Finite subgroups of modular abelian varieties

Sage can compute with fairly general finite subgroups of modular abelian varieties. Elements of finite order are represented by equivalence classes of elements in \(H_1(A,\QQ)\) modulo \(H_1(A,\ZZ)\). A finite subgroup can be defined by giving generators and via various other constructions. Given a finite subgroup, one can compute generators, as well as the structure as an abstract group. Arithmetic on subgroups is also supported, including adding two subgroups together, checking inclusion, etc.

TODO: Intersection, action of Hecke operators.

AUTHORS:

  • William Stein (2007-03)

EXAMPLES:

sage: J = J0(33)
sage: C = J.cuspidal_subgroup()
sage: C
Finite subgroup with invariants [10, 10] over QQ of Abelian variety J0(33) of dimension 3
sage: C.order()
100
sage: C.gens()
[[(1/10, 0, 1/10, 1/10, 1/10, 3/10)], [(0, 1/5, 1/10, 0, 1/10, 9/10)], [(0, 0, 1/2, 0, 1/2, 1/2)]]
sage: C.0 + C.1
[(1/10, 1/5, 1/5, 1/10, 1/5, 6/5)]
sage: 10*(C.0 + C.1)
[(0, 0, 0, 0, 0, 0)]
sage: G = C.subgroup([C.0 + C.1]); G
Finite subgroup with invariants [10] over QQbar of Abelian variety J0(33) of dimension 3
sage: G.gens()
[[(1/10, 1/5, 1/5, 1/10, 1/5, 1/5)]]
sage: G.order()
10
sage: G <= C
True
sage: G >= C
False

We make a table of the order of the cuspidal subgroup for the first few levels:

sage: for N in range(11,40):
....:     print("{} {}".format(N, J0(N).cuspidal_subgroup().order()))
11 5
12 1
13 1
14 6
15 8
16 1
17 4
18 1
19 3
20 6
21 8
22 25
23 11
24 8
25 1
26 21
27 9
28 36
29 7
30 192
31 5
32 8
33 100
34 48
35 48
36 12
37 3
38 135
39 56
class sage.modular.abvar.finite_subgroup.FiniteSubgroup(abvar, field_of_definition=Rational Field)

Bases: sage.modules.module.Module

A finite subgroup of a modular abelian variety.

INPUT:

  • abvar – a modular abelian variety
  • field_of_definition – a field over which this group is defined

EXAMPLES:

This is an abstract base class, so there are no instances of this class itself:

sage: A = J0(37)
sage: G = A.torsion_subgroup(3); G
Finite subgroup with invariants [3, 3, 3, 3] over QQ of Abelian variety J0(37) of dimension 2
sage: type(G)
<class 'sage.modular.abvar.finite_subgroup.FiniteSubgroup_lattice_with_category'>
sage: from sage.modular.abvar.finite_subgroup import FiniteSubgroup
sage: isinstance(G, FiniteSubgroup)
True
Element

alias of sage.modular.abvar.torsion_point.TorsionPoint

abelian_variety()

Return the abelian variety that this is a finite subgroup of.

EXAMPLES:

sage: J = J0(42)
sage: G = J.rational_torsion_subgroup(); G
Torsion subgroup of Abelian variety J0(42) of dimension 5
sage: G.abelian_variety()
Abelian variety J0(42) of dimension 5
exponent()

Return the exponent of this finite abelian group.

OUTPUT: Integer

EXAMPLES:

sage: t = J0(33).hecke_operator(7)
sage: G = t.kernel()[0]; G
Finite subgroup with invariants [2, 2, 2, 2, 4, 4] over QQ of Abelian variety J0(33) of dimension 3
sage: G.exponent()
4
field_of_definition()

Return the field over which this finite modular abelian variety subgroup is defined. This is a field over which this subgroup is defined.

EXAMPLES:

sage: J = J0(42)
sage: G = J.rational_torsion_subgroup(); G
Torsion subgroup of Abelian variety J0(42) of dimension 5
sage: G.field_of_definition()
Rational Field
gen(n)

Return \(n^{th}\) generator of self.

EXAMPLES:

sage: J = J0(23)
sage: C = J.torsion_subgroup(3)
sage: C.gens()
[[(1/3, 0, 0, 0)], [(0, 1/3, 0, 0)], [(0, 0, 1/3, 0)], [(0, 0, 0, 1/3)]]
sage: C.gen(0)
[(1/3, 0, 0, 0)]
sage: C.gen(3)
[(0, 0, 0, 1/3)]
sage: C.gen(4)
Traceback (most recent call last):
...
IndexError: list index out of range

Negative indices wrap around:

sage: C.gen(-1)
[(0, 0, 0, 1/3)]
gens()

Return generators for this finite subgroup.

EXAMPLES: We list generators for several cuspidal subgroups:

sage: J0(11).cuspidal_subgroup().gens()
[[(0, 1/5)]]
sage: J0(37).cuspidal_subgroup().gens()
[[(0, 0, 0, 1/3)]]
sage: J0(43).cuspidal_subgroup().gens()
[[(0, 1/7, 0, 6/7, 0, 5/7)]]
sage: J1(13).cuspidal_subgroup().gens()
[[(1/19, 0, 9/19, 9/19)], [(0, 1/19, 0, 9/19)]]
sage: J0(22).torsion_subgroup(6).gens()
[[(1/6, 0, 0, 0)], [(0, 1/6, 0, 0)], [(0, 0, 1/6, 0)], [(0, 0, 0, 1/6)]]
intersection(other)

Return the intersection of the finite subgroups self and other.

INPUT:

  • other - a finite group

OUTPUT: a finite group

EXAMPLES:

sage: E11a0, E11a1, B = J0(33)
sage: G = E11a0.torsion_subgroup(6); H = E11a0.torsion_subgroup(9)
sage: G.intersection(H)
Finite subgroup with invariants [3, 3] over QQ of Simple abelian subvariety 11a(1,33) of dimension 1 of J0(33)
sage: W = E11a1.torsion_subgroup(15)
sage: G.intersection(W)
Finite subgroup with invariants [] over QQ of Simple abelian subvariety 11a(1,33) of dimension 1 of J0(33)
sage: E11a0.intersection(E11a1)[0]
Finite subgroup with invariants [5] over QQ of Simple abelian subvariety 11a(1,33) of dimension 1 of J0(33)

We intersect subgroups of different abelian varieties.

sage: E11a0, E11a1, B = J0(33)
sage: G = E11a0.torsion_subgroup(5); H = E11a1.torsion_subgroup(5)
sage: G.intersection(H)
Finite subgroup with invariants [5] over QQ of Simple abelian subvariety 11a(1,33) of dimension 1 of J0(33)
sage: E11a0.intersection(E11a1)[0]
Finite subgroup with invariants [5] over QQ of Simple abelian subvariety 11a(1,33) of dimension 1 of J0(33)

We intersect abelian varieties with subgroups:

sage: t = J0(33).hecke_operator(7)
sage: G = t.kernel()[0]; G
Finite subgroup with invariants [2, 2, 2, 2, 4, 4] over QQ of Abelian variety J0(33) of dimension 3
sage: A = J0(33).old_subvariety()
sage: A.intersection(G)
Finite subgroup with invariants [2, 2, 2, 2] over QQ of Abelian subvariety of dimension 2 of J0(33)
sage: A.hecke_operator(7).kernel()[0]
Finite subgroup with invariants [2, 2, 2, 2] over QQ of Abelian subvariety of dimension 2 of J0(33)
sage: B = J0(33).new_subvariety()
sage: B.intersection(G)
Finite subgroup with invariants [4, 4] over QQ of Abelian subvariety of dimension 1 of J0(33)
sage: B.hecke_operator(7).kernel()[0]
Finite subgroup with invariants [4, 4] over QQ of Abelian subvariety of dimension 1 of J0(33)
sage: A.intersection(B)[0]
Finite subgroup with invariants [3, 3] over QQ of Abelian subvariety of dimension 2 of J0(33)
invariants()

Return elementary invariants of this abelian group, by which we mean a nondecreasing (immutable) sequence of integers \(n_i\), \(1 \leq i \leq k\), with \(n_i\) dividing \(n_{i+1}\), and such that this group is abstractly isomorphic to \(\ZZ/n_1\ZZ \times\cdots\times \ZZ/n_k\ZZ.\)

EXAMPLES:

sage: J = J0(38)
sage: C = J.cuspidal_subgroup(); C
Finite subgroup with invariants [3, 45] over QQ of Abelian variety J0(38) of dimension 4
sage: v = C.invariants(); v
[3, 45]
sage: v[0] = 5
Traceback (most recent call last):
...
ValueError: object is immutable; please change a copy instead.
sage: type(v[0])
<type 'sage.rings.integer.Integer'>
sage: C * 3
Finite subgroup with invariants [15] over QQ of Abelian variety J0(38) of dimension 4

An example involving another cuspidal subgroup:

sage: C = J0(22).cuspidal_subgroup(); C
Finite subgroup with invariants [5, 5] over QQ of Abelian variety J0(22) of dimension 2
sage: C.lattice()
Free module of degree 4 and rank 4 over Integer Ring
Echelon basis matrix:
[1/5 1/5 4/5   0]
[  0   1   0   0]
[  0   0   1   0]
[  0   0   0 1/5]
sage: C.invariants()
[5, 5]
is_subgroup(other)

Return True exactly if self is a subgroup of other, and both are defined as subgroups of the same ambient abelian variety.

EXAMPLES:

sage: C = J0(22).cuspidal_subgroup()
sage: H = C.subgroup([C.0])
sage: K = C.subgroup([C.1])
sage: H.is_subgroup(K)
False
sage: K.is_subgroup(H)
False
sage: K.is_subgroup(C)
True
sage: H.is_subgroup(C)
True
lattice()

Return the lattice corresponding to this subgroup in the rational homology of the modular Jacobian product. The elements of the subgroup are represented by vectors in the ambient vector space (the rational homology), and this returns the lattice they span. EXAMPLES:

sage: J = J0(33); C = J[0].cuspidal_subgroup(); C
Finite subgroup with invariants [5] over QQ of Simple abelian subvariety 11a(1,33) of dimension 1 of J0(33)
sage: C.lattice()
Free module of degree 6 and rank 2 over Integer Ring
Echelon basis matrix:
[ 1/5 13/5   -2 -4/5    2 -1/5]
[   0    3   -2   -1    2    0]
order()

Return the order (number of elements) of this finite subgroup.

EXAMPLES:

sage: J = J0(42)
sage: C = J.cuspidal_subgroup()
sage: C.order()
2304
subgroup(gens)

Return the subgroup of self spanned by the given generators, which must all be elements of self.

EXAMPLES:

sage: J = J0(23)
sage: G = J.torsion_subgroup(11); G
Finite subgroup with invariants [11, 11, 11, 11] over QQ of Abelian variety J0(23) of dimension 2

We create the subgroup of the 11-torsion subgroup of \(J_0(23)\) generated by the first \(11\)-torsion point:

sage: H = G.subgroup([G.0]); H
Finite subgroup with invariants [11] over QQbar of Abelian variety J0(23) of dimension 2
sage: H.invariants()
[11]

We can also create a subgroup from a list of objects that can be converted into the ambient rational homology:

sage: H == G.subgroup([[1/11,0,0,0]])
True
class sage.modular.abvar.finite_subgroup.FiniteSubgroup_lattice(abvar, lattice, field_of_definition=Algebraic Field, check=True)

Bases: sage.modular.abvar.finite_subgroup.FiniteSubgroup

A finite subgroup of a modular abelian variety that is defined by a given lattice.

INPUT:

  • abvar - a modular abelian variety
  • lattice - a lattice that contains the lattice of abvar
  • field_of_definition - the field of definition of this finite group scheme
  • check - bool (default: True) whether or not to check that lattice contains the abvar lattice.

EXAMPLES:

sage: J = J0(11)
sage: G = J.finite_subgroup([[1/3,0], [0,1/5]]); G
Finite subgroup with invariants [15] over QQbar of Abelian variety J0(11) of dimension 1
lattice()

Return lattice that defines this finite subgroup.

EXAMPLES:

sage: J = J0(11)
sage: G = J.finite_subgroup([[1/3,0], [0,1/5]]); G
Finite subgroup with invariants [15] over QQbar of Abelian variety J0(11) of dimension 1
sage: G.lattice()
Free module of degree 2 and rank 2 over Integer Ring
Echelon basis matrix:
[1/3   0]
[  0 1/5]