Base classes for triangulations¶
We provide (fast) cython implementations here.
AUTHORS:
- Volker Braun (2010-09-14): initial version.
-
class
sage.geometry.triangulation.base.
ConnectedTriangulationsIterator
¶ Bases:
sage.structure.sage_object.SageObject
A Python shim for the C++-class ‘triangulations’
INPUT:
point_configuration
– aPointConfiguration
.seed
– a regular triangulation orNone
(default). In the latter case, a suitable triangulation is generated automatically. Otherwise, you can explicitly specify the seed triangulation as- A
Triangulation
object, or - an iterable of iterables specifying the vertices of the simplices, or
- an iterable of integers, which are then considered the
enumerated simplices (see
simplex_to_int()
.
- A
star
– eitherNone
(default) or an integer. If an integer is passed, all returned triangulations will be star with respect to thefine
– boolean (default:False
). Whether to return only fine triangulations, that is, simplicial decompositions that make use of all the points of the configuration.
OUTPUT:
An iterator. The generated values are tuples of integers, which encode simplices of the triangulation. The output is a suitable input to
Triangulation
.EXAMPLES:
sage: p = PointConfiguration([[0,0],[0,1],[1,0],[1,1],[-1,-1]]) sage: from sage.geometry.triangulation.base import ConnectedTriangulationsIterator sage: ci = ConnectedTriangulationsIterator(p) sage: next(ci) (9, 10) sage: next(ci) (2, 3, 4, 5) sage: next(ci) (7, 8) sage: next(ci) (1, 3, 5, 7) sage: next(ci) Traceback (most recent call last): ... StopIteration
You can reconstruct the triangulation from the compressed output via:
sage: from sage.geometry.triangulation.element import Triangulation sage: Triangulation((2, 3, 4, 5), p) (<0,1,3>, <0,1,4>, <0,2,3>, <0,2,4>)
How to use the restrictions:
sage: ci = ConnectedTriangulationsIterator(p, fine=True) sage: list(ci) [(2, 3, 4, 5), (1, 3, 5, 7)] sage: ci = ConnectedTriangulationsIterator(p, star=1) sage: list(ci) [(7, 8)] sage: ci = ConnectedTriangulationsIterator(p, star=1, fine=True) sage: list(ci) []
-
next
()¶ x.next() -> the next value, or raise StopIteration
-
class
sage.geometry.triangulation.base.
Point
¶ Bases:
sage.structure.sage_object.SageObject
A point of a point configuration.
Note that the coordinates of the points of a point configuration are somewhat arbitrary. What counts are the abstract linear relations between the points, for example encoded by the
circuits()
.Warning
You should not create
Point
objects manually. The constructor ofPointConfiguration_base
takes care of this for you.INPUT:
point_configuration
–PointConfiguration_base
. The point configuration to which the point belongs.i
– integer. The index of the point in the point configuration.projective
– the projective coordinates of the point.affine
– the affine coordinates of the point.reduced
– the reduced (with linearities removed) coordinates of the point.
EXAMPLES:
sage: pc = PointConfiguration([(0,0)]) sage: from sage.geometry.triangulation.base import Point sage: Point(pc, 123, (0,0,1), (0,0), ()) P(0, 0)
-
affine
()¶ Return the affine coordinates of the point in the ambient space.
OUTPUT:
A tuple containing the coordinates.
EXAMPLES:
sage: pc = PointConfiguration([[10, 0, 1], [10, 0, 0], [10, 2, 3]]) sage: p = pc.point(2); p P(10, 2, 3) sage: p.affine() (10, 2, 3) sage: p.projective() (10, 2, 3, 1) sage: p.reduced_affine() (2, 2) sage: p.reduced_projective() (2, 2, 1) sage: p.reduced_affine_vector() (2, 2)
-
index
()¶ Return the index of the point in the point configuration.
EXAMPLES:
sage: pc = PointConfiguration([[0, 1], [0, 0], [1, 0]]) sage: p = pc.point(2); p P(1, 0) sage: p.index() 2
-
point_configuration
()¶ Return the point configuration to which the point belongs.
OUTPUT:
EXAMPLES:
sage: pc = PointConfiguration([ (0,0), (1,0), (0,1) ]) sage: p = pc.point(0) sage: p is pc.point(0) True sage: p.point_configuration() is pc True
-
projective
()¶ Return the projective coordinates of the point in the ambient space.
OUTPUT:
A tuple containing the coordinates.
EXAMPLES:
sage: pc = PointConfiguration([[10, 0, 1], [10, 0, 0], [10, 2, 3]]) sage: p = pc.point(2); p P(10, 2, 3) sage: p.affine() (10, 2, 3) sage: p.projective() (10, 2, 3, 1) sage: p.reduced_affine() (2, 2) sage: p.reduced_projective() (2, 2, 1) sage: p.reduced_affine_vector() (2, 2)
-
reduced_affine
()¶ Return the affine coordinates of the point on the hyperplane spanned by the point configuration.
OUTPUT:
A tuple containing the coordinates.
EXAMPLES:
sage: pc = PointConfiguration([[10, 0, 1], [10, 0, 0], [10, 2, 3]]) sage: p = pc.point(2); p P(10, 2, 3) sage: p.affine() (10, 2, 3) sage: p.projective() (10, 2, 3, 1) sage: p.reduced_affine() (2, 2) sage: p.reduced_projective() (2, 2, 1) sage: p.reduced_affine_vector() (2, 2)
-
reduced_affine_vector
()¶ Return the affine coordinates of the point on the hyperplane spanned by the point configuration.
OUTPUT:
A tuple containing the coordinates.
EXAMPLES:
sage: pc = PointConfiguration([[10, 0, 1], [10, 0, 0], [10, 2, 3]]) sage: p = pc.point(2); p P(10, 2, 3) sage: p.affine() (10, 2, 3) sage: p.projective() (10, 2, 3, 1) sage: p.reduced_affine() (2, 2) sage: p.reduced_projective() (2, 2, 1) sage: p.reduced_affine_vector() (2, 2)
-
reduced_projective
()¶ Return the projective coordinates of the point on the hyperplane spanned by the point configuration.
OUTPUT:
A tuple containing the coordinates.
EXAMPLES:
sage: pc = PointConfiguration([[10, 0, 1], [10, 0, 0], [10, 2, 3]]) sage: p = pc.point(2); p P(10, 2, 3) sage: p.affine() (10, 2, 3) sage: p.projective() (10, 2, 3, 1) sage: p.reduced_affine() (2, 2) sage: p.reduced_projective() (2, 2, 1) sage: p.reduced_affine_vector() (2, 2)
-
reduced_projective_vector
()¶ Return the affine coordinates of the point on the hyperplane spanned by the point configuration.
OUTPUT:
A tuple containing the coordinates.
EXAMPLES:
sage: pc = PointConfiguration([[10, 0, 1], [10, 0, 0], [10, 2, 3]]) sage: p = pc.point(2); p P(10, 2, 3) sage: p.affine() (10, 2, 3) sage: p.projective() (10, 2, 3, 1) sage: p.reduced_affine() (2, 2) sage: p.reduced_projective() (2, 2, 1) sage: p.reduced_affine_vector() (2, 2) sage: type(p.reduced_affine_vector()) <type 'sage.modules.vector_rational_dense.Vector_rational_dense'>
-
class
sage.geometry.triangulation.base.
PointConfiguration_base
¶ Bases:
sage.structure.parent.Parent
The cython abstract base class for
PointConfiguration
.Warning
You should not instantiate this base class, but only its derived class
PointConfiguration
.-
ambient_dim
()¶ Return the dimension of the ambient space of the point configuration.
See also
dimension()
EXAMPLES:
sage: p = PointConfiguration([[0,0,0]]) sage: p.ambient_dim() 3 sage: p.dim() 0
-
base_ring
()¶ Return the base ring, that is, the ring containing the coordinates of the points.
OUTPUT:
A ring.
EXAMPLES:
sage: p = PointConfiguration([(0,0)]) sage: p.base_ring() Integer Ring sage: p = PointConfiguration([(1/2,3)]) sage: p.base_ring() Rational Field sage: p = PointConfiguration([(0.2, 5)]) sage: p.base_ring() Real Field with 53 bits of precision
-
dim
()¶ Return the actual dimension of the point configuration.
See also
ambient_dim()
EXAMPLES:
sage: p = PointConfiguration([[0,0,0]]) sage: p.ambient_dim() 3 sage: p.dim() 0
-
int_to_simplex
(s)¶ Reverses the enumeration of possible simplices in
simplex_to_int()
.The enumeration is compatible with [PUNTOS].
INPUT:
s
– int. An integer that uniquely specifies a simplex.
OUTPUT:
An ordered tuple consisting of the indices of the vertices of the simplex.
EXAMPLES:
sage: U=matrix([ ....: [ 0, 0, 0, 0, 0, 2, 4,-1, 1, 1, 0, 0, 1, 0], ....: [ 0, 0, 0, 1, 0, 0,-1, 0, 0, 0, 0, 0, 0, 0], ....: [ 0, 2, 0, 0, 0, 0,-1, 0, 1, 0, 1, 0, 0, 1], ....: [ 0, 1, 1, 0, 0, 1, 0,-2, 1, 0, 0,-1, 1, 1], ....: [ 0, 0, 0, 0, 1, 0,-1, 0, 0, 0, 0, 0, 0, 0] ....: ]) sage: pc = PointConfiguration(U.columns()) sage: pc.simplex_to_int([1,3,4,7,10,13]) 1678 sage: pc.int_to_simplex(1678) (1, 3, 4, 7, 10, 13)
-
is_affine
()¶ Whether the configuration is defined by affine points.
OUTPUT:
Boolean. If true, the homogeneous coordinates all have \(1\) as their last entry.
EXAMPLES:
sage: p = PointConfiguration([(0.2, 5), (3, 0.1)]) sage: p.is_affine() True sage: p = PointConfiguration([(0.2, 5, 1), (3, 0.1, 1)], projective=True) sage: p.is_affine() False
-
n_points
()¶ Return the number of points.
Same as
len(self)
.EXAMPLES:
sage: p = PointConfiguration([[0,0],[0,1],[1,0],[1,1],[-1,-1]]) sage: p A point configuration in affine 2-space over Integer Ring consisting of 5 points. The triangulations of this point configuration are assumed to be connected, not necessarily fine, not necessarily regular. sage: len(p) 5 sage: p.n_points() 5
-
point
(i)¶ Return the i-th point of the configuration.
Same as
__getitem__()
INPUT:
i
– integer.
OUTPUT:
A point of the point configuration.
EXAMPLES:
sage: pconfig = PointConfiguration([[0,0],[0,1],[1,0],[1,1],[-1,-1]]) sage: list(pconfig) [P(0, 0), P(0, 1), P(1, 0), P(1, 1), P(-1, -1)] sage: [ p for p in pconfig.points() ] [P(0, 0), P(0, 1), P(1, 0), P(1, 1), P(-1, -1)] sage: pconfig.point(0) P(0, 0) sage: pconfig[0] P(0, 0) sage: pconfig.point(1) P(0, 1) sage: pconfig.point( pconfig.n_points()-1 ) P(-1, -1)
-
points
()¶ Return a list of the points.
OUTPUT:
Returns a list of the points. See also the
__iter__()
method, which returns the corresponding generator.EXAMPLES:
sage: pconfig = PointConfiguration([[0,0],[0,1],[1,0],[1,1],[-1,-1]]) sage: list(pconfig) [P(0, 0), P(0, 1), P(1, 0), P(1, 1), P(-1, -1)] sage: [ p for p in pconfig.points() ] [P(0, 0), P(0, 1), P(1, 0), P(1, 1), P(-1, -1)] sage: pconfig.point(0) P(0, 0) sage: pconfig.point(1) P(0, 1) sage: pconfig.point( pconfig.n_points()-1 ) P(-1, -1)
-
reduced_affine_vector_space
()¶ Return the vector space that contains the affine points.
OUTPUT:
A vector space over the fraction field of
base_ring()
.EXAMPLES:
sage: p = PointConfiguration([[0,0,0], [1,2,3]]) sage: p.base_ring() Integer Ring sage: p.reduced_affine_vector_space() Vector space of dimension 1 over Rational Field sage: p.reduced_projective_vector_space() Vector space of dimension 2 over Rational Field
-
reduced_projective_vector_space
()¶ Return the vector space that is spanned by the homogeneous coordinates.
OUTPUT:
A vector space over the fraction field of
base_ring()
.EXAMPLES:
sage: p = PointConfiguration([[0,0,0], [1,2,3]]) sage: p.base_ring() Integer Ring sage: p.reduced_affine_vector_space() Vector space of dimension 1 over Rational Field sage: p.reduced_projective_vector_space() Vector space of dimension 2 over Rational Field
-
simplex_to_int
(simplex)¶ Returns an integer that uniquely identifies the given simplex.
See also the inverse method
int_to_simplex()
.The enumeration is compatible with [PUNTOS].
INPUT:
simplex
– iterable, for example a list. The elements are the vertex indices of the simplex.
OUTPUT:
An integer that uniquely specifies the simplex.
EXAMPLES:
sage: U=matrix([ ....: [ 0, 0, 0, 0, 0, 2, 4,-1, 1, 1, 0, 0, 1, 0], ....: [ 0, 0, 0, 1, 0, 0,-1, 0, 0, 0, 0, 0, 0, 0], ....: [ 0, 2, 0, 0, 0, 0,-1, 0, 1, 0, 1, 0, 0, 1], ....: [ 0, 1, 1, 0, 0, 1, 0,-2, 1, 0, 0,-1, 1, 1], ....: [ 0, 0, 0, 0, 1, 0,-1, 0, 0, 0, 0, 0, 0, 0] ....: ]) sage: pc = PointConfiguration(U.columns()) sage: pc.simplex_to_int([1,3,4,7,10,13]) 1678 sage: pc.int_to_simplex(1678) (1, 3, 4, 7, 10, 13)
-