Modular algorithm to compute Hermite normal forms of integer matrices.

AUTHORS:

  • Clement Pernet and William Stein (2008-02-07): initial version
sage.matrix.matrix_integer_dense_hnf.add_column(B, H_B, a, proof)

The add column procedure.

INPUT:

  • B – a square matrix (may be singular)
  • H_B – the Hermite normal form of B
  • a – an n x 1 matrix, where B has n rows
  • proof – bool; whether to prove result correct, in case we use fallback method.

OUTPUT:

  • x – a vector such that H’ = H_B.augment(x) is the HNF of A = B.augment(a).

EXAMPLES:

sage: B = matrix(ZZ, 3, 3, [1,2,5, 0,-5,3, 1,1,2])
sage: H_B = B.echelon_form()
sage: a = matrix(ZZ, 3, 1, [1,8,-2])
sage: import sage.matrix.matrix_integer_dense_hnf as hnf
sage: x = hnf.add_column(B, H_B, a, True); x
[18]
[ 3]
[23]
sage: H_B.augment(x)
[ 1  0 17 18]
[ 0  1  3  3]
[ 0  0 18 23]
sage: B.augment(a).echelon_form()
[ 1  0 17 18]
[ 0  1  3  3]
[ 0  0 18 23]
sage.matrix.matrix_integer_dense_hnf.add_column_fallback(B, a, proof)

Simplistic version of add_column, in case the powerful clever one fails (e.g., B is singular).

INPUT:

B – a square matrix (may be singular) a – an n x 1 matrix, where B has n rows proof – bool; whether to prove result correct

OUTPUT:

x – a vector such that H’ = H_B.augment(x) is the HNF of A = B.augment(a).

EXAMPLES:

sage: B = matrix(ZZ,3, [-1, -1, 1, -3, 8, -2, -1, -1, -1])
sage: a = matrix(ZZ,3,1, [1,2,3])
sage: import sage.matrix.matrix_integer_dense_hnf as matrix_integer_dense_hnf
sage: matrix_integer_dense_hnf.add_column_fallback(B, a, True)
[-3]
[-7]
[-2]
sage: matrix_integer_dense_hnf.add_column_fallback(B, a, False)
[-3]
[-7]
[-2]
sage: B.augment(a).hermite_form()
[ 1  1  1 -3]
[ 0 11  1 -7]
[ 0  0  2 -2]
sage.matrix.matrix_integer_dense_hnf.add_row(A, b, pivots, include_zero_rows)

The add row procedure.

INPUT:

  • A – a matrix in Hermite normal form with n column
  • b – an n x 1 row matrix
  • pivots – sorted list of integers; the pivot positions of A.

OUTPUT:

  • H – the Hermite normal form of A.stack(b).
  • new_pivots – the pivot columns of H.

EXAMPLES:

sage: import sage.matrix.matrix_integer_dense_hnf as hnf
sage: A = matrix(ZZ, 2, 3, [-21, -7, 5, 1,20,-7])
sage: b = matrix(ZZ, 1,3, [-1,1,-1])
sage: hnf.add_row(A, b, A.pivots(), True)
(
[ 1  6 29]
[ 0  7 28]
[ 0  0 46], [0, 1, 2]
)
sage: A.stack(b).echelon_form()
[ 1  6 29]
[ 0  7 28]
[ 0  0 46]
sage.matrix.matrix_integer_dense_hnf.benchmark_hnf(nrange, bits=4)

Run benchmark program.

EXAMPLES:

sage: import sage.matrix.matrix_integer_dense_hnf as hnf
sage: hnf.benchmark_hnf([50,100],32)
('sage', 50, 32, ...),
('sage', 100, 32, ...),
sage.matrix.matrix_integer_dense_hnf.benchmark_magma_hnf(nrange, bits=4)

EXAMPLES:

sage: import sage.matrix.matrix_integer_dense_hnf as hnf
sage: hnf.benchmark_magma_hnf([50,100],32)     # optional - magma
('magma', 50, 32, ...),
('magma', 100, 32, ...),
sage.matrix.matrix_integer_dense_hnf.det_from_modp_and_divisor(A, d, p, z_mod, moduli, z_so_far=1, N_so_far=1)

This is used for internal purposes for computing determinants quickly (with the hybrid p-adic / multimodular algorithm).

INPUT:

  • A – a square matrix
  • d – a divisor of the determinant of A
  • p – a prime
  • z_mod – values of det/d (mod …)
  • moduli – the moduli so far
  • z_so_far – for a modulus p in the list moduli, (z_so_far mod p) is the determinant of A modulo p.
  • N_so_far – N_so_far is the product over the primes in the list moduli.

OUTPUT:

  • A triple (det bound, new z_so_far, new N_so_far).

EXAMPLES:

sage: a = matrix(ZZ, 3, [6, 1, 2, -56, -2, -1, -11, 2, -3])
sage: factor(a.det())
-1 * 13 * 29
sage: d = 13
sage: import sage.matrix.matrix_integer_dense_hnf as matrix_integer_dense_hnf
sage: matrix_integer_dense_hnf.det_from_modp_and_divisor(a, d, 97, [], [])
(-377, -29, 97)
sage: a.det()
-377
sage.matrix.matrix_integer_dense_hnf.det_given_divisor(A, d, proof=True, stabilize=2)

Given a divisor d of the determinant of A, compute the determinant of A.

INPUT:

  • A – a square integer matrix
  • d – a nonzero integer that is assumed to divide the determinant of A
  • proof – bool (default: True) compute det modulo enough primes so that the determinant is computed provably correctly (via the Hadamard bound). It would be VERY hard for det() to fail even with proof=False.
  • stabilize – int (default: 2) if proof = False, then compute the determinant modulo \(p\) until stabilize successive modulo determinant computations stabilize.

OUTPUT:

integer – determinant

EXAMPLES:

sage: import sage.matrix.matrix_integer_dense_hnf as matrix_integer_dense_hnf
sage: a = matrix(ZZ,3,[-1, -1, -1, -20, 4, 1, -1, 1, 2])
sage: matrix_integer_dense_hnf.det_given_divisor(a, 3)
-30
sage: matrix_integer_dense_hnf.det_given_divisor(a, 3, proof=False)
-30
sage: matrix_integer_dense_hnf.det_given_divisor(a, 3, proof=False, stabilize=1)
-30
sage: a.det()
-30

Here we illustrate proof=False giving a wrong answer:

sage: p = matrix_integer_dense_hnf.max_det_prime(2)
sage: q = previous_prime(p)
sage: a = matrix(ZZ, 2, [p, 0, 0, q])
sage: p * q
70368442188091
sage: matrix_integer_dense_hnf.det_given_divisor(a, 1, proof=False, stabilize=2)
0

This still works, because we do not work modulo primes that divide the determinant bound, which is found using a p-adic algorithm:

sage: a.det(proof=False, stabilize=2)
70368442188091

3 primes is enough:

sage: matrix_integer_dense_hnf.det_given_divisor(a, 1, proof=False, stabilize=3)
70368442188091
sage: matrix_integer_dense_hnf.det_given_divisor(a, 1, proof=False, stabilize=5)
70368442188091
sage: matrix_integer_dense_hnf.det_given_divisor(a, 1, proof=True)
70368442188091
sage.matrix.matrix_integer_dense_hnf.det_padic(A, proof=True, stabilize=2)

Return the determinant of A, computed using a p-adic/multimodular algorithm.

INPUT:

  • A – a square matrix
  • proof – boolean
  • stabilize (default: 2) – if proof False, number of successive primes so that CRT det must stabilize.

EXAMPLES:

sage: import sage.matrix.matrix_integer_dense_hnf as h
sage: a = matrix(ZZ, 3, [1..9])
sage: h.det_padic(a)
0
sage: a = matrix(ZZ, 3, [1,2,5,-7,8,10,192,5,18])
sage: h.det_padic(a)
-3669
sage: a.determinant(algorithm='ntl')
-3669
sage.matrix.matrix_integer_dense_hnf.double_det(A, b, c, proof)

Compute the determinants of the stacked integer matrices A.stack(b) and A.stack(c).

INPUT:

  • A – an (n-1) x n matrix
  • b – an 1 x n matrix
  • c – an 1 x n matrix
  • proof – whether or not to compute the det modulo enough times to provably compute the determinant.

OUTPUT:

  • a pair of two integers.

EXAMPLES:

sage: from sage.matrix.matrix_integer_dense_hnf import double_det
sage: A = matrix(ZZ, 2, 3, [1,2,3, 4,-2,5])
sage: b = matrix(ZZ, 1, 3, [1,-2,5])
sage: c = matrix(ZZ, 1, 3, [8,2,10])
sage: A.stack(b).det()
-48
sage: A.stack(c).det()
42
sage: double_det(A, b, c, False)
(-48, 42)
sage.matrix.matrix_integer_dense_hnf.extract_ones_data(H, pivots)

Compute ones data and corresponding submatrices of H.

This is used to optimized the add_row() function.

INPUT:

  • H – a matrix in HNF
  • pivots – list of all pivot column positions of H

OUTPUT:

C, D, E, onecol, onerow, non_onecol, non_onerow where onecol, onerow, non_onecol, non_onerow are as for the ones function, and C, D, E are matrices:

  • C – submatrix of all non-onecol columns and onecol rows
  • D – all non-onecol columns and other rows
  • E – inverse of D

If D is not invertible or there are 0 or more than 2 non onecols, then C, D, and E are set to None.

EXAMPLES:

sage: H = matrix(ZZ, 3, 4, [1, 0, 0, 7, 0, 1, 5, 2, 0, 0, 6, 6])
sage: import sage.matrix.matrix_integer_dense_hnf as matrix_integer_dense_hnf
sage: matrix_integer_dense_hnf.extract_ones_data(H, [0,1,2])
(
[0]
[5], [6], [1/6], [0, 1], [0, 1], [2], [2]
)
Here we get None’s since the (2,2) position submatrix is not invertible.
sage: H = matrix(ZZ, 3, 5, [1, 0, 0, 45, -36, 0, 1, 0, 131, -107, 0, 0, 0, 178, -145]); H [ 1 0 0 45 -36] [ 0 1 0 131 -107] [ 0 0 0 178 -145] sage: import sage.matrix.matrix_integer_dense_hnf as matrix_integer_dense_hnf sage: matrix_integer_dense_hnf.extract_ones_data(H, [0,1,3]) (None, None, None, [0, 1], [0, 1], [2], [2])
sage.matrix.matrix_integer_dense_hnf.hnf(A, include_zero_rows=True, proof=True)

Return the Hermite Normal Form of a general integer matrix A, along with the pivot columns.

INPUT:

  • A – an n x m matrix A over the integers.
  • include_zero_rows – bool (default: True) whether or not to include zero rows in the output matrix
  • proof – whether or not to prove the result correct.

OUTPUT:

  • matrix – the Hermite normal form of A
  • pivots – the pivot column positions of A

EXAMPLES:

sage: import sage.matrix.matrix_integer_dense_hnf as matrix_integer_dense_hnf
sage: a = matrix(ZZ,3,5,[-2, -6, -3, -17, -1, 2, -1, -1, -2, -1, -2, -2, -6, 9, 2])
sage: matrix_integer_dense_hnf.hnf(a)
(
[   2    0   26  -75  -10]
[   0    1   27  -73   -9]
[   0    0   37 -106  -13], [0, 1, 2]
)
sage: matrix_integer_dense_hnf.hnf(a.transpose())
(
[1 0 0]
[0 1 0]
[0 0 1]
[0 0 0]
[0 0 0], [0, 1, 2]
)
sage: matrix_integer_dense_hnf.hnf(a.transpose(), include_zero_rows=False)
(
[1 0 0]
[0 1 0]
[0 0 1], [0, 1, 2]
)
sage.matrix.matrix_integer_dense_hnf.hnf_square(A, proof)

INPUT:

  • a nonsingular n x n matrix A over the integers.

OUTPUT:

  • the Hermite normal form of A.

EXAMPLES:

sage: import sage.matrix.matrix_integer_dense_hnf as hnf
sage: A = matrix(ZZ, 3, [-21, -7, 5, 1,20,-7, -1,1,-1])
sage: hnf.hnf_square(A, False)
[ 1  6 29]
[ 0  7 28]
[ 0  0 46]
sage: A.echelon_form()
[ 1  6 29]
[ 0  7 28]
[ 0  0 46]
sage.matrix.matrix_integer_dense_hnf.hnf_with_transformation(A, proof=True)

Compute the HNF H of A along with a transformation matrix U such that U*A = H.

INPUT:

  • A – an n x m matrix A over the integers.
  • proof – whether or not to prove the result correct.

OUTPUT:

  • matrix – the Hermite normal form H of A
  • U – a unimodular matrix such that U * A = H

EXAMPLES:

sage: import sage.matrix.matrix_integer_dense_hnf as matrix_integer_dense_hnf
sage: A = matrix(ZZ, 2, [1, -5, -10, 1, 3, 197]); A
[  1  -5 -10]
[  1   3 197]
sage: H, U = matrix_integer_dense_hnf.hnf_with_transformation(A)
sage: H
[  1   3 197]
[  0   8 207]
sage: U
[ 0  1]
[-1  1]
sage: U*A
[  1   3 197]
[  0   8 207]
sage.matrix.matrix_integer_dense_hnf.hnf_with_transformation_tests(n=10, m=5, trials=10)

Use this to randomly test that hnf with transformation matrix is working.

EXAMPLES:

sage: from sage.matrix.matrix_integer_dense_hnf import hnf_with_transformation_tests
sage: hnf_with_transformation_tests(n=15, m=10, trials=10)
0 1 2 3 4 5 6 7 8 9
sage.matrix.matrix_integer_dense_hnf.interleave_matrices(A, B, cols1, cols2)

INPUT:

  • A, B – matrices with the same number of rows
  • cols1, cols2 – disjoint lists of integers

OUTPUT:

construct a new matrix C by sticking the columns of A at the positions specified by cols1 and the columns of B at the positions specified by cols2.

EXAMPLES:

sage: A = matrix(ZZ, 2, [1,2,3,4]); B = matrix(ZZ, 2, [-1,5,2,3])
sage: A
[1 2]
[3 4]
sage: B
[-1  5]
[ 2  3]
sage: import sage.matrix.matrix_integer_dense_hnf as hnf
sage: hnf.interleave_matrices(A, B, [1,3], [0,2])
[-1  1  5  2]
[ 2  3  3  4]
sage.matrix.matrix_integer_dense_hnf.is_in_hnf_form(H, pivots)

Return whether the matrix H is in Hermite normal form with given pivot columns.

INPUT:

  • H – matrix
  • pivots – sorted list of integers

OUTPUT:

boolean

EXAMPLES:

sage: a = matrix(ZZ,3,5,[-2, -6, -3, -17, -1, 2, -1, -1, -2, -1, -2, -2, -6, 9, 2])
sage: import sage.matrix.matrix_integer_dense_hnf as matrix_integer_dense_hnf
sage: matrix_integer_dense_hnf.is_in_hnf_form(a,range(3))
False
sage: e = a.hermite_form(); p = a.pivots()
sage: matrix_integer_dense_hnf.is_in_hnf_form(e, p)
True
sage.matrix.matrix_integer_dense_hnf.max_det_prime(n)

Return the largest prime so that it is reasonably efficient to compute modulo that prime with n x n matrices in LinBox.

INPUT:

  • n – a positive integer

OUTPUT:

a prime number

EXAMPLES:

sage: from sage.matrix.matrix_integer_dense_hnf import max_det_prime
sage: max_det_prime(10000)
8388593
sage: max_det_prime(1000)
8388593
sage: max_det_prime(10)
8388593
sage.matrix.matrix_integer_dense_hnf.ones(H, pivots)

Find all 1 pivot columns of the matrix H in Hermite form, along with the corresponding rows, and also the non 1 pivot columns and non-pivot rows. Here a 1 pivot column is a pivot column so that the leading bottom entry is 1.

INPUT:

  • H – matrix in Hermite form
  • pivots – list of integers (all pivot positions of H).

OUTPUT:

4-tuple of integer lists: onecol, onerow, non_oneol, non_onerow

EXAMPLES:

sage: H = matrix(ZZ, 3, 5, [1, 0, 0, 45, -36, 0, 1, 0, 131, -107, 0, 0, 0, 178, -145]); H
[   1    0    0   45  -36]
[   0    1    0  131 -107]
[   0    0    0  178 -145]
sage: import sage.matrix.matrix_integer_dense_hnf as matrix_integer_dense_hnf
sage: matrix_integer_dense_hnf.ones(H, [0,1,3])
([0, 1], [0, 1], [2], [2])
sage.matrix.matrix_integer_dense_hnf.pad_zeros(A, nrows)

Add zeros to the bottom of A so that the resulting matrix has nrows.

INPUT:

  • A – a matrix
  • nrows – an integer that is at least as big as the number of rows of A.

OUTPUT:

a matrix with nrows rows.

EXAMPLES:

sage: import sage.matrix.matrix_integer_dense_hnf as matrix_integer_dense_hnf
sage: a = matrix(ZZ, 2, 4, [1, 0, 0, 7, 0, 1, 5, 2])
sage: matrix_integer_dense_hnf.pad_zeros(a, 4)
[1 0 0 7]
[0 1 5 2]
[0 0 0 0]
[0 0 0 0]
sage: matrix_integer_dense_hnf.pad_zeros(a, 2)
[1 0 0 7]
[0 1 5 2]
sage.matrix.matrix_integer_dense_hnf.pivots_of_hnf_matrix(H)

Return the pivot columns of a matrix H assumed to be in HNF.

INPUT:

  • H – a matrix that must be HNF

OUTPUT:

  • list – list of pivots

EXAMPLES:

sage: H = matrix(ZZ, 3, 5, [1, 0, 0, 45, -36, 0, 1, 0, 131, -107, 0, 0, 0, 178, -145]); H
[   1    0    0   45  -36]
[   0    1    0  131 -107]
[   0    0    0  178 -145]
sage: import sage.matrix.matrix_integer_dense_hnf as matrix_integer_dense_hnf
sage: matrix_integer_dense_hnf.pivots_of_hnf_matrix(H)
[0, 1, 3]
sage.matrix.matrix_integer_dense_hnf.probable_hnf(A, include_zero_rows, proof)

Return the HNF of A or raise an exception if something involving the randomized nature of the algorithm goes wrong along the way.

Calling this function again a few times should result it in it working, at least if proof=True.

INPUT:

  • A – a matrix
  • include_zero_rows – bool
  • proof – bool

OUTPUT:

the Hermite normal form of A. cols – pivot columns

EXAMPLES:

sage: a = matrix(ZZ,4,3,[-1, -1, -1, -20, 4, 1, -1, 1, 2,1,2,3])
sage: import sage.matrix.matrix_integer_dense_hnf as matrix_integer_dense_hnf
sage: matrix_integer_dense_hnf.probable_hnf(a, True, True)
(
[1 0 0]
[0 1 0]
[0 0 1]
[0 0 0], [0, 1, 2]
)
sage: matrix_integer_dense_hnf.probable_hnf(a, False, True)
(
[1 0 0]
[0 1 0]
[0 0 1], [0, 1, 2]
)
sage: matrix_integer_dense_hnf.probable_hnf(a, False, False)
(
[1 0 0]
[0 1 0]
[0 0 1], [0, 1, 2]
)
sage.matrix.matrix_integer_dense_hnf.probable_pivot_columns(A)

INPUT:

  • A – a matrix

OUTPUT:

a tuple of integers

EXAMPLES:

sage: import sage.matrix.matrix_integer_dense_hnf as matrix_integer_dense_hnf
sage: a = matrix(ZZ,3,[0, -1, -1, 0, -20, 1, 0, 1, 2])
sage: a
[  0  -1  -1]
[  0 -20   1]
[  0   1   2]
sage: matrix_integer_dense_hnf.probable_pivot_columns(a)
(1, 2)
sage.matrix.matrix_integer_dense_hnf.probable_pivot_rows(A)

Return rows of A that are very likely to be pivots.

This really finds the pivots of A modulo a random prime.

INPUT:

  • A – a matrix

OUTPUT:

a tuple of integers

EXAMPLES:

sage: import sage.matrix.matrix_integer_dense_hnf as matrix_integer_dense_hnf
sage: a = matrix(ZZ,3,[0, -1, -1, 0, -20, 1, 0, 1, 2])
sage: a
[  0  -1  -1]
[  0 -20   1]
[  0   1   2]
sage: matrix_integer_dense_hnf.probable_pivot_rows(a)
(0, 1)
sage.matrix.matrix_integer_dense_hnf.sanity_checks(times=50, n=8, m=5, proof=True, stabilize=2, check_using_magma=True)

Run random sanity checks on the modular p-adic HNF with tall and wide matrices both dense and sparse.

INPUT:

  • times – number of times to randomly try matrices with each shape
  • n – number of rows
  • m – number of columns
  • proof – test with proof true
  • stabilize – parameter to pass to hnf algorithm when proof is False
  • check_using_magma – if True use Magma instead of PARI to check correctness of computed HNF’s. Since PARI’s HNF is buggy and slow (as of 2008-02-16 non-pivot entries sometimes are not normalized to be nonnegative) the default is Magma.

EXAMPLES:

sage: import sage.matrix.matrix_integer_dense_hnf as matrix_integer_dense_hnf
sage: matrix_integer_dense_hnf.sanity_checks(times=5, check_using_magma=False)
small 8 x 5
0 1 2 3 4  (done)
big 8 x 5
0 1 2 3 4  (done)
small 5 x 8
0 1 2 3 4  (done)
big 5 x 8
0 1 2 3 4  (done)
sparse 8 x 5
0 1 2 3 4  (done)
sparse 5 x 8
0 1 2 3 4  (done)
ill conditioned -- 1000*A -- 8 x 5
0 1 2 3 4  (done)
ill conditioned -- 1000*A but one row -- 8 x 5
0 1 2 3 4  (done)
sage.matrix.matrix_integer_dense_hnf.solve_system_with_difficult_last_row(B, a)

Solve B*x = a when the last row of \(B\) contains huge entries using a clever trick that reduces the problem to solve C*x = a where \(C\) is \(B\) but with the last row replaced by something small, along with one easy null space computation. The latter are both solved \(p\)-adically.

INPUT:

  • B – a square n x n nonsingular matrix with painful big bottom row.
  • a – an n x 1 column matrix

OUTPUT:

  • the unique solution to B*x = a.

EXAMPLES:

sage: from sage.matrix.matrix_integer_dense_hnf import solve_system_with_difficult_last_row
sage: B = matrix(ZZ, 3, [1,2,4, 3,-4,7, 939082,2930982,132902384098234])
sage: a = matrix(ZZ,3,1, [1,2,5])
sage: z = solve_system_with_difficult_last_row(B, a)
sage: z
[ 106321906985474/132902379815497]
[132902385037291/1329023798154970]
[        -5221794/664511899077485]
sage: B*z
[1]
[2]
[5]