Find isomorphisms between fans.¶
-
exception
sage.geometry.fan_isomorphism.
FanNotIsomorphicError
¶ Bases:
exceptions.Exception
Exception to return if there is no fan isomorphism
-
sage.geometry.fan_isomorphism.
fan_2d_cyclically_ordered_rays
(fan)¶ Return the rays of a 2-dimensional
fan
in cyclic order.INPUT:
fan
– a 2-dimensional fan.
OUTPUT:
A
PointCollection
containing the rays in one particular cyclic order.EXAMPLES:
sage: rays = ((1, 1), (-1, -1), (-1, 1), (1, -1)) sage: cones = [(0,2), (2,1), (1,3), (3,0)] sage: fan = Fan(cones, rays) sage: fan.rays() N( 1, 1), N(-1, -1), N(-1, 1), N( 1, -1) in 2-d lattice N sage: from sage.geometry.fan_isomorphism import fan_2d_cyclically_ordered_rays sage: fan_2d_cyclically_ordered_rays(fan) N(-1, -1), N(-1, 1), N( 1, 1), N( 1, -1) in 2-d lattice N
-
sage.geometry.fan_isomorphism.
fan_2d_echelon_form
(fan)¶ Return echelon form of a cyclically ordered ray matrix.
INPUT:
fan
– a fan.
OUTPUT:
A matrix. The echelon form of the rays in one particular cyclic order.
EXAMPLES:
sage: fan = toric_varieties.P2().fan() sage: from sage.geometry.fan_isomorphism import fan_2d_echelon_form sage: fan_2d_echelon_form(fan) [ 1 0 -1] [ 0 1 -1]
-
sage.geometry.fan_isomorphism.
fan_2d_echelon_forms
(fan)¶ Return echelon forms of all cyclically ordered ray matrices.
Note that the echelon form of the ordered ray matrices are unique up to different cyclic orderings.
INPUT:
fan
– a fan.
OUTPUT:
A set of matrices. The set of all echelon forms for all different cyclic orderings.
EXAMPLES:
sage: fan = toric_varieties.P2().fan() sage: from sage.geometry.fan_isomorphism import fan_2d_echelon_forms sage: fan_2d_echelon_forms(fan) frozenset({[ 1 0 -1] [ 0 1 -1]}) sage: fan = toric_varieties.dP7().fan() sage: sorted(fan_2d_echelon_forms(fan)) [ [ 1 0 -1 -1 0] [ 1 0 -1 -1 0] [ 1 0 -1 -1 1] [ 1 0 -1 0 1] [ 0 1 0 -1 -1], [ 0 1 1 0 -1], [ 0 1 1 0 -1], [ 0 1 0 -1 -1], [ 1 0 -1 0 1] [ 0 1 1 -1 -1] ]
-
sage.geometry.fan_isomorphism.
fan_isomorphic_necessary_conditions
(fan1, fan2)¶ Check necessary (but not sufficient) conditions for the fans to be isomorphic.
INPUT:
fan1
,fan2
– two fans.
OUTPUT:
Boolean.
False
if the two fans cannot be isomorphic.True
if the two fans may be isomorphic.EXAMPLES:
sage: fan1 = toric_varieties.P2().fan() sage: fan2 = toric_varieties.dP8().fan() sage: from sage.geometry.fan_isomorphism import fan_isomorphic_necessary_conditions sage: fan_isomorphic_necessary_conditions(fan1, fan2) False
-
sage.geometry.fan_isomorphism.
fan_isomorphism_generator
(fan1, fan2)¶ Iterate over the isomorphisms from
fan1
tofan2
.ALGORITHM:
The
sage.geometry.fan.Fan.vertex_graph()
of the two fans is compared. For each graph isomorphism, we attempt to lift it to an actual isomorphism of fans.INPUT:
fan1
,fan2
– two fans.
OUTPUT:
Yields the fan isomorphisms as matrices acting from the right on rays.
EXAMPLES:
sage: fan = toric_varieties.P2().fan() sage: from sage.geometry.fan_isomorphism import fan_isomorphism_generator sage: sorted(fan_isomorphism_generator(fan, fan)) [ [-1 -1] [-1 -1] [ 0 1] [0 1] [ 1 0] [1 0] [ 0 1], [ 1 0], [-1 -1], [1 0], [-1 -1], [0 1] ] sage: m1 = matrix([(1, 0), (0, -5), (-3, 4)]) sage: m2 = matrix([(3, 0), (1, 0), (-2, 1)]) sage: m1.elementary_divisors() == m2.elementary_divisors() == [1,1,0] True sage: fan1 = Fan([Cone([m1*vector([23, 14]), m1*vector([ 3,100])]), ....: Cone([m1*vector([-1,-14]), m1*vector([-100, -5])])]) sage: fan2 = Fan([Cone([m2*vector([23, 14]), m2*vector([ 3,100])]), ....: Cone([m2*vector([-1,-14]), m2*vector([-100, -5])])]) sage: next(fan_isomorphism_generator(fan1, fan2)) [18 1 -5] [ 4 0 -1] [ 5 0 -1] sage: m0 = identity_matrix(ZZ, 2) sage: m1 = matrix([(1, 0), (0, -5), (-3, 4)]) sage: m2 = matrix([(3, 0), (1, 0), (-2, 1)]) sage: m1.elementary_divisors() == m2.elementary_divisors() == [1,1,0] True sage: fan0 = Fan([Cone([m0*vector([1,0]), m0*vector([1,1])]), ....: Cone([m0*vector([1,1]), m0*vector([0,1])])]) sage: fan1 = Fan([Cone([m1*vector([1,0]), m1*vector([1,1])]), ....: Cone([m1*vector([1,1]), m1*vector([0,1])])]) sage: fan2 = Fan([Cone([m2*vector([1,0]), m2*vector([1,1])]), ....: Cone([m2*vector([1,1]), m2*vector([0,1])])]) sage: tuple(fan_isomorphism_generator(fan0, fan0)) ( [1 0] [0 1] [0 1], [1 0] ) sage: tuple(fan_isomorphism_generator(fan1, fan1)) ( [1 0 0] [ -3 -20 28] [0 1 0] [ -1 -4 7] [0 0 1], [ -1 -5 8] ) sage: tuple(fan_isomorphism_generator(fan1, fan2)) ( [18 1 -5] [ 6 -3 7] [ 4 0 -1] [ 1 -1 2] [ 5 0 -1], [ 2 -1 2] ) sage: tuple(fan_isomorphism_generator(fan2, fan1)) ( [ 0 -1 1] [ 0 -1 1] [ 1 -7 2] [ 2 -2 -5] [ 0 -5 4], [ 1 0 -3] )
-
sage.geometry.fan_isomorphism.
find_isomorphism
(fan1, fan2, check=False)¶ Find an isomorphism of the two fans.
INPUT:
fan1
,fan2
– two fans.check
– boolean (default: False). Passed to the fan morphism constructor, seeFanMorphism()
.
OUTPUT:
A fan isomorphism. If the fans are not isomorphic, a
FanNotIsomorphicError
is raised.EXAMPLES:
sage: rays = ((1, 1), (0, 1), (-1, -1), (3, 1)) sage: cones = [(0,1), (1,2), (2,3), (3,0)] sage: fan1 = Fan(cones, rays) sage: m = matrix([[-2,3],[1,-1]]) sage: m.det() == -1 True sage: fan2 = Fan(cones, [vector(r)*m for r in rays]) sage: from sage.geometry.fan_isomorphism import find_isomorphism sage: find_isomorphism(fan1, fan2, check=True) Fan morphism defined by the matrix [-2 3] [ 1 -1] Domain fan: Rational polyhedral fan in 2-d lattice N Codomain fan: Rational polyhedral fan in 2-d lattice N sage: find_isomorphism(fan1, toric_varieties.P2().fan()) Traceback (most recent call last): ... FanNotIsomorphicError sage: fan1 = Fan(cones=[[1,3,4,5],[0,1,2,3],[2,3,4],[0,1,5]], ....: rays=[(-1,-1,0),(-1,-1,3),(-1,1,-1),(-1,3,-1),(0,2,-1),(1,-1,1)]) sage: fan2 = Fan(cones=[[0,2,3,5],[0,1,4,5],[0,1,2],[3,4,5]], ....: rays=[(-1,-1,-1),(-1,-1,0),(-1,1,-1),(0,2,-1),(1,-1,1),(3,-1,-1)]) sage: fan1.is_isomorphic(fan2) True