field of order 12 and degree 4 sage: E.modular_symbols() Traceback (most recent call last): ... ValueError: the weight must be at least 2
-
-
class
sage.modular.modform.eisenstein_submodule.
EisensteinSubmodule_eps
(ambient_space)¶ Bases:
sage.modular.modform.eisenstein_submodule.EisensteinSubmodule_params
Space of Eisenstein forms with given Dirichlet character.
EXAMPLES:
sage: e = DirichletGroup(27,CyclotomicField(3)).0**2 sage: M = ModularForms(e,2,prec=10).eisenstein_subspace() sage: M.dimension() 6 sage: M.eisenstein_series() [ -1/3*zeta6 - 1/3 + q + (2*zeta6 - 1)*q^2 + q^3 + (-2*zeta6 - 1)*q^4 + (-5*zeta6 + 1)*q^5 + O(q^6), -1/3*zeta6 - 1/3 + q^3 + O(q^6), q + (-2*zeta6 + 1)*q^2 + (-2*zeta6 - 1)*q^4 + (5*zeta6 - 1)*q^5 + O(q^6), q + (zeta6 + 1)*q^2 + 3*q^3 + (zeta6 + 2)*q^4 + (-zeta6 + 5)*q^5 + O(q^6), q^3 + O(q^6), q + (-zeta6 - 1)*q^2 + (zeta6 + 2)*q^4 + (zeta6 - 5)*q^5 + O(q^6) ] sage: M.eisenstein_subspace().T(2).matrix().fcp() (x + 2*zeta3 + 1) * (x + zeta3 + 2) * (x - zeta3 - 2)^2 * (x - 2*zeta3 - 1)^2 sage: ModularSymbols(e,2).eisenstein_subspace().T(2).matrix().fcp() (x + 2*zeta3 + 1) * (x + zeta3 + 2) * (x - zeta3 - 2)^2 * (x - 2*zeta3 - 1)^2 sage: M.basis() [ 1 - 3*zeta3*q^6 + (-2*zeta3 + 2)*q^9 + O(q^10), q + (5*zeta3 + 5)*q^7 + O(q^10), q^2 - 2*zeta3*q^8 + O(q^10), q^3 + (zeta3 + 2)*q^6 + 3*q^9 + O(q^10), q^4 - 2*zeta3*q^7 + O(q^10), q^5 + (zeta3 + 1)*q^8 + O(q^10) ]
-
class
sage.modular.modform.eisenstein_submodule.
EisensteinSubmodule_g0_Q
(ambient_space)¶ Bases:
sage.modular.modform.eisenstein_submodule.EisensteinSubmodule_params
Space of Eisenstein forms for \(\Gamma_0(N)\).
-
class
sage.modular.modform.eisenstein_submodule.
EisensteinSubmodule_g1_Q
(ambient_space)¶ Bases:
sage.modular.modform.eisenstein_submodule.EisensteinSubmodule_gH_Q
Space of Eisenstein forms for \(\Gamma_1(N)\).
-
class
sage.modular.modform.eisenstein_submodule.
EisensteinSubmodule_gH_Q
(ambient_space)¶ Bases:
sage.modular.modform.eisenstein_submodule.EisensteinSubmodule_params
Space of Eisenstein forms for \(\Gamma_H(N)\).
-
class
sage.modular.modform.eisenstein_submodule.
EisensteinSubmodule_params
(ambient_space)¶ Bases:
sage.modular.modform.eisenstein_submodule.EisensteinSubmodule
-
change_ring
(base_ring)¶ Return self as a module over base_ring.
EXAMPLES:
sage: E = EisensteinForms(12,2) ; E Eisenstein subspace of dimension 5 of Modular Forms space of dimension 5 for Congruence Subgroup Gamma0(12) of weight 2 over Rational Field sage: E.basis() [ 1 + O(q^6), q + 6*q^5 + O(q^6), q^2 + O(q^6), q^3 + O(q^6), q^4 + O(q^6) ] sage: E.change_ring(GF(5)) Eisenstein subspace of dimension 5 of Modular Forms space of dimension 5 for Congruence Subgroup Gamma0(12) of weight 2 over Finite Field of size 5 sage: E.change_ring(GF(5)).basis() [ 1 + O(q^6), q + q^5 + O(q^6), q^2 + O(q^6), q^3 + O(q^6), q^4 + O(q^6) ]
-
eisenstein_series
()¶ Return the Eisenstein series that span this space (over the algebraic closure).
EXAMPLES:
sage: EisensteinForms(11,2).eisenstein_series() [ 5/12 + q + 3*q^2 + 4*q^3 + 7*q^4 + 6*q^5 + O(q^6) ] sage: EisensteinForms(1,4).eisenstein_series() [ 1/240 + q + 9*q^2 + 28*q^3 + 73*q^4 + 126*q^5 + O(q^6) ] sage: EisensteinForms(1,24).eisenstein_series() [ 236364091/131040 + q + 8388609*q^2 + 94143178828*q^3 + 70368752566273*q^4 + 11920928955078126*q^5 + O(q^6) ] sage: EisensteinForms(5,4).eisenstein_series() [ 1/240 + q + 9*q^2 + 28*q^3 + 73*q^4 + 126*q^5 + O(q^6), 1/240 + q^5 + O(q^6) ] sage: EisensteinForms(13,2).eisenstein_series() [ 1/2 + q + 3*q^2 + 4*q^3 + 7*q^4 + 6*q^5 + O(q^6) ] sage: E = EisensteinForms(Gamma1(7),2) sage: E.set_precision(4) sage: E.eisenstein_series() [ 1/4 + q + 3*q^2 + 4*q^3 + O(q^4), 1/7*zeta6 - 3/7 + q + (-2*zeta6 + 1)*q^2 + (3*zeta6 - 2)*q^3 + O(q^4), q + (-zeta6 + 2)*q^2 + (zeta6 + 2)*q^3 + O(q^4), -1/7*zeta6 - 2/7 + q + (2*zeta6 - 1)*q^2 + (-3*zeta6 + 1)*q^3 + O(q^4), q + (zeta6 + 1)*q^2 + (-zeta6 + 3)*q^3 + O(q^4) ] sage: eps = DirichletGroup(13).0^2 sage: ModularForms(eps,2).eisenstein_series() [ -7/13*zeta6 - 11/13 + q + (2*zeta6 + 1)*q^2 + (-3*zeta6 + 1)*q^3 + (6*zeta6 - 3)*q^4 - 4*q^5 + O(q^6), q + (zeta6 + 2)*q^2 + (-zeta6 + 3)*q^3 + (3*zeta6 + 3)*q^4 + 4*q^5 + O(q^6) ] sage: M = ModularForms(19,3).eisenstein_subspace() sage: M.eisenstein_series() [ ] sage: M = ModularForms(DirichletGroup(13).0, 1) sage: M.eisenstein_series() [ -1/13*zeta12^3 + 6/13*zeta12^2 + 4/13*zeta12 + 2/13 + q + (zeta12 + 1)*q^2 + zeta12^2*q^3 + (zeta12^2 + zeta12 + 1)*q^4 + (-zeta12^3 + 1)*q^5 + O(q^6) ] sage: M = ModularForms(GammaH(15, [4]), 4) sage: M.eisenstein_series() [ 1/240 + q + 9*q^2 + 28*q^3 + 73*q^4 + 126*q^5 + O(q^6), 1/240 + q^3 + O(q^6), 1/240 + q^5 + O(q^6), 1/240 + O(q^6), 1 + q - 7*q^2 - 26*q^3 + 57*q^4 + q^5 + O(q^6), 1 + q^3 + O(q^6), q + 7*q^2 + 26*q^3 + 57*q^4 + 125*q^5 + O(q^6), q^3 + O(q^6) ]
-
new_eisenstein_series
()¶ Return a list of the Eisenstein series in this space that are new.
EXAMPLES:
sage: E = EisensteinForms(25, 4) sage: E.new_eisenstein_series() [q + 7*zeta4*q^2 - 26*zeta4*q^3 - 57*q^4 + O(q^6), q - 9*q^2 - 28*q^3 + 73*q^4 + O(q^6), q - 7*zeta4*q^2 + 26*zeta4*q^3 - 57*q^4 + O(q^6)]
-
new_submodule
(p=None)¶ Return the new submodule of self.
EXAMPLES:
sage: e = EisensteinForms(Gamma0(225), 2).new_submodule(); e Modular Forms subspace of dimension 3 of Modular Forms space of dimension 42 for Congruence Subgroup Gamma0(225) of weight 2 over Rational Field sage: e.basis() [ q + O(q^6), q^2 + O(q^6), q^4 + O(q^6) ]
-
parameters
()¶ Return a list of parameters for each Eisenstein series spanning self. That is, for each such series, return a triple of the form (\(\psi\), \(\chi\), level), where \(\psi\) and \(\chi\) are the characters defining the Eisenstein series, and level is the smallest level at which this series occurs.
EXAMPLES:
sage: ModularForms(24,2).eisenstein_submodule().parameters() [(Dirichlet character modulo 24 of conductor 1 mapping 7 |--> 1, 13 |--> 1, 17 |--> 1, Dirichlet character modulo 24 of conductor 1 mapping 7 |--> 1, 13 |--> 1, 17 |--> 1, 2), ... Dirichlet character modulo 24 of conductor 1 mapping 7 |--> 1, 13 |--> 1, 17 |--> 1, 24)] sage: EisensteinForms(12,6).parameters()[-1] (Dirichlet character modulo 12 of conductor 1 mapping 7 |--> 1, 5 |--> 1, Dirichlet character modulo 12 of conductor 1 mapping 7 |--> 1, 5 |--> 1, 12) sage: pars = ModularForms(DirichletGroup(24).0,3).eisenstein_submodule().parameters() sage: [(x[0].values_on_gens(),x[1].values_on_gens(),x[2]) for x in pars] [((1, 1, 1), (-1, 1, 1), 1), ((1, 1, 1), (-1, 1, 1), 2), ((1, 1, 1), (-1, 1, 1), 3), ((1, 1, 1), (-1, 1, 1), 6), ((-1, 1, 1), (1, 1, 1), 1), ((-1, 1, 1), (1, 1, 1), 2), ((-1, 1, 1), (1, 1, 1), 3), ((-1, 1, 1), (1, 1, 1), 6)] sage: EisensteinForms(DirichletGroup(24).0,1).parameters() [(Dirichlet character modulo 24 of conductor 1 mapping 7 |--> 1, 13 |--> 1, 17 |--> 1, Dirichlet character modulo 24 of conductor 4 mapping 7 |--> -1, 13 |--> 1, 17 |--> 1, 1), (Dirichlet character modulo 24 of conductor 1 mapping 7 |--> 1, 13 |--> 1, 17 |--> 1, Dirichlet character modulo 24 of conductor 4 mapping 7 |--> -1, 13 |--> 1, 17 |--> 1, 2), (Dirichlet character modulo 24 of conductor 1 mapping 7 |--> 1, 13 |--> 1, 17 |--> 1, Dirichlet character modulo 24 of conductor 4 mapping 7 |--> -1, 13 |--> 1, 17 |--> 1, 3), (Dirichlet character modulo 24 of conductor 1 mapping 7 |--> 1, 13 |--> 1, 17 |--> 1, Dirichlet character modulo 24 of conductor 4 mapping 7 |--> -1, 13 |--> 1, 17 |--> 1, 6)]
-
-
sage.modular.modform.eisenstein_submodule.
cyclotomic_restriction
(L, K)¶ Given two cyclotomic fields L and K, compute the compositum M of K and L, and return a function and the index [M:K]. The function is a map that acts as follows (here \(M = Q(\zeta_m)\)):
INPUT:
element alpha in L
OUTPUT:
a polynomial \(f(x)\) in \(K[x]\) such that \(f(\zeta_m) = \alpha\), where we view alpha as living in \(M\). (Note that \(\zeta_m\) generates \(M\), not \(L\).)
EXAMPLES:
sage: L = CyclotomicField(12) ; N = CyclotomicField(33) ; M = CyclotomicField(132) sage: z, n = sage.modular.modform.eisenstein_submodule.cyclotomic_restriction(L,N) sage: n 2 sage: z(L.0) -zeta33^19*x sage: z(L.0)(M.0) zeta132^11 sage: z(L.0^3-L.0+1) (zeta33^19 + zeta33^8)*x + 1 sage: z(L.0^3-L.0+1)(M.0) zeta132^33 - zeta132^11 + 1 sage: z(L.0^3-L.0+1)(M.0) - M(L.0^3-L.0+1) 0
-
sage.modular.modform.eisenstein_submodule.
cyclotomic_restriction_tower
(L, K)¶ Suppose L/K is an extension of cyclotomic fields and L=Q(zeta_m). This function computes a map with the following property:
INPUT:
an element alpha in L
OUTPUT:
a polynomial \(f(x)\) in \(K[x]\) such that \(f(zeta_m) = alpha\).
EXAMPLES:
sage: L = CyclotomicField(12) ; K = CyclotomicField(6) sage: z = sage.modular.modform.eisenstein_submodule.cyclotomic_restriction_tower(L,K) sage: z(L.0) x sage: z(L.0^2+L.0) x + zeta6