Ring of pari objects¶
AUTHORS:
- William Stein (2004): Initial version.
- Simon King (2011-08-24): Use UniqueRepresentation, element_class and proper initialisation of elements.
-
class
sage.rings.pari_ring.
Pari
(x, parent=None)¶ Bases:
sage.structure.element.RingElement
Element of Pari pseudo-ring.
-
class
sage.rings.pari_ring.
PariRing
¶ Bases:
sage.misc.fast_methods.Singleton
,sage.rings.ring.Ring
EXAMPLES:
sage: R = PariRing(); R Pseudoring of all PARI objects. sage: loads(R.dumps()) is R True
-
characteristic
()¶
-
is_field
(proof=True)¶
-
random_element
(x=None, y=None, distribution=None)¶ Return a random integer in Pari.
Note
The given arguments are passed to
ZZ.random_element(...)
.INPUT:
- \(x\), \(y\) – optional integers, that are lower and upper bound for the result. If only \(x\) is provided, then the result is between 0 and \(x-1\), inclusive. If both are provided, then the result is between \(x\) and \(y-1\), inclusive.
- \(distribution\) – optional string, so that
ZZ
can make sense of it as a probability distribution.
EXAMPLES:
sage: R = PariRing() sage: R.random_element() -8 sage: R.random_element(5,13) 12 sage: [R.random_element(distribution="1/n") for _ in range(10)] [0, 1, -1, 2, 1, -95, -1, -2, -12, 0]
-
zeta
()¶ Return -1.
EXAMPLES:
sage: R = PariRing() sage: R.zeta() -1
-