Modular Forms for \(\Gamma_0(N)\) over \(\QQ\)¶
-
class
sage.modular.modform.ambient_g0.
ModularFormsAmbient_g0_Q
(level, weight)¶ Bases:
sage.modular.modform.ambient.ModularFormsAmbient
A space of modular forms for \(\Gamma_0(N)\) over \(\QQ\).
-
cuspidal_submodule
()¶ Return the cuspidal submodule of this space of modular forms for \(\Gamma_0(N)\).
EXAMPLES:
sage: m = ModularForms(Gamma0(33),4) sage: s = m.cuspidal_submodule(); s Cuspidal subspace of dimension 10 of Modular Forms space of dimension 14 for Congruence Subgroup Gamma0(33) of weight 4 over Rational Field sage: type(s) <class 'sage.modular.modform.cuspidal_submodule.CuspidalSubmodule_g0_Q_with_category'>
-
eisenstein_submodule
()¶ Return the Eisenstein submodule of this space of modular forms for \(\Gamma_0(N)\).
EXAMPLES:
sage: m = ModularForms(Gamma0(389),6) sage: m.eisenstein_submodule() Eisenstein subspace of dimension 2 of Modular Forms space of dimension 163 for Congruence Subgroup Gamma0(389) of weight 6 over Rational Field
-