Stream Ciphers¶
-
class
sage.crypto.stream_cipher.
LFSRCipher
(parent, poly, IS)¶ Bases:
sage.crypto.cipher.SymmetricKeyCipher
Create a linear feedback shift register (LFSR) cipher.
INPUT:
parent
- parentpoly
- connection polynomialIS
- initial state
EXAMPLES:
sage: FF = FiniteField(2) sage: P.<x> = PolynomialRing(FF) sage: E = LFSRCryptosystem(FF) sage: E LFSR cryptosystem over Finite Field of size 2 sage: IS = [ FF(a) for a in [0,1,1,1,0,1,1] ] sage: g = x^7 + x + 1 sage: e = E((g,IS)) sage: B = BinaryStrings() sage: m = B.encoding("THECATINTHEHAT") sage: e(m) 0010001101111010111010101010001100000000110100010101011100001011110010010000011111100100100011001101101000001111 sage: FF = FiniteField(2) sage: P.<x> = PolynomialRing(FF) sage: LFSR = LFSRCryptosystem(FF) sage: e = LFSR((x^2+x+1,[FF(0),FF(1)])) sage: B = e.domain() sage: m = B.encoding("The cat in the hat.") sage: e(m) 00111001110111101011111001001101110101011011101000011001100101101011001000000011100101101010111100000101110100111111101100000101110101111010111101000011 sage: m == e(e(m)) True
-
connection_polynomial
()¶ The connection polynomial defining the LFSR of the cipher.
EXAMPLES:
sage: k = GF(2) sage: P.<x> = PolynomialRing( k ) sage: LFSR = LFSRCryptosystem( k ) sage: e = LFSR((x^2+x+1,[k(0), k(1)])) sage: e.connection_polynomial() x^2 + x + 1
-
initial_state
()¶ The initial state of the LFSR cipher.
EXAMPLES:
sage: k = GF(2) sage: P.<x> = PolynomialRing( k ) sage: LFSR = LFSRCryptosystem( k ) sage: e = LFSR((x^2+x+1,[k(0), k(1)])) sage: e.initial_state() [0, 1]
-
class
sage.crypto.stream_cipher.
ShrinkingGeneratorCipher
(parent, e1, e2)¶ Bases:
sage.crypto.cipher.SymmetricKeyCipher
Create a shrinking generator cipher.
INPUT:
parent
- parentpoly
- connection polynomialIS
- initial state
EXAMPLES:
sage: FF = FiniteField(2) sage: P.<x> = PolynomialRing(FF) sage: LFSR = LFSRCryptosystem(FF) sage: IS_1 = [ FF(a) for a in [0,1,0,1,0,0,0] ] sage: e1 = LFSR((x^7 + x + 1,IS_1)) sage: IS_2 = [ FF(a) for a in [0,0,1,0,0,0,1,0,1] ] sage: e2 = LFSR((x^9 + x^3 + 1,IS_2)) sage: E = ShrinkingGeneratorCryptosystem() sage: e = E((e1,e2)) sage: e Shrinking generator cipher on Free binary string monoid
-
decimating_cipher
()¶ The LFSR cipher generating the decimating key stream.
EXAMPLES:
sage: FF = FiniteField(2) sage: P.<x> = PolynomialRing(FF) sage: LFSR = LFSRCryptosystem(FF) sage: IS_1 = [ FF(a) for a in [0,1,0,1,0,0,0] ] sage: e1 = LFSR((x^7 + x + 1,IS_1)) sage: IS_2 = [ FF(a) for a in [0,0,1,0,0,0,1,0,1] ] sage: e2 = LFSR((x^9 + x^3 + 1,IS_2)) sage: E = ShrinkingGeneratorCryptosystem() sage: e = E((e1,e2)) sage: e.decimating_cipher() LFSR cipher on Free binary string monoid
-
keystream_cipher
()¶ The LFSR cipher generating the output key stream.
EXAMPLES:
sage: FF = FiniteField(2) sage: P.<x> = PolynomialRing(FF) sage: LFSR = LFSRCryptosystem(FF) sage: IS_1 = [ FF(a) for a in [0,1,0,1,0,0,0] ] sage: e1 = LFSR((x^7 + x + 1,IS_1)) sage: IS_2 = [ FF(a) for a in [0,0,1,0,0,0,1,0,1] ] sage: e2 = LFSR((x^9 + x^3 + 1,IS_2)) sage: E = ShrinkingGeneratorCryptosystem() sage: e = E((e1,e2)) sage: e.keystream_cipher() LFSR cipher on Free binary string monoid