Elements of function fields¶
Sage provides arithmetic with elements of function fields.
EXAMPLES:
Arithmetic with rational functions:
sage: K.<t> = FunctionField(QQ)
sage: f = t - 1
sage: g = t^2 - 3
sage: h = f^2/g^3
sage: h.valuation(t-1)
2
sage: h.valuation(t)
0
sage: h.valuation(t^2 - 3)
-3
Derivatives of elements in separable extensions:
sage: K.<x> = FunctionField(GF(4)); _.<Y> = K[]
sage: L.<y> = K.extension(Y^2 + Y + x + 1/x)
sage: (y^3 + x).derivative()
((x^2 + 1)/x^2)*y + (x^4 + x^3 + 1)/x^3
The divisor of an element of a global function field:
sage: K.<x> = FunctionField(GF(2)); _.<Y> = K[]
sage: L.<y> = K.extension(Y^2 + Y + x + 1/x)
sage: y.divisor()
- Place (1/x, 1/x*y)
- Place (x, x*y)
+ 2*Place (x + 1, x*y)
AUTHORS:
- William Stein: initial version
- Robert Bradshaw (2010-05-27): cythonize function field elements
- Julian Rueth (2011-06-28): treat zero correctly
- Maarten Derickx (2011-09-11): added doctests, fixed pickling
- Kwankyu Lee (2017-04-30): added elements for global function fields
-
class
sage.rings.function_field.element.
FunctionFieldElement
¶ Bases:
sage.structure.element.FieldElement
Abstract base class for function field elements.
EXAMPLES:
sage: t = FunctionField(QQ,'t').gen() sage: isinstance(t, sage.rings.function_field.element.FunctionFieldElement) True
-
characteristic_polynomial
(*args, **kwds)¶ Return the characteristic polynomial of the element. Give an optional input string to name the variable in the characteristic polynomial.
EXAMPLES:
sage: K.<x> = FunctionField(QQ); R.<y> = K[] sage: L.<y> = K.extension(y^2 - x*y + 4*x^3); R.<z> = L[] sage: M.<z> = L.extension(z^3 - y^2*z + x) sage: x.characteristic_polynomial('W') W - x sage: y.characteristic_polynomial('W') W^2 - x*W + 4*x^3 sage: z.characteristic_polynomial('W') W^3 + (-x*y + 4*x^3)*W + x
-
charpoly
(*args, **kwds)¶ Return the characteristic polynomial of the element. Give an optional input string to name the variable in the characteristic polynomial.
EXAMPLES:
sage: K.<x> = FunctionField(QQ); R.<y> = K[] sage: L.<y> = K.extension(y^2 - x*y + 4*x^3); R.<z> = L[] sage: M.<z> = L.extension(z^3 - y^2*z + x) sage: x.characteristic_polynomial('W') W - x sage: y.characteristic_polynomial('W') W^2 - x*W + 4*x^3 sage: z.characteristic_polynomial('W') W^3 + (-x*y + 4*x^3)*W + x
-
derivative
()¶ Return the derivative of the element.
The derivative is with respect to the generator of the base rational function field, over which the function field is a separable extension.
EXAMPLES:
sage: K.<t> = FunctionField(QQ) sage: f = (t + 1) / (t^2 - 1/3) sage: f.derivative() (-t^2 - 2*t - 1/3)/(t^4 - 2/3*t^2 + 1/9) sage: K.<x> = FunctionField(GF(4)); _.<Y> = K[] sage: L.<y> = K.extension(Y^2 + Y + x + 1/x) sage: (y^3 + x).derivative() ((x^2 + 1)/x^2)*y + (x^4 + x^3 + 1)/x^3
-
differential
()¶ Return the differential \(dx\) where \(x\) is the element.
EXAMPLES:
sage: K.<t> = FunctionField(QQ) sage: f = 1 / t sage: f.differential() (-1/t^2) d(t) sage: K.<x> = FunctionField(GF(4)); _.<Y> = K[] sage: L.<y> = K.extension(Y^2 + Y + x +1/x) sage: (y^3 + x).differential() (((x^2 + 1)/x^2)*y + (x^4 + x^3 + 1)/x^3) d(x)
-
divisor
()¶ Return the divisor of the element.
EXAMPLES:
sage: K.<x> = FunctionField(GF(2)) sage: f = 1/(x^3 + x^2 + x) sage: f.divisor() 3*Place (1/x) - Place (x) - Place (x^2 + x + 1) sage: K.<x> = FunctionField(GF(2)); _.<Y> = K[] sage: L.<y> = K.extension(Y^2 + Y + x + 1/x) sage: y.divisor() - Place (1/x, 1/x*y) - Place (x, x*y) + 2*Place (x + 1, x*y)
-
divisor_of_poles
()¶ Return the divisor of poles for the element.
EXAMPLES:
sage: K.<x> = FunctionField(GF(2)) sage: f = 1/(x^3 + x^2 + x) sage: f.divisor_of_poles() Place (x) + Place (x^2 + x + 1) sage: K.<x> = FunctionField(GF(4)); _.<Y> = K[] sage: L.<y> = K.extension(Y^2 + Y + x + 1/x) sage: (x/y).divisor_of_poles() Place (1/x, 1/x*y) + 2*Place (x + 1, x*y)
-
divisor_of_zeros
()¶ Return the divisor of zeros for the element.
EXAMPLES:
sage: K.<x> = FunctionField(GF(2)) sage: f = 1/(x^3 + x^2 + x) sage: f.divisor_of_zeros() 3*Place (1/x) sage: K.<x> = FunctionField(GF(4)); _.<Y> = K[] sage: L.<y> = K.extension(Y^2 + Y + x + 1/x) sage: (x/y).divisor_of_zeros() 3*Place (x, x*y)
-
is_integral
()¶ Determine if the element is integral over the maximal order of the base field.
EXAMPLES:
sage: K.<x> = FunctionField(QQ); R.<y> = K[] sage: L.<y> = K.extension(y^2 - x*y + 4*x^3) sage: y.is_integral() True sage: (y/x).is_integral() True sage: (y/x)^2 - (y/x) + 4*x 0 sage: (y/x^2).is_integral() False sage: (y/x).minimal_polynomial('W') W^2 - W + 4*x
-
matrix
(base=None)¶ Return the matrix of multiplication by this element, interpreting this element as an element of a vector space over
base
.INPUT:
base
– a function field (default:None
), ifNone
, then the matrix is formed over the base field of this function field.
EXAMPLES:
A rational function field:
sage: K.<t> = FunctionField(QQ) sage: t.matrix() [t] sage: (1/(t+1)).matrix() [1/(t + 1)]
Now an example in a nontrivial extension of a rational function field:
sage: K.<x> = FunctionField(QQ); R.<y> = K[] sage: L.<y> = K.extension(y^2 - x*y + 4*x^3) sage: y.matrix() [ 0 1] [-4*x^3 x] sage: y.matrix().charpoly('Z') Z^2 - x*Z + 4*x^3
An example in a relative extension, where neither function field is rational:
sage: K.<x> = FunctionField(QQ) sage: R.<y> = K[] sage: L.<y> = K.extension(y^2 - x*y + 4*x^3) sage: M.<T> = L[] sage: Z.<alpha> = L.extension(T^3 - y^2*T + x) sage: alpha.matrix() [ 0 1 0] [ 0 0 1] [ -x x*y - 4*x^3 0] sage: alpha.matrix(K) [ 0 0 1 0 0 0] [ 0 0 0 1 0 0] [ 0 0 0 0 1 0] [ 0 0 0 0 0 1] [ -x 0 -4*x^3 x 0 0] [ 0 -x -4*x^4 -4*x^3 + x^2 0 0] sage: alpha.matrix(Z) [alpha]
We show that this matrix does indeed work as expected when making a vector space from a function field:
sage: K.<x> = FunctionField(QQ) sage: R.<y> = K[] sage: L.<y> = K.extension(y^5 - (x^3 + 2*x*y + 1/x)) sage: V, from_V, to_V = L.vector_space() sage: y5 = to_V(y^5); y5 ((x^4 + 1)/x, 2*x, 0, 0, 0) sage: y4y = to_V(y^4) * y.matrix(); y4y ((x^4 + 1)/x, 2*x, 0, 0, 0) sage: y5 == y4y True
-
minimal_polynomial
(*args, **kwds)¶ Return the minimal polynomial of the element. Give an optional input string to name the variable in the characteristic polynomial.
EXAMPLES:
sage: K.<x> = FunctionField(QQ); R.<y> = K[] sage: L.<y> = K.extension(y^2 - x*y + 4*x^3); R.<z> = L[] sage: M.<z> = L.extension(z^3 - y^2*z + x) sage: x.minimal_polynomial('W') W - x sage: y.minimal_polynomial('W') W^2 - x*W + 4*x^3 sage: z.minimal_polynomial('W') W^3 + (-x*y + 4*x^3)*W + x
-
minpoly
(*args, **kwds)¶ Return the minimal polynomial of the element. Give an optional input string to name the variable in the characteristic polynomial.
EXAMPLES:
sage: K.<x> = FunctionField(QQ); R.<y> = K[] sage: L.<y> = K.extension(y^2 - x*y + 4*x^3); R.<z> = L[] sage: M.<z> = L.extension(z^3 - y^2*z + x) sage: x.minimal_polynomial('W') W - x sage: y.minimal_polynomial('W') W^2 - x*W + 4*x^3 sage: z.minimal_polynomial('W') W^3 + (-x*y + 4*x^3)*W + x
-
norm
()¶ Return the norm of the element.
EXAMPLES:
sage: K.<x> = FunctionField(QQ); R.<y> = K[] sage: L.<y> = K.extension(y^2 - x*y + 4*x^3) sage: y.norm() 4*x^3
The norm is relative:
sage: K.<x> = FunctionField(QQ); R.<y> = K[] sage: L.<y> = K.extension(y^2 - x*y + 4*x^3); R.<z> = L[] sage: M.<z> = L.extension(z^3 - y^2*z + x) sage: z.norm() -x sage: z.norm().parent() Function field in y defined by y^2 - x*y + 4*x^3
-
poles
()¶ Return the list of the poles of the element.
EXAMPLES:
sage: K.<x> = FunctionField(GF(2)) sage: f = 1/(x^3 + x^2 + x) sage: f.poles() [Place (x), Place (x^2 + x + 1)] sage: K.<x> = FunctionField(GF(4)); _.<Y> = K[] sage: L.<y> = K.extension(Y^2 + Y + x + 1/x) sage: (x/y).poles() [Place (1/x, 1/x*y), Place (x + 1, x*y)]
-
trace
()¶ Return the trace of the element.
EXAMPLES:
sage: K.<x> = FunctionField(QQ); R.<y> = K[] sage: L.<y> = K.extension(y^2 - x*y + 4*x^3) sage: y.trace() x
-
zeros
()¶ Return the list of the zeros of the element.
EXAMPLES:
sage: K.<x> = FunctionField(GF(2)) sage: f = 1/(x^3 + x^2 + x) sage: f.zeros() [Place (1/x)] sage: K.<x> = FunctionField(GF(4)); _.<Y> = K[] sage: L.<y> = K.extension(Y^2 + Y + x + 1/x) sage: (x/y).zeros() [Place (x, x*y)]
-
-
class
sage.rings.function_field.element.
FunctionFieldElement_global
¶ Bases:
sage.rings.function_field.element.FunctionFieldElement_polymod
Elements of global function fields
-
evaluate
(place)¶ Return the value of the element at the place.
INPUT:
place
– a function field place
OUTPUT:
If the element is in the valuation ring at the place, then an element in the residue field at the place is returned. Otherwise,
ValueError
is raised.EXAMPLES:
sage: K.<x> = FunctionField(GF(4)); _.<Y> = K[] sage: L.<y> = K.extension(Y^2 + Y + x + 1/x) sage: p, = L.places_infinite() sage: p, = L.places_infinite() sage: (y + x).evaluate(p) Traceback (most recent call last): ... ValueError: has a pole at the place sage: (y/x + 1).evaluate(p) 1
-
higher_derivative
(i, separating_element=None)¶ Return the
i
-th order higher derivative of the element with respect to the separating element.INPUT:
i
– nonnegative integerseparating_element
– separating element of the function field; the default is the generator of the base rational function field
EXAMPLES:
sage: K.<x> = FunctionField(GF(4)); _.<Y> = K[] sage: L.<y> = K.extension(Y^2 + Y + x + 1/x) sage: (y^3 + x).higher_derivative(2) 1/x^3*y + (x^6 + x^4 + x^3 + x^2 + x + 1)/x^5
-
valuation
(place)¶ Return the valuation of the element at the place.
INPUT:
place
– a place of the function field
EXAMPLES:
sage: K.<x> = FunctionField(GF(2)); _.<Y> = K[] sage: L.<y> = K.extension(Y^2 + Y + x + 1/x) sage: p = L.places_infinite()[0] sage: y.valuation(p) -1
-
-
class
sage.rings.function_field.element.
FunctionFieldElement_polymod
¶ Bases:
sage.rings.function_field.element.FunctionFieldElement
Elements of a finite extension of a function field.
EXAMPLES:
sage: K.<x> = FunctionField(QQ); R.<y> = K[] sage: L.<y> = K.extension(y^2 - x*y + 4*x^3) sage: x*y + 1/x^3 x*y + 1/x^3
-
element
()¶ Return the underlying polynomial that represents the element.
EXAMPLES:
sage: K.<x> = FunctionField(QQ); R.<T> = K[] sage: L.<y> = K.extension(T^2 - x*T + 4*x^3) sage: f = y/x^2 + x/(x^2+1); f 1/x^2*y + x/(x^2 + 1) sage: f.element() 1/x^2*y + x/(x^2 + 1)
-
list
()¶ Return the list of the coefficients representing the element.
If the function field is \(K[y]/(f(y))\), then return the coefficients of the reduced presentation of the element as a polynomial in \(K[y]\).
EXAMPLES:
sage: K.<x> = FunctionField(QQ); R.<y> = K[] sage: L.<y> = K.extension(y^2 - x*y + 4*x^3) sage: a = ~(2*y + 1/x); a (-1/8*x^2/(x^5 + 1/8*x^2 + 1/16))*y + (1/8*x^3 + 1/16*x)/(x^5 + 1/8*x^2 + 1/16) sage: a.list() [(1/8*x^3 + 1/16*x)/(x^5 + 1/8*x^2 + 1/16), -1/8*x^2/(x^5 + 1/8*x^2 + 1/16)] sage: (x*y).list() [0, x]
-
-
class
sage.rings.function_field.element.
FunctionFieldElement_rational
¶ Bases:
sage.rings.function_field.element.FunctionFieldElement
Elements of a rational function field.
EXAMPLES:
sage: K.<t> = FunctionField(QQ); K Rational function field in t over Rational Field sage: t^2 + 3/2*t t^2 + 3/2*t sage: FunctionField(QQ,'t').gen()^3 t^3
-
denominator
()¶ Return the denominator of the rational function.
EXAMPLES:
sage: K.<t> = FunctionField(QQ) sage: f = (t+1) / (t^2 - 1/3); f (t + 1)/(t^2 - 1/3) sage: f.denominator() t^2 - 1/3
-
element
()¶ Return the underlying fraction field element that represents the element.
EXAMPLES:
sage: K.<t> = FunctionField(GF(7)) sage: t.element() t sage: type(t.element()) <... 'sage.rings.fraction_field_FpT.FpTElement'> sage: K.<t> = FunctionField(GF(131101)) sage: t.element() t sage: type(t.element()) <... 'sage.rings.fraction_field_element.FractionFieldElement_1poly_field'>
-
evaluate
(place)¶ Return the value of the element at the place.
INPUT:
place
– a function field place
OUTPUT:
If the element is in the valuation ring at the place, then an element in the residue field at the place is returned. Otherwise,
ValueError
is raised.EXAMPLES:
sage: K.<t> = FunctionField(GF(5)) sage: p = K.place_infinite() sage: f = 1/t^2 + 3 sage: f.evaluate(p) 3
-
factor
()¶ Factor the rational function.
EXAMPLES:
sage: K.<t> = FunctionField(QQ) sage: f = (t+1) / (t^2 - 1/3) sage: f.factor() (t + 1) * (t^2 - 1/3)^-1 sage: (7*f).factor() (7) * (t + 1) * (t^2 - 1/3)^-1 sage: ((7*f).factor()).unit() 7 sage: (f^3).factor() (t + 1)^3 * (t^2 - 1/3)^-3
-
higher_derivative
(i, separating_element=None)¶ Return the \(i\)-th derivative of the element with respect to the separating element.
INPUT:
i
– nonnegative integerseparating_element
– separating element of the function field;- the default is the generator of the rational function field
EXAMPLES:
sage: K.<t> = FunctionField(GF(2)) sage: f = t^2 sage: f.higher_derivative(2) 1
-
inverse_mod
(I)¶ Return an inverse of the element modulo the integral ideal \(I\), if \(I\) and the element together generate the unit ideal.
EXAMPLES:
sage: K.<x> = FunctionField(QQ) sage: O = K.maximal_order(); I = O.ideal(x^2+1) sage: t = O(x+1).inverse_mod(I); t -1/2*x + 1/2 sage: (t*(x+1) - 1) in I True
-
is_square
()¶ Return whether the element is a square.
EXAMPLES:
sage: K.<t> = FunctionField(QQ) sage: t.is_square() False sage: (t^2/4).is_square() True sage: f = 9 * (t+1)^6 / (t^2 - 2*t + 1); f.is_square() True sage: K.<t> = FunctionField(GF(5)) sage: (-t^2).is_square() True sage: (-t^2).sqrt() 2*t
-
list
()¶ Return a list with just the element.
The list represents the element when the rational function field is viewed as a (one-dimensional) vector space over itself.
EXAMPLES:
sage: K.<t> = FunctionField(QQ) sage: t.list() [t]
-
numerator
()¶ Return the numerator of the rational function.
EXAMPLES:
sage: K.<t> = FunctionField(QQ) sage: f = (t+1) / (t^2 - 1/3); f (t + 1)/(t^2 - 1/3) sage: f.numerator() t + 1
-
sqrt
(all=False)¶ Return the square root of the rational function.
EXAMPLES:
sage: K.<t> = FunctionField(QQ) sage: f = t^2 - 2 + 1/t^2; f.sqrt() (t^2 - 1)/t sage: f = t^2; f.sqrt(all=True) [t, -t]
-
valuation
(place)¶ Return the valuation of the rational function at the place.
Rational function field places are associated with irreducible polynomials.
INPUT:
place
– a place or an irreducible polynomial
EXAMPLES:
sage: K.<t> = FunctionField(QQ) sage: f = (t - 1)^2*(t + 1)/(t^2 - 1/3)^3 sage: f.valuation(t - 1) 2 sage: f.valuation(t) 0 sage: f.valuation(t^2 - 1/3) -3 sage: K.<x> = FunctionField(GF(2)) sage: p = K.places_finite()[0] sage: (1/x^2).valuation(p) -2
-
-
sage.rings.function_field.element.
is_FunctionFieldElement
(x)¶ Return
True
ifx
is any type of function field element.EXAMPLES:
sage: t = FunctionField(QQ,'t').gen() sage: sage.rings.function_field.element.is_FunctionFieldElement(t) True sage: sage.rings.function_field.element.is_FunctionFieldElement(0) False
-
sage.rings.function_field.element.
make_FunctionFieldElement
(parent, element_class, representing_element)¶ Used for unpickling FunctionFieldElement objects (and subclasses).
EXAMPLES:
sage: from sage.rings.function_field.element import make_FunctionFieldElement sage: K.<x> = FunctionField(QQ) sage: make_FunctionFieldElement(K, K.element_class, (x+1)/x) (x + 1)/x