Hyperelliptic curves over a general ring¶
EXAMPLES:
sage: P.<x> = GF(5)[]
sage: f = x^5 - 3*x^4 - 2*x^3 + 6*x^2 + 3*x - 1
sage: C = HyperellipticCurve(f); C
Hyperelliptic Curve over Finite Field of size 5 defined by y^2 = x^5 + 2*x^4 + 3*x^3 + x^2 + 3*x + 4
EXAMPLES:
sage: P.<x> = QQ[]
sage: f = 4*x^5 - 30*x^3 + 45*x - 22
sage: C = HyperellipticCurve(f); C
Hyperelliptic Curve over Rational Field defined by y^2 = 4*x^5 - 30*x^3 + 45*x - 22
sage: C.genus()
2
sage: D = C.affine_patch(0)
sage: D.defining_polynomials()[0].parent()
Multivariate Polynomial Ring in x1, x2 over Rational Field
-
class
sage.schemes.hyperelliptic_curves.hyperelliptic_generic.
HyperellipticCurve_generic
(PP, f, h=None, names=None, genus=None)¶ Bases:
sage.schemes.curves.projective_curve.ProjectivePlaneCurve
-
base_extend
(R)¶ Returns this HyperellipticCurve over a new base ring R.
EXAMPLES:
sage: R.<x> = QQ[] sage: H = HyperellipticCurve(x^5 - 10*x + 9) sage: K = Qp(3,5) sage: L.<a> = K.extension(x^30-3) sage: HK = H.change_ring(K) sage: HL = HK.change_ring(L); HL Hyperelliptic Curve over 3-adic Eisenstein Extension Field in a defined by x^30 - 3 defined by (1 + O(a^150))*y^2 = (1 + O(a^150))*x^5 + (2 + 2*a^30 + a^60 + 2*a^90 + 2*a^120 + O(a^150))*x + a^60 + O(a^210) sage: R.<x> = FiniteField(7)[] sage: H = HyperellipticCurve(x^8 + x + 5) sage: H.base_extend(FiniteField(7^2, 'a')) Hyperelliptic Curve over Finite Field in a of size 7^2 defined by y^2 = x^8 + x + 5
-
change_ring
(R)¶ Returns this HyperellipticCurve over a new base ring R.
EXAMPLES:
sage: R.<x> = QQ[] sage: H = HyperellipticCurve(x^5 - 10*x + 9) sage: K = Qp(3,5) sage: L.<a> = K.extension(x^30-3) sage: HK = H.change_ring(K) sage: HL = HK.change_ring(L); HL Hyperelliptic Curve over 3-adic Eisenstein Extension Field in a defined by x^30 - 3 defined by (1 + O(a^150))*y^2 = (1 + O(a^150))*x^5 + (2 + 2*a^30 + a^60 + 2*a^90 + 2*a^120 + O(a^150))*x + a^60 + O(a^210) sage: R.<x> = FiniteField(7)[] sage: H = HyperellipticCurve(x^8 + x + 5) sage: H.base_extend(FiniteField(7^2, 'a')) Hyperelliptic Curve over Finite Field in a of size 7^2 defined by y^2 = x^8 + x + 5
-
genus
()¶
-
has_odd_degree_model
()¶ Return True if an odd degree model of self exists over the field of definition; False otherwise.
Use
odd_degree_model
to calculate an odd degree model.EXAMPLES:
sage: x = QQ['x'].0 sage: HyperellipticCurve(x^5 + x).has_odd_degree_model() True sage: HyperellipticCurve(x^6 + x).has_odd_degree_model() True sage: HyperellipticCurve(x^6 + x + 1).has_odd_degree_model() False
-
hyperelliptic_polynomials
(K=None, var='x')¶ EXAMPLES:
sage: R.<x> = QQ[]; C = HyperellipticCurve(x^3 + x - 1, x^3/5); C Hyperelliptic Curve over Rational Field defined by y^2 + 1/5*x^3*y = x^3 + x - 1 sage: C.hyperelliptic_polynomials() (x^3 + x - 1, 1/5*x^3)
-
invariant_differential
()¶ Returns \(dx/2y\), as an element of the Monsky-Washnitzer cohomology of self
EXAMPLES:
sage: R.<x> = QQ['x'] sage: C = HyperellipticCurve(x^5 - 4*x + 4) sage: C.invariant_differential() 1 dx/2y
-
is_singular
()¶ Returns False, because hyperelliptic curves are smooth projective curves, as checked on construction.
EXAMPLES:
sage: R.<x> = QQ[] sage: H = HyperellipticCurve(x^5+1) sage: H.is_singular() False
A hyperelliptic curve with genus at least 2 always has a singularity at infinity when viewed as a plane projective curve. This can be seen in the following example.:
sage: R.<x> = QQ[] sage: H = HyperellipticCurve(x^5+2) sage: set_verbose(None) sage: H.is_singular() False sage: from sage.schemes.curves.projective_curve import ProjectivePlaneCurve sage: ProjectivePlaneCurve.is_singular(H) True
-
is_smooth
()¶ Returns True, because hyperelliptic curves are smooth projective curves, as checked on construction.
EXAMPLES:
sage: R.<x> = GF(13)[] sage: H = HyperellipticCurve(x^8+1) sage: H.is_smooth() True
A hyperelliptic curve with genus at least 2 always has a singularity at infinity when viewed as a plane projective curve. This can be seen in the following example.:
sage: R.<x> = GF(27, 'a')[] sage: H = HyperellipticCurve(x^10+2) sage: set_verbose(None) sage: H.is_smooth() True sage: from sage.schemes.curves.projective_curve import ProjectivePlaneCurve sage: ProjectivePlaneCurve.is_smooth(H) False
-
jacobian
()¶
-
lift_x
(x, all=False)¶
-
local_coord
(P, prec=20, name='t')¶ Calls the appropriate local_coordinates function
INPUT:
P
– a point on selfprec
– desired precision of the local coordinatesname
– generator of the power series ring (default:t
)
OUTPUT:
\((x(t),y(t))\) such that \(y(t)^2 = f(x(t))\), where \(t\) is the local parameter at \(P\)
EXAMPLES:
sage: R.<x> = QQ['x'] sage: H = HyperellipticCurve(x^5-23*x^3+18*x^2+40*x) sage: H.local_coord(H(1 ,6), prec=5) (1 + t + O(t^5), 6 + t - 7/2*t^2 - 1/2*t^3 - 25/48*t^4 + O(t^5)) sage: H.local_coord(H(4, 0), prec=7) (4 + 1/360*t^2 - 191/23328000*t^4 + 7579/188956800000*t^6 + O(t^7), t + O(t^7)) sage: H.local_coord(H(0, 1, 0), prec=5) (t^-2 + 23*t^2 - 18*t^4 - 569*t^6 + O(t^7), t^-5 + 46*t^-1 - 36*t - 609*t^3 + 1656*t^5 + O(t^6))
- AUTHOR:
- Jennifer Balakrishnan (2007-12)
-
local_coordinates_at_infinity
(prec=20, name='t')¶ For the genus \(g\) hyperelliptic curve \(y^2 = f(x)\), return \((x(t), y(t))\) such that \((y(t))^2 = f(x(t))\), where \(t = x^g/y\) is the local parameter at infinity
INPUT:
prec
– desired precision of the local coordinatesname
– generator of the power series ring (default:t
)
OUTPUT:
\((x(t),y(t))\) such that \(y(t)^2 = f(x(t))\) and \(t = x^g/y\) is the local parameter at infinity
EXAMPLES:
sage: R.<x> = QQ['x'] sage: H = HyperellipticCurve(x^5-5*x^2+1) sage: x,y = H.local_coordinates_at_infinity(10) sage: x t^-2 + 5*t^4 - t^8 - 50*t^10 + O(t^12) sage: y t^-5 + 10*t - 2*t^5 - 75*t^7 + 50*t^11 + O(t^12)
sage: R.<x> = QQ['x'] sage: H = HyperellipticCurve(x^3-x+1) sage: x,y = H.local_coordinates_at_infinity(10) sage: x t^-2 + t^2 - t^4 - t^6 + 3*t^8 + O(t^12) sage: y t^-3 + t - t^3 - t^5 + 3*t^7 - 10*t^11 + O(t^12)
AUTHOR:
- Jennifer Balakrishnan (2007-12)
-
local_coordinates_at_nonweierstrass
(P, prec=20, name='t')¶ For a non-Weierstrass point \(P = (a,b)\) on the hyperelliptic curve \(y^2 = f(x)\), return \((x(t), y(t))\) such that \((y(t))^2 = f(x(t))\), where \(t = x - a\) is the local parameter.
INPUT:
P = (a, b)
– a non-Weierstrass point on selfprec
– desired precision of the local coordinatesname
– gen of the power series ring (default:t
)
OUTPUT:
\((x(t),y(t))\) such that \(y(t)^2 = f(x(t))\) and \(t = x - a\) is the local parameter at \(P\)
EXAMPLES:
sage: R.<x> = QQ['x'] sage: H = HyperellipticCurve(x^5-23*x^3+18*x^2+40*x) sage: P = H(1,6) sage: x,y = H.local_coordinates_at_nonweierstrass(P,prec=5) sage: x 1 + t + O(t^5) sage: y 6 + t - 7/2*t^2 - 1/2*t^3 - 25/48*t^4 + O(t^5) sage: Q = H(-2,12) sage: x,y = H.local_coordinates_at_nonweierstrass(Q,prec=5) sage: x -2 + t + O(t^5) sage: y 12 - 19/2*t - 19/32*t^2 + 61/256*t^3 - 5965/24576*t^4 + O(t^5)
AUTHOR:
- Jennifer Balakrishnan (2007-12)
-
local_coordinates_at_weierstrass
(P, prec=20, name='t')¶ For a finite Weierstrass point on the hyperelliptic curve \(y^2 = f(x)\), returns \((x(t), y(t))\) such that \((y(t))^2 = f(x(t))\), where \(t = y\) is the local parameter.
INPUT:
P
– a finite Weierstrass point on selfprec
– desired precision of the local coordinatesname
– gen of the power series ring (default: \(t\))
OUTPUT:
\((x(t),y(t))\) such that \(y(t)^2 = f(x(t))\) and \(t = y\) is the local parameter at \(P\)
EXAMPLES:
sage: R.<x> = QQ['x'] sage: H = HyperellipticCurve(x^5-23*x^3+18*x^2+40*x) sage: A = H(4, 0) sage: x, y = H.local_coordinates_at_weierstrass(A, prec=7) sage: x 4 + 1/360*t^2 - 191/23328000*t^4 + 7579/188956800000*t^6 + O(t^7) sage: y t + O(t^7) sage: B = H(-5, 0) sage: x, y = H.local_coordinates_at_weierstrass(B, prec=5) sage: x -5 + 1/1260*t^2 + 887/2000376000*t^4 + O(t^5) sage: y t + O(t^5)
- AUTHOR:
- Jennifer Balakrishnan (2007-12)
- Francis Clarke (2012-08-26)
-
monsky_washnitzer_gens
()¶
-
odd_degree_model
()¶ Return an odd degree model of self, or raise ValueError if one does not exist over the field of definition.
EXAMPLES:
sage: x = QQ['x'].gen() sage: H = HyperellipticCurve((x^2 + 2)*(x^2 + 3)*(x^2 + 5)); H Hyperelliptic Curve over Rational Field defined by y^2 = x^6 + 10*x^4 + 31*x^2 + 30 sage: H.odd_degree_model() Traceback (most recent call last): ... ValueError: No odd degree model exists over field of definition sage: K2 = QuadraticField(-2, 'a') sage: Hp2 = H.change_ring(K2).odd_degree_model(); Hp2 Hyperelliptic Curve over Number Field in a with defining polynomial x^2 + 2 with a = 1.414213562373095?*I defined by y^2 = 6*a*x^5 - 29*x^4 - 20*x^2 + 6*a*x + 1 sage: K3 = QuadraticField(-3, 'b') sage: Hp3 = H.change_ring(QuadraticField(-3, 'b')).odd_degree_model(); Hp3 Hyperelliptic Curve over Number Field in b with defining polynomial x^2 + 3 with b = 1.732050807568878?*I defined by y^2 = -4*b*x^5 - 14*x^4 - 20*b*x^3 - 35*x^2 + 6*b*x + 1 Of course, Hp2 and Hp3 are isomorphic over the composite extension. One consequence of this is that odd degree models reduced over "different" fields should have the same number of points on their reductions. 43 and 67 split completely in the compositum, so when we reduce we find: sage: P2 = K2.factor(43)[0][0] sage: P3 = K3.factor(43)[0][0] sage: Hp2.change_ring(K2.residue_field(P2)).frobenius_polynomial() x^4 - 16*x^3 + 134*x^2 - 688*x + 1849 sage: Hp3.change_ring(K3.residue_field(P3)).frobenius_polynomial() x^4 - 16*x^3 + 134*x^2 - 688*x + 1849 sage: H.change_ring(GF(43)).odd_degree_model().frobenius_polynomial() x^4 - 16*x^3 + 134*x^2 - 688*x + 1849 sage: P2 = K2.factor(67)[0][0] sage: P3 = K3.factor(67)[0][0] sage: Hp2.change_ring(K2.residue_field(P2)).frobenius_polynomial() x^4 - 8*x^3 + 150*x^2 - 536*x + 4489 sage: Hp3.change_ring(K3.residue_field(P3)).frobenius_polynomial() x^4 - 8*x^3 + 150*x^2 - 536*x + 4489 sage: H.change_ring(GF(67)).odd_degree_model().frobenius_polynomial() x^4 - 8*x^3 + 150*x^2 - 536*x + 4489
-
-
sage.schemes.hyperelliptic_curves.hyperelliptic_generic.
is_HyperellipticCurve
(C)¶ EXAMPLES:
sage: R.<x> = QQ[]; C = HyperellipticCurve(x^3 + x - 1); C Hyperelliptic Curve over Rational Field defined by y^2 = x^3 + x - 1 sage: sage.schemes.hyperelliptic_curves.hyperelliptic_generic.is_HyperellipticCurve(C) True