Dense matrices over \(\ZZ/n\ZZ\) for \(n < 2^{23}\) using LinBox’s Modular<double>
¶
AUTHORS:
- Burcin Erocal
- Martin Albrecht
-
class
sage.matrix.matrix_modn_dense_double.
Matrix_modn_dense_double
¶ Bases:
sage.matrix.matrix_modn_dense_double.Matrix_modn_dense_template
Dense matrices over \(\ZZ/n\ZZ\) for \(n < 2^{23}\) using LinBox’s
Modular<double>
These are matrices with integer entries mod
n
represented as floating-point numbers in a 64-bit word for use with LinBox routines. This allows forn
up to \(2^{23}\). The analogousMatrix_modn_dense_float
class is used for smaller moduli.Routines here are for the most basic access, see the
matrix_modn_dense_template.pxi
file for higher-level routines.
-
class
sage.matrix.matrix_modn_dense_double.
Matrix_modn_dense_template
¶ Bases:
sage.matrix.matrix_dense.Matrix_dense
Create a new matrix.
INPUT:
parent
– a matrix spaceentries
– seematrix()
copy
– ignored (for backwards compatibility)coerce
- perform modular reduction first?
EXAMPLES:
sage: A = random_matrix(GF(3),1000,1000) sage: type(A) <type 'sage.matrix.matrix_modn_dense_float.Matrix_modn_dense_float'> sage: A = random_matrix(Integers(10),1000,1000) sage: type(A) <type 'sage.matrix.matrix_modn_dense_float.Matrix_modn_dense_float'> sage: A = random_matrix(Integers(2^16),1000,1000) sage: type(A) <type 'sage.matrix.matrix_modn_dense_double.Matrix_modn_dense_double'>
-
charpoly
(var='x', algorithm='linbox')¶ Return the characteristic polynomial of
self
.INPUT:
var
- a variable namealgorithm
- ‘generic’, ‘linbox’ or ‘all’ (default: linbox)
EXAMPLES:
sage: A = random_matrix(GF(19), 10, 10); A [ 3 1 8 10 5 16 18 9 6 1] [ 5 14 4 4 14 15 5 11 3 0] [ 4 1 0 7 11 6 17 8 5 6] [ 4 6 9 4 8 1 18 17 8 18] [11 2 0 6 13 7 4 11 16 10] [12 6 12 3 15 10 5 11 3 8] [15 1 16 2 18 15 14 7 2 11] [16 16 17 7 14 12 7 7 0 5] [13 15 9 2 12 16 1 15 18 7] [10 8 16 18 9 18 2 13 5 10] sage: B = copy(A) sage: char_p = A.characteristic_polynomial(); char_p x^10 + 2*x^9 + 18*x^8 + 4*x^7 + 13*x^6 + 11*x^5 + 2*x^4 + 5*x^3 + 7*x^2 + 16*x + 6 sage: char_p(A) == 0 True sage: B == A # A is not modified True sage: min_p = A.minimal_polynomial(proof=True); min_p x^10 + 2*x^9 + 18*x^8 + 4*x^7 + 13*x^6 + 11*x^5 + 2*x^4 + 5*x^3 + 7*x^2 + 16*x + 6 sage: min_p.divides(char_p) True
sage: A = random_matrix(GF(2916337), 7, 7); A [ 514193 1196222 1242955 1040744 99523 2447069 40527] [ 930282 2685786 2892660 1347146 1126775 2131459 869381] [1853546 2266414 2897342 1342067 1054026 373002 84731] [1270068 2421818 569466 537440 572533 297105 1415002] [2079710 355705 2546914 2299052 2883413 1558788 1494309] [1027319 1572148 250822 522367 2516720 585897 2296292] [1797050 2128203 1161160 562535 2875615 1165768 286972] sage: B = copy(A) sage: char_p = A.characteristic_polynomial(); char_p x^7 + 1274305*x^6 + 1497602*x^5 + 12362*x^4 + 875330*x^3 + 31311*x^2 + 1858466*x + 700510 sage: char_p(A) == 0 True sage: B == A # A is not modified True sage: min_p = A.minimal_polynomial(proof=True); min_p x^7 + 1274305*x^6 + 1497602*x^5 + 12362*x^4 + 875330*x^3 + 31311*x^2 + 1858466*x + 700510 sage: min_p.divides(char_p) True sage: A = Mat(Integers(6),3,3)(range(9)) sage: A.charpoly() x^3
ALGORITHM: Uses LinBox if
self.base_ring()
is a field, otherwise use Hessenberg form algorithm.
-
determinant
()¶ Return the determinant of this matrix.
EXAMPLES:
sage: A = random_matrix(GF(7), 10, 10); A [3 1 6 6 4 4 2 2 3 5] [4 5 6 2 2 1 2 5 0 5] [3 2 0 5 0 1 5 4 2 3] [6 4 5 0 2 4 2 0 6 3] [2 2 4 2 4 5 3 4 4 4] [2 5 2 5 4 5 1 1 1 1] [0 6 3 4 2 2 3 5 1 1] [4 2 6 5 6 3 4 5 5 3] [5 2 4 3 6 2 3 6 2 1] [3 3 5 3 4 2 2 1 6 2] sage: A.determinant() 6
sage: A = random_matrix(GF(7), 100, 100) sage: A.determinant() 2 sage: A.transpose().determinant() 2 sage: B = random_matrix(GF(7), 100, 100) sage: B.determinant() 4 sage: (A*B).determinant() == A.determinant() * B.determinant() True
sage: A = random_matrix(GF(16007), 10, 10); A [ 5037 2388 4150 1400 345 5945 4240 14022 10514 700] [15552 8539 1927 3870 9867 3263 11637 609 15424 2443] [ 3761 15836 12246 15577 10178 13602 13183 15918 13942 2958] [ 4526 10817 6887 6678 1764 9964 6107 1705 5619 5811] [13537 15004 8307 11846 14779 550 14113 5477 7271 7091] [13338 4927 11406 13065 5437 12431 6318 5119 14198 496] [ 1044 179 12881 353 12975 12567 1092 10433 12304 954] [10072 8821 14118 13895 6543 13484 10685 14363 2612 11070] [15113 237 2612 14127 11589 5808 117 9656 15957 14118] [15233 11080 5716 9029 11402 9380 13045 13986 14544 5771] sage: A.determinant() 10207
sage: A = random_matrix(GF(16007), 100, 100) sage: A.determinant() 3576 sage: A.transpose().determinant() 3576 sage: B = random_matrix(GF(16007), 100, 100) sage: B.determinant() 4075 sage: (A*B).determinant() == A.determinant() * B.determinant() True
Parallel computation:
sage: A = random_matrix(GF(65521),200) sage: B = copy(A) sage: Parallelism().set('linbox', nproc=2) sage: d = A.determinant() sage: Parallelism().set('linbox', nproc=1) # switch off parallelization sage: e = B.determinant() sage: d==e True
-
echelonize
(algorithm='linbox_noefd', **kwds)¶ Put
self
in reduced row echelon form.INPUT:
self
- a mutable matrixalgorithm
linbox
- uses the LinBox library (wrapping fflas-ffpack)linbox_noefd
- uses the FFPACK directly, less memory and faster (default)gauss
- uses a custom slower \(O(n^3)\) Gauss elimination implemented in Sage.all
- compute using both algorithms and verify that the results are the same.
**kwds
- these are all ignored
OUTPUT:
self
is put in reduced row echelon form.- the rank of self is computed and cached
- the pivot columns of self are computed and cached.
- the fact that self is now in echelon form is recorded and cached so future calls to echelonize return immediately.
EXAMPLES:
sage: A = random_matrix(GF(7), 10, 20); A [3 1 6 6 4 4 2 2 3 5 4 5 6 2 2 1 2 5 0 5] [3 2 0 5 0 1 5 4 2 3 6 4 5 0 2 4 2 0 6 3] [2 2 4 2 4 5 3 4 4 4 2 5 2 5 4 5 1 1 1 1] [0 6 3 4 2 2 3 5 1 1 4 2 6 5 6 3 4 5 5 3] [5 2 4 3 6 2 3 6 2 1 3 3 5 3 4 2 2 1 6 2] [0 5 6 3 2 5 6 6 3 2 1 4 5 0 2 6 5 2 5 1] [4 0 4 2 6 3 3 5 3 0 0 1 2 5 5 1 6 0 0 3] [2 0 1 0 0 3 0 2 4 2 2 4 4 4 5 4 1 2 3 4] [2 4 1 4 3 0 6 2 2 5 2 5 3 6 4 2 2 6 4 4] [0 0 2 2 1 6 2 0 5 0 4 3 1 6 0 6 0 4 6 5] sage: A.echelon_form() [1 0 0 0 0 0 0 0 0 0 6 2 6 0 1 1 2 5 6 2] [0 1 0 0 0 0 0 0 0 0 0 4 5 4 3 4 2 5 1 2] [0 0 1 0 0 0 0 0 0 0 6 3 4 6 1 0 3 6 5 6] [0 0 0 1 0 0 0 0 0 0 0 3 5 2 3 4 0 6 5 3] [0 0 0 0 1 0 0 0 0 0 0 6 3 4 5 3 0 4 3 2] [0 0 0 0 0 1 0 0 0 0 1 1 0 2 4 2 5 5 5 0] [0 0 0 0 0 0 1 0 0 0 1 0 1 3 2 0 0 0 5 3] [0 0 0 0 0 0 0 1 0 0 4 4 2 6 5 4 3 4 1 0] [0 0 0 0 0 0 0 0 1 0 1 0 4 2 3 5 4 6 4 0] [0 0 0 0 0 0 0 0 0 1 2 0 5 0 5 5 3 1 1 4]
sage: A = random_matrix(GF(13), 10, 10); A [ 8 3 11 11 9 4 8 7 9 9] [ 2 9 6 5 7 12 3 4 11 5] [12 6 11 12 4 3 3 8 9 5] [ 4 2 10 5 10 1 1 1 6 9] [12 8 5 5 11 4 1 2 8 11] [ 2 6 9 11 4 7 1 0 12 2] [ 8 9 0 7 7 7 10 4 1 4] [ 0 8 2 6 7 5 7 12 2 3] [ 2 11 12 3 4 7 2 9 6 1] [ 0 11 5 9 4 5 5 8 7 10] sage: MS = parent(A) sage: B = A.augment(MS(1)) sage: B.echelonize() sage: A.rank() 10 sage: C = B.submatrix(0,10,10,10); C [ 4 9 4 4 0 4 7 11 9 11] [11 7 6 8 2 8 6 11 9 5] [ 3 9 9 2 4 8 9 2 9 4] [ 7 0 11 4 0 9 6 11 8 1] [12 12 4 12 3 12 6 1 7 12] [12 2 11 6 6 6 7 0 10 6] [ 0 7 3 4 7 11 10 12 4 6] [ 5 11 0 5 3 11 4 12 5 12] [ 6 7 3 5 1 4 11 7 4 1] [ 4 9 6 7 11 1 2 12 6 7] sage: ~A == C True
sage: A = random_matrix(Integers(10), 10, 20) sage: A.echelon_form() Traceback (most recent call last): ... NotImplementedError: Echelon form not implemented over 'Ring of integers modulo 10'.
sage: A = random_matrix(GF(16007), 10, 20); A [15455 1177 10072 4693 3887 4102 10746 15265 6684 14559 4535 13921 9757 9525 9301 8566 2460 9609 3887 6205] [ 8602 10035 1242 9776 162 7893 12619 6660 13250 1988 14263 11377 2216 1247 7261 8446 15081 14412 7371 7948] [12634 7602 905 9617 13557 2694 13039 4936 12208 15480 3787 11229 593 12462 5123 14167 6460 3649 5821 6736] [10554 2511 11685 12325 12287 6534 11636 5004 6468 3180 3607 11627 13436 5106 3138 13376 8641 9093 2297 5893] [ 1025 11376 10288 609 12330 3021 908 13012 2112 11505 56 5971 338 2317 2396 8561 5593 3782 7986 13173] [ 7607 588 6099 12749 10378 111 2852 10375 8996 7969 774 13498 12720 4378 6817 6707 5299 9406 13318 2863] [15545 538 4840 1885 8471 1303 11086 14168 1853 14263 3995 12104 1294 7184 1188 11901 15971 2899 4632 711] [ 584 11745 7540 15826 15027 5953 7097 14329 10889 12532 13309 15041 6211 1749 10481 9999 2751 11068 21 2795] [ 761 11453 3435 10596 2173 7752 15941 14610 1072 8012 9458 5440 612 10581 10400 101 11472 13068 7758 7898] [10658 4035 6662 655 7546 4107 6987 1877 4072 4221 7679 14579 2474 8693 8127 12999 11141 605 9404 10003] sage: A.echelon_form() [ 1 0 0 0 0 0 0 0 0 0 8416 8364 10318 1782 13872 4566 14855 7678 11899 2652] [ 0 1 0 0 0 0 0 0 0 0 4782 15571 3133 10964 5581 10435 9989 14303 5951 8048] [ 0 0 1 0 0 0 0 0 0 0 15688 6716 13819 4144 257 5743 14865 15680 4179 10478] [ 0 0 0 1 0 0 0 0 0 0 4307 9488 2992 9925 13984 15754 8185 11598 14701 10784] [ 0 0 0 0 1 0 0 0 0 0 927 3404 15076 1040 2827 9317 14041 10566 5117 7452] [ 0 0 0 0 0 1 0 0 0 0 1144 10861 5241 6288 9282 5748 3715 13482 7258 9401] [ 0 0 0 0 0 0 1 0 0 0 769 1804 1879 4624 6170 7500 11883 9047 874 597] [ 0 0 0 0 0 0 0 1 0 0 15591 13686 5729 11259 10219 13222 15177 15727 5082 11211] [ 0 0 0 0 0 0 0 0 1 0 8375 14939 13471 12221 8103 4212 11744 10182 2492 11068] [ 0 0 0 0 0 0 0 0 0 1 6534 396 6780 14734 1206 3848 7712 9770 10755 410]
sage: A = random_matrix(Integers(10000), 10, 20) sage: A.echelon_form() Traceback (most recent call last): ... NotImplementedError: Echelon form not implemented over 'Ring of integers modulo 10000'.
Parallel computation:
sage: A = random_matrix(GF(65521),100,200) sage: Parallelism().set('linbox', nproc=2) sage: E = A.echelon_form() sage: Parallelism().set('linbox', nproc=1) # switch off parallelization sage: F = A.echelon_form() sage: E==F True
-
hessenbergize
()¶ Transforms self in place to its Hessenberg form.
EXAMPLES:
sage: A = random_matrix(GF(17), 10, 10, density=0.1); A [ 0 0 0 0 12 0 0 0 0 0] [ 0 0 0 4 0 0 0 0 0 0] [ 0 0 0 0 2 0 0 0 0 0] [ 0 14 0 0 0 0 0 0 0 0] [ 0 0 0 0 0 10 0 0 0 0] [ 0 0 0 0 0 16 0 0 0 0] [ 0 0 0 0 0 0 6 0 0 0] [15 0 0 0 0 0 0 0 0 0] [ 0 0 0 16 0 0 0 0 0 0] [ 0 5 0 0 0 0 0 0 0 0] sage: A.hessenbergize(); A [ 0 0 0 0 0 0 0 12 0 0] [15 0 0 0 0 0 0 0 0 0] [ 0 0 0 0 0 0 0 2 0 0] [ 0 0 0 0 14 0 0 0 0 0] [ 0 0 0 4 0 0 0 0 0 0] [ 0 0 0 0 5 0 0 0 0 0] [ 0 0 0 0 0 0 6 0 0 0] [ 0 0 0 0 0 0 0 0 0 10] [ 0 0 0 0 0 0 0 0 0 0] [ 0 0 0 0 0 0 0 0 0 16]
-
lift
()¶ Return the lift of this matrix to the integers.
EXAMPLES:
sage: A = matrix(GF(7),2,3,[1..6]) sage: A.lift() [1 2 3] [4 5 6] sage: A.lift().parent() Full MatrixSpace of 2 by 3 dense matrices over Integer Ring sage: A = matrix(GF(16007),2,3,[1..6]) sage: A.lift() [1 2 3] [4 5 6] sage: A.lift().parent() Full MatrixSpace of 2 by 3 dense matrices over Integer Ring
Subdivisions are preserved when lifting:
sage: A.subdivide([], [1,1]); A [1||2 3] [4||5 6] sage: A.lift() [1||2 3] [4||5 6]
-
minpoly
(var='x', algorithm='linbox', proof=None)¶ Returns the minimal polynomial of`` self``.
INPUT:
var
- a variable namealgorithm
-generic
orlinbox
(default:linbox
)proof
– (default:True
); whether to provably return the true minimal polynomial; ifFalse
, we only guarantee to return a divisor of the minimal polynomial. There are also certainly cases where the computed results is frequently not exactly equal to the minimal polynomial (but is instead merely a divisor of it).
Warning
If
proof=True
, minpoly is insanely slow compared toproof=False
. This matters since proof=True is the default, unless you first typeproof.linear_algebra(False)
.EXAMPLES:
sage: A = random_matrix(GF(17), 10, 10); A [ 2 14 0 15 11 10 16 2 9 4] [10 14 1 14 3 14 12 14 3 13] [10 1 14 6 2 14 13 7 6 14] [10 3 9 15 8 1 5 8 10 11] [ 5 12 4 9 15 2 6 11 2 12] [ 6 10 12 0 6 9 7 7 3 8] [ 2 9 1 5 12 13 7 16 7 11] [11 1 0 2 0 4 7 9 8 15] [ 5 3 16 2 11 10 12 14 0 7] [16 4 6 5 2 3 14 15 16 4] sage: B = copy(A) sage: min_p = A.minimal_polynomial(proof=True); min_p x^10 + 13*x^9 + 10*x^8 + 9*x^7 + 10*x^6 + 4*x^5 + 10*x^4 + 10*x^3 + 12*x^2 + 14*x + 7 sage: min_p(A) == 0 True sage: B == A True sage: char_p = A.characteristic_polynomial(); char_p x^10 + 13*x^9 + 10*x^8 + 9*x^7 + 10*x^6 + 4*x^5 + 10*x^4 + 10*x^3 + 12*x^2 + 14*x + 7 sage: min_p.divides(char_p) True
sage: A = random_matrix(GF(1214471), 10, 10); A [ 160562 831940 65852 173001 515930 714380 778254 844537 584888 392730] [ 502193 959391 614352 775603 240043 1156372 104118 1175992 612032 1049083] [ 660489 1066446 809624 15010 1002045 470722 314480 1155149 1173111 14213] [1190467 1079166 786442 429883 563611 625490 1015074 888047 1090092 892387] [ 4724 244901 696350 384684 254561 898612 44844 83752 1091581 349242] [ 130212 580087 253296 472569 913613 919150 38603 710029 438461 736442] [ 943501 792110 110470 850040 713428 668799 1122064 325250 1084368 520553] [1179743 791517 34060 1183757 1118938 642169 47513 73428 1076788 216479] [ 626571 105273 400489 1041378 1186801 158611 888598 1138220 1089631 56266] [1092400 890773 1060810 211135 719636 1011640 631366 427711 547497 1084281] sage: B = copy(A) sage: min_p = A.minimal_polynomial(proof=True); min_p x^10 + 384251*x^9 + 702437*x^8 + 960299*x^7 + 202699*x^6 + 409368*x^5 + 1109249*x^4 + 1163061*x^3 + 333802*x^2 + 273775*x + 55190 sage: min_p(A) == 0 True sage: B == A True sage: char_p = A.characteristic_polynomial(); char_p x^10 + 384251*x^9 + 702437*x^8 + 960299*x^7 + 202699*x^6 + 409368*x^5 + 1109249*x^4 + 1163061*x^3 + 333802*x^2 + 273775*x + 55190 sage: min_p.divides(char_p) True
EXAMPLES:
sage: R.<x>=GF(3)[] sage: A = matrix(GF(3),2,[0,0,1,2]) sage: A.minpoly() x^2 + x sage: A.minpoly(proof=False) in [x, x+1, x^2+x] True
-
randomize
(density=1, nonzero=False)¶ Randomize
density
proportion of the entries of this matrix, leaving the rest unchanged.INPUT:
density
- Integer; proportion (roughly) to be considered- for changes
nonzero
- Bool (default:False
); whether the new- entries are forced to be non-zero
OUTPUT:
- None, the matrix is modified in-space
EXAMPLES:
sage: A = matrix(GF(5), 5, 5, 0) sage: A.randomize(0.5); A [0 0 0 2 0] [0 3 0 0 2] [4 0 0 0 0] [4 0 0 0 0] [0 1 0 0 0] sage: A.randomize(); A [3 3 2 1 2] [4 3 3 2 2] [0 3 3 3 3] [3 3 2 2 4] [2 2 2 1 4]
The matrix is updated instead of overwritten:
sage: A = random_matrix(GF(5), 100, 100, density=0.1) sage: A.density() 961/10000 sage: A.randomize(density=0.1) sage: A.density() 801/5000
-
rank
()¶ Return the rank of this matrix.
EXAMPLES:
sage: A = random_matrix(GF(3), 100, 100) sage: B = copy(A) sage: A.rank() 99 sage: B == A True sage: A = random_matrix(GF(3), 100, 100, density=0.01) sage: A.rank() 63 sage: A = matrix(GF(3), 100, 100) sage: A.rank() 0
Rank is not implemented over the integers modulo a composite yet.:
sage: M = matrix(Integers(4), 2, [2,2,2,2]) sage: M.rank() Traceback (most recent call last): ... NotImplementedError: Echelon form not implemented over 'Ring of integers modulo 4'.
sage: A = random_matrix(GF(16007), 100, 100) sage: B = copy(A) sage: A.rank() 100 sage: B == A True sage: MS = A.parent() sage: MS(1) == ~A*A True
-
right_kernel_matrix
(algorithm='linbox', basis='echelon')¶ Returns a matrix whose rows form a basis for the right kernel of
self
, whereself
is a matrix over a (small) finite field.INPUT:
algorithm
– (default:'linbox'
) a parameter that is passed on toself.echelon_form
, if computation of an echelon form is required; see that routine for allowable valuesbasis
– (default:'echelon'
) a keyword that describes the format of the basis returned, allowable values are:'echelon'
: the basis matrix is in echelon form'pivot'
: the basis matrix is such that the submatrix obtained- by taking the columns that in
self
contain no pivots, is the identity matrix
'computed'
: no work is done to transform the basis; in- the current implementation the result is the negative of
that returned by
'pivot'
OUTPUT:
A matrix
X
whose rows are a basis for the right kernel ofself
. This means thatself * X.transpose()
is a zero matrix.The result is not cached, but the routine benefits when
self
is known to be in echelon form already.EXAMPLES:
sage: M = matrix(GF(5),6,6,range(36)) sage: M.right_kernel_matrix(basis='computed') [4 2 4 0 0 0] [3 3 0 4 0 0] [2 4 0 0 4 0] [1 0 0 0 0 4] sage: M.right_kernel_matrix(basis='pivot') [1 3 1 0 0 0] [2 2 0 1 0 0] [3 1 0 0 1 0] [4 0 0 0 0 1] sage: M.right_kernel_matrix() [1 0 0 0 0 4] [0 1 0 0 1 3] [0 0 1 0 2 2] [0 0 0 1 3 1] sage: M * M.right_kernel_matrix().transpose() [0 0 0 0] [0 0 0 0] [0 0 0 0] [0 0 0 0] [0 0 0 0] [0 0 0 0]
-
submatrix
(row=0, col=0, nrows=-1, ncols=-1)¶ Return the matrix constructed from self using the specified range of rows and columns.
INPUT:
row
,col
– index of the starting row and column. Indices start at zeronrows
,ncols
– (optional) number of rows and columns to take. If not provided, take all rows below and all columns to the right of the starting entry
See also
The functions
matrix_from_rows()
,matrix_from_columns()
, andmatrix_from_rows_and_columns()
allow one to select arbitrary subsets of rows and/or columns.EXAMPLES:
Take the \(3 \times 3\) submatrix starting from entry \((1,1)\) in a \(4 \times 4\) matrix:
sage: m = matrix(GF(17),4, [1..16]) sage: m.submatrix(1, 1) [ 6 7 8] [10 11 12] [14 15 16]
Same thing, except take only two rows:
sage: m.submatrix(1, 1, 2) [ 6 7 8] [10 11 12]
And now take only one column:
sage: m.submatrix(1, 1, 2, 1) [ 6] [10]
You can take zero rows or columns if you want:
sage: m.submatrix(0, 0, 0) [] sage: parent(m.submatrix(0, 0, 0)) Full MatrixSpace of 0 by 4 dense matrices over Finite Field of size 17
-
transpose
()¶ Return the transpose of
self
, without changingself
.EXAMPLES:
We create a matrix, compute its transpose, and note that the original matrix is not changed.
sage: M = MatrixSpace(GF(41), 2) sage: A = M([1,2,3,4]) sage: B = A.transpose() sage: B [1 3] [2 4] sage: A [1 2] [3 4]
.T
is a convenient shortcut for the transpose:sage: A.T [1 3] [2 4]
sage: A.subdivide(None, 1); A [1|2] [3|4] sage: A.transpose() [1 3] [---] [2 4]