Hyperelliptic curves over a finite field¶
AUTHORS:
- David Kohel (2006)
- Robert Bradshaw (2007)
- Alyson Deines, Marina Gresham, Gagan Sekhon, (2010)
- Daniel Krenn (2011)
- Jean-Pierre Flori, Jan Tuitman (2013)
- Kiran Kedlaya (2016)
- Dean Bisogno (2017): Fixed Hasse-Witt computation
EXAMPLES:
sage: K.<a> = GF(9, 'a')
sage: x = polygen(K)
sage: C = HyperellipticCurve(x^7 - x^5 - 2, x^2 + a)
sage: C._points_fast_sqrt()
[(0 : 1 : 0), (a + 1 : a : 1), (a + 1 : a + 1 : 1), (2 : a + 1 : 1), (2*a : 2*a + 2 : 1), (2*a : 2*a : 1), (1 : a + 1 : 1)]
-
class
sage.schemes.hyperelliptic_curves.hyperelliptic_finite_field.
HyperellipticCurve_finite_field
(PP, f, h=None, names=None, genus=None)¶ Bases:
sage.schemes.hyperelliptic_curves.hyperelliptic_generic.HyperellipticCurve_generic
-
Cartier_matrix
()¶ INPUT:
E
: Hyperelliptic Curve of the form \(y^2 = f(x)\) over a finite field, \(\GF{q}\)
OUTPUT:
M
: The matrix \(M = (c_{pi-j})\), where \(c_i\) are the coefficients of \(f(x)^{(p-1)/2} = \sum c_i x^i\)
REFERENCES:
- Yui. On the Jacobian varieties of hyperelliptic curves over fields of characteristic \(p > 2\).
EXAMPLES:
sage: K.<x>=GF(9,'x')[] sage: C=HyperellipticCurve(x^7-1,0) sage: C.Cartier_matrix() [0 0 2] [0 0 0] [0 1 0] sage: K.<x>=GF(49,'x')[] sage: C=HyperellipticCurve(x^5+1,0) sage: C.Cartier_matrix() [0 3] [0 0] sage: P.<x>=GF(9,'a')[] sage: E=HyperellipticCurve(x^29+1,0) sage: E.Cartier_matrix() [0 0 1 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 1 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 1 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 1 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0] [1 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 1 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 1 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 1 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 1 0]
-
Hasse_Witt
()¶ INPUT:
E
: Hyperelliptic Curve of the form \(y^2 = f(x)\) over a finite field, \(\GF{q}\)
OUTPUT:
N
: The matrix \(N = M M^p \dots M^{p^{g-1}}\) where \(M = c_{pi-j}\), and \(f(x)^{(p-1)/2} = \sum c_i x^i\)
Reference-N. Yui. On the Jacobian varieties of hyperelliptic curves over fields of characteristic \(p > 2\).
EXAMPLES:
sage: K.<x>=GF(9,'x')[] sage: C=HyperellipticCurve(x^7-1,0) sage: C.Hasse_Witt() [0 0 0] [0 0 0] [0 0 0] sage: K.<x>=GF(49,'x')[] sage: C=HyperellipticCurve(x^5+1,0) sage: C.Hasse_Witt() [0 0] [0 0] sage: P.<x>=GF(9,'a')[] sage: E=HyperellipticCurve(x^29+1,0) sage: E.Hasse_Witt() [0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0]
-
a_number
()¶ INPUT:
E
: Hyperelliptic Curve of the form \(y^2 = f(x)\) over a finite field, \(\GF{q}\)
OUTPUT:
a
: a-number
EXAMPLES:
sage: K.<x>=GF(49,'x')[] sage: C=HyperellipticCurve(x^5+1,0) sage: C.a_number() 1 sage: K.<x>=GF(9,'x')[] sage: C=HyperellipticCurve(x^7-1,0) sage: C.a_number() 1 sage: P.<x>=GF(9,'a')[] sage: E=HyperellipticCurve(x^29+1,0) sage: E.a_number() 5
-
cardinality
(extension_degree=1)¶ Count points on a single extension of the base field.
EXAMPLES:
sage: K = GF(101) sage: R.<t> = PolynomialRing(K) sage: H = HyperellipticCurve(t^9 + 3*t^5 + 5) sage: H.cardinality() 106 sage: H.cardinality(15) 1160968955369992567076405831000 sage: H.cardinality(100) 270481382942152609326719471080753083367793838278100277689020104911710151430673927943945601434674459120495370826289654897190781715493352266982697064575800553229661690000887425442240414673923744999504000 sage: K = GF(37) sage: R.<t> = PolynomialRing(K) sage: H = HyperellipticCurve(t^9 + 3*t^5 + 5) sage: H.cardinality() 40 sage: H.cardinality(2) 1408 sage: H.cardinality(3) 50116
- The following example shows that trac ticket #20391 has been resolved::
- sage: F=GF(23) sage: x=polygen(F) sage: C=HyperellipticCurve(x^8+1) sage: C.cardinality() 24
-
cardinality_exhaustive
(extension_degree=1, algorithm=None)¶ Count points on a single extension of the base field by enumerating over x and solving the resulting quadratic equation for y.
EXAMPLES:
sage: K.<a> = GF(9, 'a') sage: x = polygen(K) sage: C = HyperellipticCurve(x^7 - 1, x^2 + a) sage: C.cardinality_exhaustive() 7 sage: K = GF(next_prime(1<<10)) sage: R.<t> = PolynomialRing(K) sage: H = HyperellipticCurve(t^7 + 3*t^5 + 5) sage: H.cardinality_exhaustive() 1025 sage: P.<x> = PolynomialRing(GF(9,'a')) sage: H = HyperellipticCurve(x^5+x^2+1) sage: H.count_points(5) [18, 78, 738, 6366, 60018] sage: F.<a> = GF(4); P.<x> = F[] sage: H = HyperellipticCurve(x^5+a*x^2+1, x+a+1) sage: H.count_points(6) [2, 24, 74, 256, 1082, 4272]
-
cardinality_hypellfrob
(extension_degree=1, algorithm=None)¶ Count points on a single extension of the base field using the
hypellfrob
prgoram.EXAMPLES:
sage: K = GF(next_prime(1<<10)) sage: R.<t> = PolynomialRing(K) sage: H = HyperellipticCurve(t^7 + 3*t^5 + 5) sage: H.cardinality_hypellfrob() 1025 sage: K = GF(49999) sage: R.<t> = PolynomialRing(K) sage: H = HyperellipticCurve(t^7 + 3*t^5 + 5) sage: H.cardinality_hypellfrob() 50162 sage: H.cardinality_hypellfrob(3) 124992471088310
-
count_points
(n=1)¶ Count points over finite fields.
INPUT:
n
– integer.
OUTPUT:
An integer. The number of points over \(\GF{q}, \ldots, \GF{q^n}\) on a hyperelliptic curve over a finite field \(\GF{q}\).
Warning
This is currently using exhaustive search for hyperelliptic curves over non-prime fields, which can be awfully slow.
EXAMPLES:
sage: P.<x> = PolynomialRing(GF(3)) sage: C = HyperellipticCurve(x^3+x^2+1) sage: C.count_points(4) [6, 12, 18, 96] sage: C.base_extend(GF(9,'a')).count_points(2) [12, 96] sage: K = GF(2**31-1) sage: R.<t> = PolynomialRing(K) sage: H = HyperellipticCurve(t^5 + 3*t + 5) sage: H.count_points() # long time, 2.4 sec on a Corei7 [2147464821] sage: H.count_points(n=2) # long time, 30s on a Corei7 [2147464821, 4611686018988310237] sage: K = GF(2**7-1) sage: R.<t> = PolynomialRing(K) sage: H = HyperellipticCurve(t^13 + 3*t^5 + 5) sage: H.count_points(n=6) [112, 16360, 2045356, 260199160, 33038302802, 4195868633548] sage: P.<x> = PolynomialRing(GF(3)) sage: H = HyperellipticCurve(x^3+x^2+1) sage: C1 = H.count_points(4); C1 [6, 12, 18, 96] sage: C2 = sage.schemes.generic.scheme.Scheme.count_points(H,4); C2 # long time, 2s on a Corei7 [6, 12, 18, 96] sage: C1 == C2 # long time, because we need C2 to be defined True sage: P.<x> = PolynomialRing(GF(9,'a')) sage: H = HyperellipticCurve(x^5+x^2+1) sage: H.count_points(5) [18, 78, 738, 6366, 60018] sage: F.<a> = GF(4); P.<x> = F[] sage: H = HyperellipticCurve(x^5+a*x^2+1, x+a+1) sage: H.count_points(6) [2, 24, 74, 256, 1082, 4272]
This example shows that trac ticket #20391 is resolved:
sage: x = polygen(GF(4099)) sage: H = HyperellipticCurve(x^6 + x + 1) sage: H.count_points(1) [4106]
-
count_points_exhaustive
(n=1, naive=False)¶ Count the number of points on the curve over the first \(n\) extensions of the base field by exhaustive search if \(n\) if smaller than \(g\), the genus of the curve, and by computing the frobenius polynomial after performing exhaustive search on the first \(g\) extensions if \(n > g\) (unless
naive == True
).EXAMPLES:
sage: K = GF(5) sage: R.<t> = PolynomialRing(K) sage: H = HyperellipticCurve(t^9 + t^3 + 1) sage: H.count_points_exhaustive(n=5) [9, 27, 108, 675, 3069]
When \(n > g\), the frobenius polynomial is computed from the numbers of points of the curve over the first \(g\) extension, so that computing the number of points on extensions of degree \(n > g\) is not much more expensive than for \(n == g\):
sage: H.count_points_exhaustive(n=15) [9, 27, 108, 675, 3069, 16302, 78633, 389475, 1954044, 9768627, 48814533, 244072650, 1220693769, 6103414827, 30517927308]
This behavior can be disabled by passing
naive=True
:sage: H.count_points_exhaustive(n=6, naive=True) # long time, 7s on a Corei7 [9, 27, 108, 675, 3069, 16302]
-
count_points_frobenius_polynomial
(n=1, f=None)¶ Count the number of points on the curve over the first \(n\) extensions of the base field by computing the frobenius polynomial.
EXAMPLES:
sage: K = GF(49999) sage: R.<t> = PolynomialRing(K) sage: H = HyperellipticCurve(t^19 + t + 1)
The following computation takes a long time as the complete characteristic polynomial of the frobenius is computed:
sage: H.count_points_frobenius_polynomial(3) # long time, 20s on a Corei7 (when computed before the following test of course) [49491, 2500024375, 124992509154249]
As the polynomial is cached, further computations of number of points are really fast:
sage: H.count_points_frobenius_polynomial(19) # long time, because of the previous test [49491, 2500024375, 124992509154249, 6249500007135192947, 312468751250758776051811, 15623125093747382662737313867, 781140631562281338861289572576257, 39056250437482500417107992413002794587, 1952773465623687539373429411200893147181079, 97636720507718753281169963459063147221761552935, 4881738388665429945305281187129778704058864736771824, 244082037694882831835318764490138139735446240036293092851, 12203857802706446708934102903106811520015567632046432103159713, 610180686277519628999996211052002771035439565767719719151141201339, 30508424133189703930370810556389262704405225546438978173388673620145499, 1525390698235352006814610157008906752699329454643826047826098161898351623931, 76268009521069364988723693240288328729528917832735078791261015331201838856825193, 3813324208043947180071195938321176148147244128062172555558715783649006587868272993991, 190662397077989315056379725720120486231213267083935859751911720230901597698389839098903847]
-
count_points_hypellfrob
(n=1, N=None, algorithm=None)¶ Count the number of points on the curve over the first \(n\) extensions of the base field using the
hypellfrob
program.This only supports prime fields of large enough characteristic.
EXAMPLES:
sage: K = GF(49999) sage: R.<t> = PolynomialRing(K) sage: H = HyperellipticCurve(t^21 + 3*t^5 + 5) sage: H.count_points_hypellfrob() [49804] sage: H.count_points_hypellfrob(2) [49804, 2499799038] sage: K = GF(2**7-1) sage: R.<t> = PolynomialRing(K) sage: H = HyperellipticCurve(t^11 + 3*t^5 + 5) sage: H.count_points_hypellfrob() [127] sage: H.count_points_hypellfrob(n=5) [127, 16335, 2045701, 260134299, 33038098487] sage: K = GF(2**7-1) sage: R.<t> = PolynomialRing(K) sage: H = HyperellipticCurve(t^13 + 3*t^5 + 5) sage: H.count_points(n=6) [112, 16360, 2045356, 260199160, 33038302802, 4195868633548]
The base field should be prime:
sage: K.<z> = GF(19**10) sage: R.<t> = PolynomialRing(K) sage: H = HyperellipticCurve(t^9 + (z+1)*t^5 + 1) sage: H.count_points_hypellfrob() Traceback (most recent call last): ... ValueError: hypellfrob does not support non-prime fields
and the characteristic should be large enough:
sage: K = GF(7) sage: R.<t> = PolynomialRing(K) sage: H = HyperellipticCurve(t^9 + t^3 + 1) sage: H.count_points_hypellfrob() Traceback (most recent call last): ... ValueError: p=7 should be greater than (2*g+1)(2*N-1)=27
-
count_points_matrix_traces
(n=1, M=None, N=None)¶ Count the number of points on the curve over the first \(n\) extensions of the base field by computing traces of powers of the frobenius matrix. This requires less \(p\)-adic precision than computing the charpoly of the matrix when \(n < g\) where \(g\) is the genus of the curve.
EXAMPLES:
sage: K = GF(49999) sage: R.<t> = PolynomialRing(K) sage: H = HyperellipticCurve(t^19 + t + 1) sage: H.count_points_matrix_traces(3) [49491, 2500024375, 124992509154249]
-
frobenius_matrix
(N=None, algorithm='hypellfrob')¶ Compute \(p\)-adic frobenius matrix to precision \(p^N\). If \(N\) not supplied, a default value is selected, which is the minimum needed to recover the charpoly unambiguously.
Note
Currently only implemented using
hypellfrob
, which means it only works over the prime field \(GF(p)\), and requires \(p > (2g+1)(2N-1)\).EXAMPLES:
sage: R.<t> = PolynomialRing(GF(37)) sage: H = HyperellipticCurve(t^5 + t + 2) sage: H.frobenius_matrix() [1258 + O(37^2) 925 + O(37^2) 132 + O(37^2) 587 + O(37^2)] [1147 + O(37^2) 814 + O(37^2) 241 + O(37^2) 1011 + O(37^2)] [1258 + O(37^2) 1184 + O(37^2) 1105 + O(37^2) 482 + O(37^2)] [1073 + O(37^2) 999 + O(37^2) 772 + O(37^2) 929 + O(37^2)]
The
hypellfrob
program doesn’t support non-prime fields:sage: K.<z> = GF(37**3) sage: R.<t> = PolynomialRing(K) sage: H = HyperellipticCurve(t^9 + z*t^3 + 1) sage: H.frobenius_matrix(algorithm='hypellfrob') Traceback (most recent call last): ... NotImplementedError: Computation of Frobenius matrix only implemented for hyperelliptic curves defined over prime fields.
nor too small characteristic:
sage: K = GF(7) sage: R.<t> = PolynomialRing(K) sage: H = HyperellipticCurve(t^9 + t^3 + 1) sage: H.frobenius_matrix(algorithm='hypellfrob') Traceback (most recent call last): ... ValueError: In the current implementation, p must be greater than (2g+1)(2N-1) = 81
-
frobenius_matrix_hypellfrob
(N=None)¶ Compute \(p\)-adic frobenius matrix to precision \(p^N\). If \(N\) not supplied, a default value is selected, which is the minimum needed to recover the charpoly unambiguously.
Note
Implemented using
hypellfrob
, which means it only works over the prime field \(GF(p)\), and requires \(p > (2g+1)(2N-1)\).EXAMPLES:
sage: R.<t> = PolynomialRing(GF(37)) sage: H = HyperellipticCurve(t^5 + t + 2) sage: H.frobenius_matrix_hypellfrob() [1258 + O(37^2) 925 + O(37^2) 132 + O(37^2) 587 + O(37^2)] [1147 + O(37^2) 814 + O(37^2) 241 + O(37^2) 1011 + O(37^2)] [1258 + O(37^2) 1184 + O(37^2) 1105 + O(37^2) 482 + O(37^2)] [1073 + O(37^2) 999 + O(37^2) 772 + O(37^2) 929 + O(37^2)]
The
hypellfrob
program doesn’t support non-prime fields:sage: K.<z> = GF(37**3) sage: R.<t> = PolynomialRing(K) sage: H = HyperellipticCurve(t^9 + z*t^3 + 1) sage: H.frobenius_matrix_hypellfrob() Traceback (most recent call last): ... NotImplementedError: Computation of Frobenius matrix only implemented for hyperelliptic curves defined over prime fields.
nor too small characteristic:
sage: K = GF(7) sage: R.<t> = PolynomialRing(K) sage: H = HyperellipticCurve(t^9 + t^3 + 1) sage: H.frobenius_matrix_hypellfrob() Traceback (most recent call last): ... ValueError: In the current implementation, p must be greater than (2g+1)(2N-1) = 81
-
frobenius_polynomial
()¶ Compute the charpoly of frobenius, as an element of \(\ZZ[x]\).
EXAMPLES:
sage: R.<t> = PolynomialRing(GF(37)) sage: H = HyperellipticCurve(t^5 + t + 2) sage: H.frobenius_polynomial() x^4 + x^3 - 52*x^2 + 37*x + 1369
A quadratic twist:
sage: H = HyperellipticCurve(2*t^5 + 2*t + 4) sage: H.frobenius_polynomial() x^4 - x^3 - 52*x^2 - 37*x + 1369
Slightly larger example:
sage: K = GF(2003) sage: R.<t> = PolynomialRing(K) sage: H = HyperellipticCurve(t^7 + 487*t^5 + 9*t + 1) sage: H.frobenius_polynomial() x^6 - 14*x^5 + 1512*x^4 - 66290*x^3 + 3028536*x^2 - 56168126*x + 8036054027
Curves defined over a non-prime field of odd characteristic, or an odd prime field which is too small compared to the genus, are supported via PARI:
sage: K.<z> = GF(23**3) sage: R.<t> = PolynomialRing(K) sage: H = HyperellipticCurve(t^3 + z*t + 4) sage: H.frobenius_polynomial() x^2 - 15*x + 12167 sage: K.<z> = GF(3**3) sage: R.<t> = PolynomialRing(K) sage: H = HyperellipticCurve(t^5 + z*t + z**3) sage: H.frobenius_polynomial() x^4 - 3*x^3 + 10*x^2 - 81*x + 729
Over prime fields of odd characteristic, \(h\) may be non-zero:
sage: K = GF(101) sage: R.<t> = PolynomialRing(K) sage: H = HyperellipticCurve(t^5 + 27*t + 3, t) sage: H.frobenius_polynomial() x^4 + 2*x^3 - 58*x^2 + 202*x + 10201
Over prime fields of odd characteristic, \(f\) may have even degree:
sage: H = HyperellipticCurve(t^6 + 27*t + 3) sage: H.frobenius_polynomial() x^4 + 25*x^3 + 322*x^2 + 2525*x + 10201
In even characteristic, the naive algorithm could cover all cases because we can easily check for squareness in quotient rings of polynomial rings over finite fields but these rings unfortunately do not support iteration:
sage: K.<z> = GF(2**5) sage: R.<t> = PolynomialRing(K) sage: H = HyperellipticCurve(t^5 + z*t + z**3, t) sage: H.frobenius_polynomial() x^4 - x^3 + 16*x^2 - 32*x + 1024
-
frobenius_polynomial_cardinalities
(a=None)¶ Compute the charpoly of frobenius, as an element of \(\ZZ[x]\), by computing the number of points on the curve over \(g\) extensions of the base field where \(g\) is the genus of the curve.
Warning
This is highly inefficient when the base field or the genus of the curve are large.
EXAMPLES:
sage: R.<t> = PolynomialRing(GF(37)) sage: H = HyperellipticCurve(t^5 + t + 2) sage: H.frobenius_polynomial_cardinalities() x^4 + x^3 - 52*x^2 + 37*x + 1369
A quadratic twist:
sage: H = HyperellipticCurve(2*t^5 + 2*t + 4) sage: H.frobenius_polynomial_cardinalities() x^4 - x^3 - 52*x^2 - 37*x + 1369
Curve over a non-prime field:
sage: K.<z> = GF(7**2) sage: R.<t> = PolynomialRing(K) sage: H = HyperellipticCurve(t^5 + z*t + z^2) sage: H.frobenius_polynomial_cardinalities() x^4 + 8*x^3 + 70*x^2 + 392*x + 2401
This method may actually be useful when \(hypellfrob\) does not work:
sage: K = GF(7) sage: R.<t> = PolynomialRing(K) sage: H = HyperellipticCurve(t^9 + t^3 + 1) sage: H.frobenius_polynomial_matrix(algorithm='hypellfrob') Traceback (most recent call last): ... ValueError: In the current implementation, p must be greater than (2g+1)(2N-1) = 81 sage: H.frobenius_polynomial_cardinalities() x^8 - 5*x^7 + 7*x^6 + 36*x^5 - 180*x^4 + 252*x^3 + 343*x^2 - 1715*x + 2401
-
frobenius_polynomial_matrix
(M=None, algorithm='hypellfrob')¶ Compute the charpoly of frobenius, as an element of \(\ZZ[x]\), by computing the charpoly of the frobenius matrix.
This is currently only supported when the base field is prime and large enough using the
hypellfrob
library.EXAMPLES:
sage: R.<t> = PolynomialRing(GF(37)) sage: H = HyperellipticCurve(t^5 + t + 2) sage: H.frobenius_polynomial_matrix() x^4 + x^3 - 52*x^2 + 37*x + 1369
A quadratic twist:
sage: H = HyperellipticCurve(2*t^5 + 2*t + 4) sage: H.frobenius_polynomial_matrix() x^4 - x^3 - 52*x^2 - 37*x + 1369
Curves defined over larger prime fields:
sage: K = GF(49999) sage: R.<t> = PolynomialRing(K) sage: H = HyperellipticCurve(t^9 + t^5 + 1) sage: H.frobenius_polynomial_matrix() x^8 + 281*x^7 + 55939*x^6 + 14144175*x^5 + 3156455369*x^4 + 707194605825*x^3 + 139841906155939*x^2 + 35122892542149719*x + 6249500014999800001 sage: H = HyperellipticCurve(t^15 + t^5 + 1) sage: H.frobenius_polynomial_matrix() # long time, 8s on a Corei7 x^14 - 76*x^13 + 220846*x^12 - 12984372*x^11 + 24374326657*x^10 - 1203243210304*x^9 + 1770558798515792*x^8 - 74401511415210496*x^7 + 88526169366991084208*x^6 - 3007987702642212810304*x^5 + 3046608028331197124223343*x^4 - 81145833008762983138584372*x^3 + 69007473838551978905211279154*x^2 - 1187357507124810002849977200076*x + 781140631562281254374947500349999
This
hypellfrob
program doesn’t support non-prime fields:sage: K.<z> = GF(37**3) sage: R.<t> = PolynomialRing(K) sage: H = HyperellipticCurve(t^9 + z*t^3 + 1) sage: H.frobenius_polynomial_matrix(algorithm='hypellfrob') Traceback (most recent call last): ... NotImplementedError: Computation of Frobenius matrix only implemented for hyperelliptic curves defined over prime fields.
-
frobenius_polynomial_pari
()¶ Compute the charpoly of frobenius, as an element of \(\ZZ[x]\), by calling the PARI function
hyperellcharpoly
.EXAMPLES:
sage: R.<t> = PolynomialRing(GF(37)) sage: H = HyperellipticCurve(t^5 + t + 2) sage: H.frobenius_polynomial_pari() x^4 + x^3 - 52*x^2 + 37*x + 1369
A quadratic twist:
sage: H = HyperellipticCurve(2*t^5 + 2*t + 4) sage: H.frobenius_polynomial_pari() x^4 - x^3 - 52*x^2 - 37*x + 1369
Slightly larger example:
sage: K = GF(2003) sage: R.<t> = PolynomialRing(K) sage: H = HyperellipticCurve(t^7 + 487*t^5 + 9*t + 1) sage: H.frobenius_polynomial_pari() x^6 - 14*x^5 + 1512*x^4 - 66290*x^3 + 3028536*x^2 - 56168126*x + 8036054027
Curves defined over a non-prime field are supported as well:
sage: K.<a> = GF(7^2) sage: R.<t> = PolynomialRing(K) sage: H = HyperellipticCurve(t^5 + a*t + 1) sage: H.frobenius_polynomial_pari() x^4 + 4*x^3 + 84*x^2 + 196*x + 2401 sage: K.<z> = GF(23**3) sage: R.<t> = PolynomialRing(K) sage: H = HyperellipticCurve(t^3 + z*t + 4) sage: H.frobenius_polynomial_pari() x^2 - 15*x + 12167
Over prime fields of odd characteristic, \(h\) may be non-zero:
sage: K = GF(101) sage: R.<t> = PolynomialRing(K) sage: H = HyperellipticCurve(t^5 + 27*t + 3, t) sage: H.frobenius_polynomial_pari() x^4 + 2*x^3 - 58*x^2 + 202*x + 10201
-
p_rank
()¶ INPUT:
E
: Hyperelliptic Curve of the form \(y^2 = f(x)\) over a finite field, \(\GF{q}\)
OUTPUT:
pr
:p-rank
EXAMPLES:
sage: K.<x>=GF(49,'x')[] sage: C=HyperellipticCurve(x^5+1,0) sage: C.p_rank() 0 sage: K.<x>=GF(9,'x')[] sage: C=HyperellipticCurve(x^7-1,0) sage: C.p_rank() 0 sage: P.<x>=GF(9,'a')[] sage: E=HyperellipticCurve(x^29+1,0) sage: E.p_rank() 0
-
points
()¶ All the points on this hyperelliptic curve.
EXAMPLES:
sage: x = polygen(GF(7)) sage: C = HyperellipticCurve(x^7 - x^2 - 1) sage: C.points() [(0 : 1 : 0), (2 : 5 : 1), (2 : 2 : 1), (3 : 0 : 1), (4 : 6 : 1), (4 : 1 : 1), (5 : 0 : 1), (6 : 5 : 1), (6 : 2 : 1)]
sage: x = polygen(GF(121, 'a')) sage: C = HyperellipticCurve(x^5 + x - 1, x^2 + 2) sage: len(C.points()) 122
Conics are allowed (the issue reported at trac ticket #11800 has been resolved):
sage: R.<x> = GF(7)[] sage: H = HyperellipticCurve(3*x^2 + 5*x + 1) sage: H.points() [(0 : 6 : 1), (0 : 1 : 1), (1 : 4 : 1), (1 : 3 : 1), (2 : 4 : 1), (2 : 3 : 1), (3 : 6 : 1), (3 : 1 : 1)]
The method currently lists points on the plane projective model, that is the closure in \(\mathbb{P}^2\) of the curve defined by \(y^2+hy=f\). This means that one point \((0:1:0)\) at infinity is returned if the degree of the curve is at least 4 and \(\deg(f)>\deg(h)+1\). This point is a singular point of the plane model. Later implementations may consider a smooth model instead since that would be a more relevant object. Then, for a curve whose only singularity is at \((0:1:0)\), the point at infinity would be replaced by a number of rational points of the smooth model. We illustrate this with an example of a genus 2 hyperelliptic curve:
sage: R.<x>=GF(11)[] sage: H = HyperellipticCurve(x*(x+1)*(x+2)*(x+3)*(x+4)*(x+5)) sage: H.points() [(0 : 1 : 0), (0 : 0 : 1), (1 : 7 : 1), (1 : 4 : 1), (5 : 7 : 1), (5 : 4 : 1), (6 : 0 : 1), (7 : 0 : 1), (8 : 0 : 1), (9 : 0 : 1), (10 : 0 : 1)]
The plane model of the genus 2 hyperelliptic curve in the above example is the curve in \(\mathbb{P}^2\) defined by \(y^2z^4=g(x,z)\) where \(g(x,z)=x(x+z)(x+2z)(x+3z)(x+4z)(x+5z).\) This model has one point at infinity \((0:1:0)\) which is also the only singular point of the plane model. In contrast, the hyperelliptic curve is smooth and imbeds via the equation \(y^2=g(x,z)\) into weighted projected space \(\mathbb{P}(1,3,1)\). The latter model has two points at infinity: \((1:1:0)\) and \((1:-1:0)\).
-
zeta_function
()¶ Compute the zeta function of the hyperelliptic curve.
EXAMPLES:
sage: F = GF(2); R.<t> = F[] sage: H = HyperellipticCurve(t^9 + t, t^4) sage: H.zeta_function() (16*x^8 + 8*x^7 + 8*x^6 + 4*x^5 + 6*x^4 + 2*x^3 + 2*x^2 + x + 1)/(2*x^2 - 3*x + 1) sage: F.<a> = GF(4); R.<t> = F[] sage: H = HyperellipticCurve(t^5 + t^3 + t^2 + t + 1, t^2 + t + 1) sage: H.zeta_function() (16*x^4 + 8*x^3 + x^2 + 2*x + 1)/(4*x^2 - 5*x + 1) sage: F.<a> = GF(9); R.<t> = F[] sage: H = HyperellipticCurve(t^5 + a*t) sage: H.zeta_function() (81*x^4 + 72*x^3 + 32*x^2 + 8*x + 1)/(9*x^2 - 10*x + 1) sage: R.<t> = PolynomialRing(GF(37)) sage: H = HyperellipticCurve(t^5 + t + 2) sage: H.zeta_function() (1369*x^4 + 37*x^3 - 52*x^2 + x + 1)/(37*x^2 - 38*x + 1)
A quadratic twist:
sage: R.<t> = PolynomialRing(GF(37)) sage: H = HyperellipticCurve(2*t^5 + 2*t + 4) sage: H.zeta_function() (1369*x^4 - 37*x^3 - 52*x^2 - x + 1)/(37*x^2 - 38*x + 1)
-