Fast Lattice Polytopes using PPL.¶
The LatticePolytope_PPL()
class is a thin wrapper around PPL
polyhedra. Its main purpose is to be fast to construct, at the cost of
being much less full-featured than the usual polyhedra. This makes it
possible to iterate with it over the list of all 473800776 reflexive
polytopes in 4 dimensions.
Note
For general lattice polyhedra you should use
Polyhedron()
with
base_ring=ZZ
.
The class derives from the PPL ppl.polyhedron.C_Polyhedron
class, so you can work with the underlying generator and constraint
objects. However, integral points are generally represented by
\(\ZZ\)-vectors. In the following, we always use generator to refer
the PPL generator objects and vertex (or integral point) for the
corresponding \(\ZZ\)-vector.
EXAMPLES:
sage: vertices = [(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1), (-9, -6, -1, -1)]
sage: from sage.geometry.polyhedron.ppl_lattice_polytope import LatticePolytope_PPL
sage: P = LatticePolytope_PPL(vertices); P
A 4-dimensional lattice polytope in ZZ^4 with 5 vertices
sage: P.integral_points()
((-9, -6, -1, -1), (-3, -2, 0, 0), (-2, -1, 0, 0), (-1, -1, 0, 0),
(-1, 0, 0, 0), (0, 0, 0, 0), (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 0, 1), (0, 0, 1, 0))
sage: P.integral_points_not_interior_to_facets()
((-9, -6, -1, -1), (-3, -2, 0, 0), (0, 0, 0, 0), (1, 0, 0, 0),
(0, 1, 0, 0), (0, 0, 0, 1), (0, 0, 1, 0))
Fibrations of the lattice polytopes are defined as lattice
sub-polytopes and give rise to fibrations of toric varieties for
suitable fan refinements. We can compute them using
fibration_generator()
sage: F = next(P.fibration_generator(2))
sage: F.vertices()
((1, 0, 0, 0), (0, 1, 0, 0), (-3, -2, 0, 0))
Finally, we can compute automorphisms and identify fibrations that only differ by a lattice automorphism:
sage: square = LatticePolytope_PPL((-1,-1),(-1,1),(1,-1),(1,1))
sage: fibers = [ f.vertices() for f in square.fibration_generator(1) ]; fibers
[((1, 0), (-1, 0)), ((0, 1), (0, -1)), ((-1, -1), (1, 1)), ((-1, 1), (1, -1))]
sage: square.pointsets_mod_automorphism(fibers)
(frozenset({(-1, -1), (1, 1)}), frozenset({(-1, 0), (1, 0)}))
AUTHORS:
- Volker Braun: initial version, 2012
-
sage.geometry.polyhedron.ppl_lattice_polytope.
LatticePolytope_PPL
(*args)¶ Construct a new instance of the PPL-based lattice polytope class.
EXAMPLES:
sage: from sage.geometry.polyhedron.ppl_lattice_polytope import LatticePolytope_PPL sage: LatticePolytope_PPL((0,0),(1,0),(0,1)) A 2-dimensional lattice polytope in ZZ^2 with 3 vertices sage: from ppl import point, Generator_System, C_Polyhedron, Linear_Expression, Variable sage: p = point(Linear_Expression([2,3],0)); p point(2/1, 3/1) sage: LatticePolytope_PPL(p) A 0-dimensional lattice polytope in ZZ^2 with 1 vertex sage: P = C_Polyhedron(Generator_System(p)); P A 0-dimensional polyhedron in QQ^2 defined as the convex hull of 1 point sage: LatticePolytope_PPL(P) A 0-dimensional lattice polytope in ZZ^2 with 1 vertex
A
TypeError
is raised if the arguments do not specify a lattice polytope:sage: from sage.geometry.polyhedron.ppl_lattice_polytope import LatticePolytope_PPL sage: LatticePolytope_PPL((0,0),(1/2,1)) Traceback (most recent call last): ... TypeError: unable to convert rational 1/2 to an integer sage: from ppl import point, Generator_System, C_Polyhedron, Linear_Expression, Variable sage: p = point(Linear_Expression([2,3],0), 5); p point(2/5, 3/5) sage: LatticePolytope_PPL(p) Traceback (most recent call last): ... TypeError: generator is not a lattice polytope generator sage: P = C_Polyhedron(Generator_System(p)); P A 0-dimensional polyhedron in QQ^2 defined as the convex hull of 1 point sage: LatticePolytope_PPL(P) Traceback (most recent call last): ... TypeError: polyhedron has non-integral generators
-
class
sage.geometry.polyhedron.ppl_lattice_polytope.
LatticePolytope_PPL_class
¶ Bases:
ppl.polyhedron.C_Polyhedron
The lattice polytope class.
You should use
LatticePolytope_PPL()
to construct instances.EXAMPLES:
sage: from sage.geometry.polyhedron.ppl_lattice_polytope import LatticePolytope_PPL sage: LatticePolytope_PPL((0,0),(1,0),(0,1)) A 2-dimensional lattice polytope in ZZ^2 with 3 vertices
-
affine_lattice_polytope
()¶ Return the lattice polytope restricted to
affine_space()
.OUTPUT:
A new, full-dimensional lattice polytope.
EXAMPLES:
sage: from sage.geometry.polyhedron.ppl_lattice_polytope import LatticePolytope_PPL sage: poly_4d = LatticePolytope_PPL((-9,-6,0,0),(0,1,0,0),(1,0,0,0)); poly_4d A 2-dimensional lattice polytope in ZZ^4 with 3 vertices sage: poly_4d.space_dimension() 4 sage: poly_2d = poly_4d.affine_lattice_polytope(); poly_2d A 2-dimensional lattice polytope in ZZ^2 with 3 vertices sage: poly_2d.space_dimension() 2
-
affine_space
()¶ Return the affine space spanned by the polytope.
OUTPUT:
The free module \(\ZZ^n\), where \(n\) is the dimension of the affine space spanned by the points of the polytope.
EXAMPLES:
sage: from sage.geometry.polyhedron.ppl_lattice_polytope import LatticePolytope_PPL sage: point = LatticePolytope_PPL((1,2,3)) sage: point.affine_space() Free module of degree 3 and rank 0 over Integer Ring Echelon basis matrix: [] sage: line = LatticePolytope_PPL((1,1,1), (1,2,3)) sage: line.affine_space() Free module of degree 3 and rank 1 over Integer Ring Echelon basis matrix: [0 1 2]
-
ambient_space
()¶ Return the ambient space.
OUTPUT:
The free module \(\ZZ^d\), where \(d\) is the ambient space dimension.
EXAMPLES:
sage: from sage.geometry.polyhedron.ppl_lattice_polytope import LatticePolytope_PPL sage: point = LatticePolytope_PPL((1,2,3)) sage: point.ambient_space() Ambient free module of rank 3 over the principal ideal domain Integer Ring
-
base_projection
(fiber)¶ The projection that maps the sub-polytope
fiber
to a single point.OUTPUT:
The quotient module of the ambient space modulo the
affine_space()
spanned by the fiber.EXAMPLES:
sage: from sage.geometry.polyhedron.ppl_lattice_polytope import LatticePolytope_PPL sage: poly = LatticePolytope_PPL((-9,-6,-1,-1),(0,0,0,1),(0,0,1,0),(0,1,0,0),(1,0,0,0)) sage: fiber = next(poly.fibration_generator(2)) sage: poly.base_projection(fiber) Finitely generated module V/W over Integer Ring with invariants (0, 0)
-
base_projection_matrix
(fiber)¶ The projection that maps the sub-polytope
fiber
to a single point.OUTPUT:
An integer matrix that represents the projection to the base.
See also
The
base_projection()
yields equivalent information, and is easier to use. However, just returning the matrix has lower overhead.EXAMPLES:
sage: from sage.geometry.polyhedron.ppl_lattice_polytope import LatticePolytope_PPL sage: poly = LatticePolytope_PPL((-9,-6,-1,-1),(0,0,0,1),(0,0,1,0),(0,1,0,0),(1,0,0,0)) sage: fiber = next(poly.fibration_generator(2)) sage: poly.base_projection_matrix(fiber) [0 0 1 0] [0 0 0 1]
Note that the basis choice in
base_projection()
for the quotient is usually different:sage: proj = poly.base_projection(fiber) sage: proj_matrix = poly.base_projection_matrix(fiber) sage: [ proj(p) for p in poly.integral_points() ] [(-1, -1), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (1, 0), (0, 1)] sage: [ proj_matrix*p for p in poly.integral_points() ] [(-1, -1), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 1), (1, 0)]
-
base_rays
(fiber, points)¶ Return the primitive lattice vectors that generate the direction given by the base projection of points.
INPUT:
fiber
– a sub-lattice polytope defining thebase_projection()
.points
– the points to project to the base.
OUTPUT:
A tuple of primitive \(\ZZ\)-vectors.
EXAMPLES:
sage: from sage.geometry.polyhedron.ppl_lattice_polytope import LatticePolytope_PPL sage: poly = LatticePolytope_PPL((-9,-6,-1,-1),(0,0,0,1),(0,0,1,0),(0,1,0,0),(1,0,0,0)) sage: fiber = next(poly.fibration_generator(2)) sage: poly.base_rays(fiber, poly.integral_points_not_interior_to_facets()) ((-1, -1), (0, 1), (1, 0)) sage: p = LatticePolytope_PPL((1,0),(1,2),(-1,0)) sage: f = LatticePolytope_PPL((1,0),(-1,0)) sage: p.base_rays(f, p.integral_points()) ((1),)
-
bounding_box
()¶ Return the coordinates of a rectangular box containing the non-empty polytope.
OUTPUT:
A pair of tuples
(box_min, box_max)
wherebox_min
are the coordinates of a point bounding the coordinates of the polytope from below andbox_max
bounds the coordinates from above.EXAMPLES:
sage: from sage.geometry.polyhedron.ppl_lattice_polytope import LatticePolytope_PPL sage: LatticePolytope_PPL((0,0),(1,0),(0,1)).bounding_box() ((0, 0), (1, 1))
-
contains
(point_coordinates)¶ Test whether point is contained in the polytope.
INPUT:
point_coordinates
– a list/tuple/iterable of rational numbers. The coordinates of the point.
OUTPUT:
Boolean.
EXAMPLES:
sage: from sage.geometry.polyhedron.ppl_lattice_polytope import LatticePolytope_PPL sage: line = LatticePolytope_PPL((1,2,3), (-1,-2,-3)) sage: line.contains([0,0,0]) True sage: line.contains([1,0,0]) False
-
contains_origin
()¶ Test whether the polytope contains the origin
OUTPUT:
Boolean.
EXAMPLES:
sage: from sage.geometry.polyhedron.ppl_lattice_polytope import LatticePolytope_PPL sage: LatticePolytope_PPL((1,2,3), (-1,-2,-3)).contains_origin() True sage: LatticePolytope_PPL((1,2,5), (-1,-2,-3)).contains_origin() False
-
embed_in_reflexive_polytope
(output='hom')¶ Find an embedding as a sub-polytope of a maximal reflexive polytope.
INPUT:
hom
– string. One of'hom'
(default),'polytope'
, orpoints
. How the embedding is returned. See the output section for details.
OUTPUT:
An embedding into a reflexive polytope. Depending on the
output
option slightly different data is returned.If
output='hom'
, a map from a reflexive polytope ontoself
is returned.If
output='polytope'
, a reflexive polytope that containsself
(up to a lattice linear transformation) is returned. That is, the domain of theoutput='hom'
map is returned. If the affine span ofself
is less or equal 2-dimensional, the output is one of the following three possibilities:polar_P2_polytope()
,polar_P1xP1_polytope()
, orpolar_P2_112_polytope()
.If
output='points'
, a dictionary containing the integral points ofself
as keys and the corresponding integral point of the reflexive polytope as value.
If there is no such embedding, a
LatticePolytopeNoEmbeddingError
is raised. Even if it exists, the ambient reflexive polytope is usually not uniquely determined an a random but fixed choice will be returned.EXAMPLES:
sage: from sage.geometry.polyhedron.ppl_lattice_polytope import LatticePolytope_PPL sage: polygon = LatticePolytope_PPL((0,0,2,1),(0,1,2,0),(2,3,0,0),(2,0,0,3)) sage: polygon.embed_in_reflexive_polytope() The map A*x+b with A= [ 1 1] [ 0 1] [-1 -1] [ 1 0] b = (-1, 0, 3, 0) sage: polygon.embed_in_reflexive_polytope('polytope') A 2-dimensional lattice polytope in ZZ^2 with 3 vertices sage: polygon.embed_in_reflexive_polytope('points') {(0, 0, 2, 1): (1, 0), (0, 1, 2, 0): (0, 1), (1, 0, 1, 2): (2, 0), (1, 1, 1, 1): (1, 1), (1, 2, 1, 0): (0, 2), (2, 0, 0, 3): (3, 0), (2, 1, 0, 2): (2, 1), (2, 2, 0, 1): (1, 2), (2, 3, 0, 0): (0, 3)} sage: LatticePolytope_PPL((0,0), (4,0), (0,4)).embed_in_reflexive_polytope() Traceback (most recent call last): ... LatticePolytopeNoEmbeddingError: not a sub-polytope of a reflexive polygon
-
fibration_generator
(dim)¶ Generate the lattice polytope fibrations.
For the purposes of this function, a lattice polytope fiber is a sub-lattice polytope. Projecting the plane spanned by the subpolytope to a point yields another lattice polytope, the base of the fibration.
INPUT:
dim
– integer. The dimension of the lattice polytope fiber.
OUTPUT:
A generator yielding the distinct lattice polytope fibers of given dimension.
EXAMPLES:
sage: from sage.geometry.polyhedron.ppl_lattice_polytope import LatticePolytope_PPL sage: p = LatticePolytope_PPL((-9,-6,-1,-1),(0,0,0,1),(0,0,1,0),(0,1,0,0),(1,0,0,0)) sage: list( p.fibration_generator(2) ) [A 2-dimensional lattice polytope in ZZ^4 with 3 vertices]
-
has_IP_property
()¶ Whether the lattice polytope has the IP property.
That is, the polytope is full-dimensional and the origin is a interior point not on the boundary.
OUTPUT:
Boolean.
EXAMPLES:
sage: from sage.geometry.polyhedron.ppl_lattice_polytope import LatticePolytope_PPL sage: LatticePolytope_PPL((-1,-1),(0,1),(1,0)).has_IP_property() True sage: LatticePolytope_PPL((-1,-1),(1,1)).has_IP_property() False
-
integral_points
()¶ Return the integral points in the polyhedron.
Uses the naive algorithm (iterate over a rectangular bounding box).
OUTPUT:
The list of integral points in the polyhedron. If the polyhedron is not compact, a
ValueError
is raised.EXAMPLES:
sage: from sage.geometry.polyhedron.ppl_lattice_polytope import LatticePolytope_PPL sage: LatticePolytope_PPL((-1,-1),(1,0),(1,1),(0,1)).integral_points() ((-1, -1), (0, 0), (0, 1), (1, 0), (1, 1)) sage: simplex = LatticePolytope_PPL((1,2,3), (2,3,7), (-2,-3,-11)) sage: simplex.integral_points() ((-2, -3, -11), (0, 0, -2), (1, 2, 3), (2, 3, 7))
The polyhedron need not be full-dimensional:
sage: simplex = LatticePolytope_PPL((1,2,3,5), (2,3,7,5), (-2,-3,-11,5)) sage: simplex.integral_points() ((-2, -3, -11, 5), (0, 0, -2, 5), (1, 2, 3, 5), (2, 3, 7, 5)) sage: point = LatticePolytope_PPL((2,3,7)) sage: point.integral_points() ((2, 3, 7),) sage: empty = LatticePolytope_PPL() sage: empty.integral_points() ()
Here is a simplex where the naive algorithm of running over all points in a rectangular bounding box no longer works fast enough:
sage: v = [(1,0,7,-1), (-2,-2,4,-3), (-1,-1,-1,4), (2,9,0,-5), (-2,-1,5,1)] sage: simplex = LatticePolytope_PPL(v); simplex A 4-dimensional lattice polytope in ZZ^4 with 5 vertices sage: len(simplex.integral_points()) 49
Finally, the 3-d reflexive polytope number 4078:
sage: v = [(1,0,0), (0,1,0), (0,0,1), (0,0,-1), (0,-2,1), ....: (-1,2,-1), (-1,2,-2), (-1,1,-2), (-1,-1,2), (-1,-3,2)] sage: P = LatticePolytope_PPL(*v) sage: pts1 = P.integral_points() # Sage's own code sage: pts2 = LatticePolytope(v).points() # PALP sage: for p in pts1: p.set_immutable() sage: set(pts1) == set(pts2) True sage: timeit('Polyhedron(v).integral_points()') # random output sage: timeit('LatticePolytope(v).points()') # random output sage: timeit('LatticePolytope_PPL(*v).integral_points()') # random output
-
integral_points_not_interior_to_facets
()¶ Return the integral points not interior to facets
OUTPUT:
A tuple whose entries are the coordinate vectors of integral points not interior to facets (codimension one faces) of the lattice polytope.
EXAMPLES:
sage: from sage.geometry.polyhedron.ppl_lattice_polytope import LatticePolytope_PPL sage: square = LatticePolytope_PPL((-1,-1),(-1,1),(1,-1),(1,1)) sage: square.n_integral_points() 9 sage: square.integral_points_not_interior_to_facets() ((-1, -1), (-1, 1), (0, 0), (1, -1), (1, 1))
-
is_bounded
()¶ Return whether the lattice polytope is compact.
OUTPUT:
Always
True
, since polytopes are by definition compact.EXAMPLES:
sage: from sage.geometry.polyhedron.ppl_lattice_polytope import LatticePolytope_PPL sage: LatticePolytope_PPL((0,0),(1,0),(0,1)).is_bounded() True
-
is_full_dimensional
()¶ Return whether the lattice polytope is full dimensional.
OUTPUT:
Boolean. Whether the
affine_dimension()
equals the ambient space dimension.EXAMPLES:
sage: from sage.geometry.polyhedron.ppl_lattice_polytope import LatticePolytope_PPL sage: p = LatticePolytope_PPL((0,0),(0,1)) sage: p.is_full_dimensional() False sage: q = LatticePolytope_PPL((0,0),(0,1),(1,0)) sage: q.is_full_dimensional() True
-
is_simplex
()¶ Return whether the polyhedron is a simplex.
OUTPUT:
Boolean, whether the polyhedron is a simplex (possibly of strictly smaller dimension than the ambient space).
EXAMPLES:
sage: from sage.geometry.polyhedron.ppl_lattice_polytope import LatticePolytope_PPL sage: LatticePolytope_PPL((0,0,0), (1,0,0), (0,1,0)).is_simplex() True
-
lattice_automorphism_group
(points=None, point_labels=None)¶ The integral subgroup of the restricted automorphism group.
INPUT:
points
– A tuple of coordinate vectors orNone
(default). If specified, the points must form complete orbits under the lattice automorphism group. IfNone
all vertices are used.point_labels
– A tuple of labels for thepoints
orNone
(default). These will be used as labels for the do permutation group. IfNone
thepoints
will be used themselves.
OUTPUT:
The integral subgroup of the restricted automorphism group acting on the given
points
, or all vertices if not specified.EXAMPLES:
sage: from sage.geometry.polyhedron.ppl_lattice_polytope import LatticePolytope_PPL sage: Z3square = LatticePolytope_PPL((0,0), (1,2), (2,1), (3,3)) sage: Z3square.lattice_automorphism_group() Permutation Group with generators [(), ((1,2),(2,1)), ((0,0),(3,3)), ((0,0),(3,3))((1,2),(2,1))] sage: G1 = Z3square.lattice_automorphism_group(point_labels=(1,2,3,4)); G1 Permutation Group with generators [(), (2,3), (1,4), (1,4)(2,3)] sage: G1.cardinality() 4 sage: G2 = Z3square.restricted_automorphism_group(vertex_labels=(1,2,3,4)) sage: G2 == PermutationGroup([[(2,3)], [(1,2),(3,4)], [(1,4)]]) True sage: G2.cardinality() 8 sage: points = Z3square.integral_points(); points ((0, 0), (1, 1), (1, 2), (2, 1), (2, 2), (3, 3)) sage: Z3square.lattice_automorphism_group(points, point_labels=(1,2,3,4,5,6)) Permutation Group with generators [(), (3,4), (1,6)(2,5), (1,6)(2,5)(3,4)]
Point labels also work for lattice polytopes that are not full-dimensional, see trac ticket #16669:
sage: from sage.geometry.polyhedron.ppl_lattice_polytope import LatticePolytope_PPL sage: lp = LatticePolytope_PPL((1,0,0),(0,1,0),(-1,-1,0)) sage: lp.lattice_automorphism_group(point_labels=(0,1,2)) Permutation Group with generators [(), (1,2), (0,1), (0,1,2), (0,2,1), (0,2)]
-
n_integral_points
()¶ Return the number of integral points.
OUTPUT:
Integer. The number of integral points contained in the lattice polytope.
EXAMPLES:
sage: from sage.geometry.polyhedron.ppl_lattice_polytope import LatticePolytope_PPL sage: LatticePolytope_PPL((0,0),(1,0),(0,1)).n_integral_points() 3
-
n_vertices
()¶ Return the number of vertices.
OUTPUT:
An integer, the number of vertices.
EXAMPLES:
sage: from sage.geometry.polyhedron.ppl_lattice_polytope import LatticePolytope_PPL sage: LatticePolytope_PPL((0,0,0), (1,0,0), (0,1,0)).n_vertices() 3
-
pointsets_mod_automorphism
(pointsets)¶ Return
pointsets
modulo the automorphisms ofself
.INPUT:
polytopes
a tuple/list/iterable of subsets of the integral points ofself
.
OUTPUT:
Representatives of the point sets modulo the
lattice_automorphism_group()
ofself
.EXAMPLES:
sage: from sage.geometry.polyhedron.ppl_lattice_polytope import LatticePolytope_PPL sage: square = LatticePolytope_PPL((-1,-1),(-1,1),(1,-1),(1,1)) sage: fibers = [ f.vertices() for f in square.fibration_generator(1) ] sage: square.pointsets_mod_automorphism(fibers) (frozenset({(-1, -1), (1, 1)}), frozenset({(-1, 0), (1, 0)})) sage: cell24 = LatticePolytope_PPL( ....: (1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1),(1,-1,-1,1),(0,0,-1,1), ....: (0,-1,0,1),(-1,0,0,1),(1,0,0,-1),(0,1,0,-1),(0,0,1,-1),(-1,1,1,-1), ....: (1,-1,-1,0),(0,0,-1,0),(0,-1,0,0),(-1,0,0,0),(1,-1,0,0),(1,0,-1,0), ....: (0,1,1,-1),(-1,1,1,0),(-1,1,0,0),(-1,0,1,0),(0,-1,-1,1),(0,0,0,-1)) sage: fibers = [f.vertices() for f in cell24.fibration_generator(2)] sage: cell24.pointsets_mod_automorphism(fibers) # long time (frozenset({(-1, 0, 0, 0), (-1, 0, 0, 1), (0, 0, 0, -1), (0, 0, 0, 1), (1, 0, 0, -1), (1, 0, 0, 0)}), frozenset({(-1, 0, 0, 0), (-1, 1, 1, 0), (1, -1, -1, 0), (1, 0, 0, 0)}))
-
restricted_automorphism_group
(vertex_labels=None)¶ Return the restricted automorphism group.
First, let the linear automorphism group be the subgroup of the Euclidean group \(E(d) = GL(d,\RR) \ltimes \RR^d\) preserving the \(d\)-dimensional polyhedron. The Euclidean group acts in the usual way \(\vec{x}\mapsto A\vec{x}+b\) on the ambient space. The restricted automorphism group is the subgroup of the linear automorphism group generated by permutations of vertices. If the polytope is full-dimensional, it is equal to the full (unrestricted) automorphism group.
INPUT:
vertex_labels
– a tuple orNone
(default). The labels of the vertices that will be used in the output permutation group. By default, the vertices are used themselves.
OUTPUT:
A
PermutationGroup
acting on the vertices (or thevertex_labels
, if specified).REFERENCES:
EXAMPLES:
sage: from sage.geometry.polyhedron.ppl_lattice_polytope import LatticePolytope_PPL sage: Z3square = LatticePolytope_PPL((0,0), (1,2), (2,1), (3,3)) sage: Z3square.restricted_automorphism_group(vertex_labels=(1,2,3,4)) == PermutationGroup([[(2,3)],[(1,2),(3,4)]]) True sage: G = Z3square.restricted_automorphism_group() sage: G == PermutationGroup([[((1,2),(2,1))],[((0,0),(1,2)),((2,1),(3,3))],[((0,0),(3,3))]]) True sage: set(G.domain()) == set(Z3square.vertices()) True sage: set(map(tuple,G.orbit(Z3square.vertices()[0]))) == set([(0, 0), (1, 2), (3, 3), (2, 1)]) True sage: cell24 = LatticePolytope_PPL( ....: (1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1),(1,-1,-1,1),(0,0,-1,1), ....: (0,-1,0,1),(-1,0,0,1),(1,0,0,-1),(0,1,0,-1),(0,0,1,-1),(-1,1,1,-1), ....: (1,-1,-1,0),(0,0,-1,0),(0,-1,0,0),(-1,0,0,0),(1,-1,0,0),(1,0,-1,0), ....: (0,1,1,-1),(-1,1,1,0),(-1,1,0,0),(-1,0,1,0),(0,-1,-1,1),(0,0,0,-1)) sage: cell24.restricted_automorphism_group().cardinality() 1152
-
sub_polytope_generator
()¶ Generate the maximal lattice sub-polytopes.
OUTPUT:
A generator yielding the maximal (with respect to inclusion) lattice sub polytopes. That is, each can be gotten as the convex hull of the integral points of
self
with one vertex removed.EXAMPLES:
sage: from sage.geometry.polyhedron.ppl_lattice_polytope import LatticePolytope_PPL sage: P = LatticePolytope_PPL((1,0,0), (0,1,0), (0,0,1), (-1,-1,-1)) sage: for p in P.sub_polytope_generator(): ....: print(p.vertices()) ((0, 0, 0), (0, 0, 1), (0, 1, 0), (1, 0, 0)) ((-1, -1, -1), (0, 0, 0), (0, 1, 0), (1, 0, 0)) ((-1, -1, -1), (0, 0, 0), (0, 0, 1), (1, 0, 0)) ((-1, -1, -1), (0, 0, 0), (0, 0, 1), (0, 1, 0))
-
vertices
()¶ Return the vertices as a tuple of \(\ZZ\)-vectors.
OUTPUT:
A tuple of \(\ZZ\)-vectors. Each entry is the coordinate vector of an integral points of the lattice polytope.
EXAMPLES:
sage: from sage.geometry.polyhedron.ppl_lattice_polytope import LatticePolytope_PPL sage: p = LatticePolytope_PPL((-9,-6,-1,-1),(0,0,0,1),(0,0,1,0),(0,1,0,0),(1,0,0,0)) sage: p.vertices() ((-9, -6, -1, -1), (0, 0, 0, 1), (0, 0, 1, 0), (0, 1, 0, 0), (1, 0, 0, 0)) sage: p.minimized_generators() Generator_System {point(-9/1, -6/1, -1/1, -1/1), point(0/1, 0/1, 0/1, 1/1), point(0/1, 0/1, 1/1, 0/1), point(0/1, 1/1, 0/1, 0/1), point(1/1, 0/1, 0/1, 0/1)}
-
vertices_saturating
(constraint)¶ Return the vertices saturating the constraint
INPUT:
constraint
– a constraint (inequality or equation) of the polytope.
OUTPUT:
The tuple of vertices saturating the constraint. The vertices are returned as \(\ZZ\)-vectors, as in
vertices()
.EXAMPLES:
sage: from sage.geometry.polyhedron.ppl_lattice_polytope import LatticePolytope_PPL sage: p = LatticePolytope_PPL((0,0),(0,1),(1,0)) sage: ieq = next(iter(p.constraints())); ieq x0>=0 sage: p.vertices_saturating(ieq) ((0, 0), (0, 1))
-
-
sage.geometry.polyhedron.ppl_lattice_polytope.
line
(*args, **kwds)¶ Construct a line.
INPUT:
expression
– aLinear_Expression
or something convertible to it (Variable
or integer).
OUTPUT:
A new
Generator
representing the line.Raises a
ValueError` if the homogeneous part of ``expression
represents the origin of the vector space.Examples:
>>> from ppl import Generator, Variable >>> y = Variable(1) >>> Generator.line(2*y) line(0, 1) >>> Generator.line(y) line(0, 1) >>> Generator.line(1) Traceback (most recent call last): ... ValueError: PPL::line(e): e == 0, but the origin cannot be a line.
-
sage.geometry.polyhedron.ppl_lattice_polytope.
point
(*args, **kwds)¶ Construct a point.
INPUT:
expression
– aLinear_Expression
or something convertible to it (Variable
or integer).divisor
– an integer.
OUTPUT:
A new
Generator
representing the point.Raises a
ValueError` if ``divisor==0
.Examples:
>>> from ppl import Generator, Variable >>> y = Variable(1) >>> Generator.point(2*y+7, 3) point(0/3, 2/3) >>> Generator.point(y+7, 3) point(0/3, 1/3) >>> Generator.point(7, 3) point() >>> Generator.point(0, 0) Traceback (most recent call last): ... ValueError: PPL::point(e, d): d == 0.
-
sage.geometry.polyhedron.ppl_lattice_polytope.
ray
(*args, **kwds)¶ Construct a ray.
INPUT:
expression
– aLinear_Expression
or something convertible to it (Variable
or integer).
OUTPUT:
A new
Generator
representing the ray.Raises a
ValueError` if the homogeneous part of ``expression
represents the origin of the vector space.Examples:
>>> from ppl import Generator, Variable >>> y = Variable(1) >>> Generator.ray(2*y) ray(0, 1) >>> Generator.ray(y) ray(0, 1) >>> Generator.ray(1) Traceback (most recent call last): ... ValueError: PPL::ray(e): e == 0, but the origin cannot be a ray.