Simplified DES¶
A simplified variant of the Data Encryption Standard (DES). Note that Simplified DES or S-DES is for educational purposes only. It is a small-scale version of the DES designed to help beginners understand the basic structure of DES.
AUTHORS:
- Minh Van Nguyen (2009-06): initial version
-
class
sage.crypto.block_cipher.sdes.
SimplifiedDES
¶ Bases:
sage.structure.sage_object.SageObject
This class implements the Simplified Data Encryption Standard (S-DES) described in [Sch1996]. Schaefer’s S-DES is for educational purposes only and is not secure for practical purposes. S-DES is a version of the DES with all parameters significantly reduced, but at the same time preserving the structure of DES. The goal of S-DES is to allow a beginner to understand the structure of DES, thus laying a foundation for a thorough study of DES. Its goal is as a teaching tool in the same spirit as Phan’s
Mini-AES
[Pha2002].EXAMPLES:
Encrypt a random block of 8-bit plaintext using a random key, decrypt the ciphertext, and compare the result with the original plaintext:
sage: from sage.crypto.block_cipher.sdes import SimplifiedDES sage: sdes = SimplifiedDES(); sdes Simplified DES block cipher with 10-bit keys sage: bin = BinaryStrings() sage: P = [bin(str(randint(0, 1))) for i in range(8)] sage: K = sdes.random_key() sage: C = sdes.encrypt(P, K) sage: plaintxt = sdes.decrypt(C, K) sage: plaintxt == P True
We can also encrypt binary strings that are larger than 8 bits in length. However, the number of bits in that binary string must be positive and a multiple of 8:
sage: from sage.crypto.block_cipher.sdes import SimplifiedDES sage: sdes = SimplifiedDES() sage: bin = BinaryStrings() sage: P = bin.encoding("Encrypt this using S-DES!") sage: Mod(len(P), 8) == 0 True sage: K = sdes.list_to_string(sdes.random_key()) sage: C = sdes(P, K, algorithm="encrypt") sage: plaintxt = sdes(C, K, algorithm="decrypt") sage: plaintxt == P True
-
block_length
()¶ Return the block length of Schaefer’s S-DES block cipher. A key in Schaefer’s S-DES is a block of 10 bits.
OUTPUT:
- The block (or key) length in number of bits.
EXAMPLES:
sage: from sage.crypto.block_cipher.sdes import SimplifiedDES sage: sdes = SimplifiedDES() sage: sdes.block_length() 10
-
decrypt
(C, K)¶ Return an 8-bit plaintext corresponding to the ciphertext
C
, using S-DES decryption with keyK
. The decryption process of S-DES is as follows. Let \(P\) be the initial permutation function, \(P^{-1}\) the corresponding inverse permutation, \(\Pi_F\) the permutation/substitution function, and \(\sigma\) the switch function. The ciphertext blockC
first goes through \(P\), the output of which goes through \(\Pi_F\) using the second subkey. Then we apply the switch function to the output of the last function, and the result is then fed into \(\Pi_F\) using the first subkey. Finally, run the output through \(P^{-1}\) to get the plaintext.INPUT:
C
– an 8-bit ciphertext; a block of 8 bitsK
– a 10-bit key; a block of 10 bits
OUTPUT:
The 8-bit plaintext corresponding to
C
, obtained using the keyK
.EXAMPLES:
Decrypt an 8-bit ciphertext block:
sage: from sage.crypto.block_cipher.sdes import SimplifiedDES sage: sdes = SimplifiedDES() sage: C = [0, 1, 0, 1, 0, 1, 0, 1] sage: K = [1, 0, 1, 0, 0, 0, 0, 0, 1, 0] sage: sdes.decrypt(C, K) [0, 0, 0, 1, 0, 1, 0, 1]
We can also work with strings of bits:
sage: C = "01010101" sage: K = "1010000010" sage: sdes.decrypt(sdes.string_to_list(C), sdes.string_to_list(K)) [0, 0, 0, 1, 0, 1, 0, 1]
-
encrypt
(P, K)¶ Return an 8-bit ciphertext corresponding to the plaintext
P
, using S-DES encryption with keyK
. The encryption process of S-DES is as follows. Let \(P\) be the initial permutation function, \(P^{-1}\) the corresponding inverse permutation, \(\Pi_F\) the permutation/substitution function, and \(\sigma\) the switch function. The plaintext blockP
first goes through \(P\), the output of which goes through \(\Pi_F\) using the first subkey. Then we apply the switch function to the output of the last function, and the result is then fed into \(\Pi_F\) using the second subkey. Finally, run the output through \(P^{-1}\) to get the ciphertext.INPUT:
P
– an 8-bit plaintext; a block of 8 bitsK
– a 10-bit key; a block of 10 bits
OUTPUT:
The 8-bit ciphertext corresponding to
P
, obtained using the keyK
.EXAMPLES:
Encrypt an 8-bit plaintext block:
sage: from sage.crypto.block_cipher.sdes import SimplifiedDES sage: sdes = SimplifiedDES() sage: P = [0, 1, 0, 1, 0, 1, 0, 1] sage: K = [1, 0, 1, 0, 0, 0, 0, 0, 1, 0] sage: sdes.encrypt(P, K) [1, 1, 0, 0, 0, 0, 0, 1]
We can also work with strings of bits:
sage: P = "01010101" sage: K = "1010000010" sage: sdes.encrypt(sdes.string_to_list(P), sdes.string_to_list(K)) [1, 1, 0, 0, 0, 0, 0, 1]
-
initial_permutation
(B, inverse=False)¶ Return the initial permutation of
B
. Denote the initial permutation function by \(P\) and let \((b_0, b_1, b_2, \dots, b_7)\) be a vector of 8 bits, where each \(b_i \in \{ 0, 1 \}\). Then\[P(b_0, b_1, b_2, b_3, b_4, b_5, b_6, b_7) = (b_1, b_5, b_2, b_0, b_3, b_7, b_4, b_6)\]The inverse permutation is \(P^{-1}\):
\[P^{-1}(b_0, b_1, b_2, b_3, b_4, b_5, b_6, b_7) = (b_3, b_0, b_2, b_4, b_6, b_1, b_7, b_5)\]INPUT:
B
– list; a block of 8 bitsinverse
– (default:False
) ifTrue
then use the inverse permutation \(P^{-1}\); ifFalse
then use the initial permutation \(P\)
OUTPUT:
The initial permutation of
B
ifinverse=False
, or the inverse permutation ofB
ifinverse=True
.EXAMPLES:
The initial permutation of a list of 8 bits:
sage: from sage.crypto.block_cipher.sdes import SimplifiedDES sage: sdes = SimplifiedDES() sage: B = [1, 0, 1, 1, 0, 1, 0, 0] sage: P = sdes.initial_permutation(B); P [0, 1, 1, 1, 1, 0, 0, 0]
Recovering the original list of 8 bits from the permutation:
sage: Pinv = sdes.initial_permutation(P, inverse=True) sage: Pinv; B [1, 0, 1, 1, 0, 1, 0, 0] [1, 0, 1, 1, 0, 1, 0, 0]
We can also work with a string of bits:
sage: S = "10110100" sage: L = sdes.string_to_list(S) sage: P = sdes.initial_permutation(L); P [0, 1, 1, 1, 1, 0, 0, 0] sage: sdes.initial_permutation(sdes.string_to_list("01111000"), inverse=True) [1, 0, 1, 1, 0, 1, 0, 0]
-
left_shift
(B, n=1)¶ Return a circular left shift of
B
byn
positions. Let \(B = (b_0, b_1, b_2, b_3, b_4, b_5, b_6, b_7, b_8, b_9)\) be a vector of 10 bits. Then the left shift operation \(L_n\) is performed on the first 5 bits and the last 5 bits of \(B\) separately. That is, if the number of shift positions isn=1
, then \(L_1\) is defined as\[L_1(b_0, b_1, b_2, b_3, b_4, b_5, b_6, b_7, b_8, b_9) = (b_1, b_2, b_3, b_4, b_0, b_6, b_7, b_8, b_9, b_5)\]If the number of shift positions is
n=2
, then \(L_2\) is given by\[L_2(b_0, b_1, b_2, b_3, b_4, b_5, b_6, b_7, b_8, b_9) = (b_2, b_3, b_4, b_0, b_1, b_7, b_8, b_9, b_5, b_6)\]INPUT:
B
– a list of 10 bitsn
– (default: 1) ifn=1
then perform left shift by 1 position; ifn=2
then perform left shift by 2 positions. The valid values forn
are 1 and 2, since only up to 2 positions are defined for this circular left shift operation.
OUTPUT:
The circular left shift of each half of
B
.EXAMPLES:
Circular left shift by 1 position of a 10-bit string:
sage: from sage.crypto.block_cipher.sdes import SimplifiedDES sage: sdes = SimplifiedDES() sage: B = [1, 0, 0, 0, 0, 0, 1, 1, 0, 0] sage: sdes.left_shift(B) [0, 0, 0, 0, 1, 1, 1, 0, 0, 0] sage: sdes.left_shift([1, 0, 1, 0, 0, 0, 0, 0, 1, 0]) [0, 1, 0, 0, 1, 0, 0, 1, 0, 0]
Circular left shift by 2 positions of a 10-bit string:
sage: B = [0, 0, 0, 0, 1, 1, 1, 0, 0, 0] sage: sdes.left_shift(B, n=2) [0, 0, 1, 0, 0, 0, 0, 0, 1, 1]
Here we work with a string of bits:
sage: S = "1000001100" sage: L = sdes.string_to_list(S) sage: sdes.left_shift(L) [0, 0, 0, 0, 1, 1, 1, 0, 0, 0] sage: sdes.left_shift(sdes.string_to_list("1010000010"), n=2) [1, 0, 0, 1, 0, 0, 1, 0, 0, 0]
-
list_to_string
(B)¶ Return a binary string representation of the list
B
.INPUT:
B
– a non-empty list of bits
OUTPUT:
The binary string representation of
B
.EXAMPLES:
A binary string representation of a list of bits:
sage: from sage.crypto.block_cipher.sdes import SimplifiedDES sage: sdes = SimplifiedDES() sage: L = [0, 0, 0, 0, 1, 1, 0, 1, 0, 0] sage: sdes.list_to_string(L) 0000110100
-
permutation10
(B)¶ Return a permutation of a 10-bit string. This permutation is called \(P_{10}\) and is specified as follows. Let \((b_0, b_1, b_2, b_3, b_4, b_5, b_6, b_7, b_8, b_9)\) be a vector of 10 bits where each \(b_i \in \{ 0, 1 \}\). Then \(P_{10}\) is given by
\[P_{10}(b_0, b_1, b_2, b_3, b_4, b_5, b_6, b_7, b_8, b_9) = (b_2, b_4, b_1, b_6, b_3, b_9, b_0, b_8, b_7, b_5)\]INPUT:
B
– a block of 10-bit string
OUTPUT:
A permutation of
B
.EXAMPLES:
Permute a 10-bit string:
sage: from sage.crypto.block_cipher.sdes import SimplifiedDES sage: sdes = SimplifiedDES() sage: B = [1, 1, 0, 0, 1, 0, 0, 1, 0, 1] sage: sdes.permutation10(B) [0, 1, 1, 0, 0, 1, 1, 0, 1, 0] sage: sdes.permutation10([0, 1, 1, 0, 1, 0, 0, 1, 0, 1]) [1, 1, 1, 0, 0, 1, 0, 0, 1, 0] sage: sdes.permutation10([1, 0, 1, 0, 0, 0, 0, 0, 1, 0]) [1, 0, 0, 0, 0, 0, 1, 1, 0, 0]
Here we work with a string of bits:
sage: S = "1100100101" sage: L = sdes.string_to_list(S) sage: sdes.permutation10(L) [0, 1, 1, 0, 0, 1, 1, 0, 1, 0] sage: sdes.permutation10(sdes.string_to_list("0110100101")) [1, 1, 1, 0, 0, 1, 0, 0, 1, 0]
-
permutation4
(B)¶ Return a permutation of a 4-bit string. This permutation is called \(P_4\) and is specified as follows. Let \((b_0, b_1, b_2, b_3)\) be a vector of 4 bits where each \(b_i \in \{ 0, 1 \}\). Then \(P_4\) is defined by
\[P_4(b_0, b_1, b_2, b_3) = (b_1, b_3, b_2, b_0)\]INPUT:
B
– a block of 4-bit string
OUTPUT:
A permutation of
B
.EXAMPLES:
Permute a 4-bit string:
sage: from sage.crypto.block_cipher.sdes import SimplifiedDES sage: sdes = SimplifiedDES() sage: B = [1, 1, 0, 0] sage: sdes.permutation4(B) [1, 0, 0, 1] sage: sdes.permutation4([0, 1, 0, 1]) [1, 1, 0, 0]
We can also work with a string of bits:
sage: S = "1100" sage: L = sdes.string_to_list(S) sage: sdes.permutation4(L) [1, 0, 0, 1] sage: sdes.permutation4(sdes.string_to_list("0101")) [1, 1, 0, 0]
-
permutation8
(B)¶ Return a permutation of an 8-bit string. This permutation is called \(P_8\) and is specified as follows. Let \((b_0, b_1, b_2, b_3, b_4, b_5, b_6, b_7, b_8, b_9)\) be a vector of 10 bits where each \(b_i \in \{ 0, 1 \}\). Then \(P_8\) picks out 8 of those 10 bits and permutes those 8 bits:
\[P_8(b_0, b_1, b_2, b_3, b_4, b_5, b_6, b_7, b_8, b_9) = (b_5, b_2, b_6, b_3, b_7, b_4, b_9, b_8)\]INPUT:
B
– a block of 10-bit string
OUTPUT:
Pick out 8 of the 10 bits of
B
and permute those 8 bits.EXAMPLES:
Permute a 10-bit string:
sage: from sage.crypto.block_cipher.sdes import SimplifiedDES sage: sdes = SimplifiedDES() sage: B = [1, 1, 0, 0, 1, 0, 0, 1, 0, 1] sage: sdes.permutation8(B) [0, 0, 0, 0, 1, 1, 1, 0] sage: sdes.permutation8([0, 1, 1, 0, 1, 0, 0, 1, 0, 1]) [0, 1, 0, 0, 1, 1, 1, 0] sage: sdes.permutation8([0, 0, 0, 0, 1, 1, 1, 0, 0, 0]) [1, 0, 1, 0, 0, 1, 0, 0]
We can also work with a string of bits:
sage: S = "1100100101" sage: L = sdes.string_to_list(S) sage: sdes.permutation8(L) [0, 0, 0, 0, 1, 1, 1, 0] sage: sdes.permutation8(sdes.string_to_list("0110100101")) [0, 1, 0, 0, 1, 1, 1, 0]
-
permute_substitute
(B, key)¶ Apply the function \(\Pi_F\) on the block
B
using subkeykey
. Let \((b_0, b_1, b_2, b_3, b_4, b_5, b_6, b_7)\) be a vector of 8 bits where each \(b_i \in \{ 0, 1 \}\), let \(L\) and \(R\) be the leftmost 4 bits and rightmost 4 bits ofB
respectively, and let \(F\) be a function mapping 4-bit strings to 4-bit strings. Then\[\Pi_F(L, R) = (L \oplus F(R, S), R)\]where \(S\) is a subkey and \(\oplus\) denotes the bit-wise exclusive-OR function.
The function \(F\) can be described as follows. Its 4-bit input block \((n_0, n_1, n_2, n_3)\) is first expanded into an 8-bit block to become \((n_3, n_0, n_1, n_2, n_1, n_2, n_3, n_0)\). This is usually represented as follows
\[\begin{split}\begin{tabular}{c|cc|c} $n_3$ & $n_0$ & $n_1$ & $n_2$ \\ $n_1$ & $n_2$ & $n_3$ & $n_0$ \end{tabular}\end{split}\]Let \(K = (k_0, k_1, k_2, k_3, k_4, k_5, k_6, k_7)\) be an 8-bit subkey. Then \(K\) is added to the above expanded input block using exclusive-OR to produce
\[\begin{split}\begin{tabular}{c|cc|c} $n_3 + k_0$ & $n_0 + k_1$ & $n_1 + k_2$ & $n_2 + k_3$ \\ $n_1 + k_4$ & $n_2 + k_5$ & $n_3 + k_6$ & $n_0 + k_7$ \end{tabular} = \begin{tabular}{c|cc|c} $p_{0,0}$ & $p_{0,1}$ & $p_{0,2}$ & $p_{0,3}$ \\ $p_{1,0}$ & $p_{1,1}$ & $p_{1,2}$ & $p_{1,3}$ \end{tabular}\end{split}\]Now read the first row as the 4-bit string \(p_{0,0} p_{0,3} p_{0,1} p_{0,2}\) and input this 4-bit string through S-box \(S_0\) to get a 2-bit output.
\[\begin{split}S_0 = \begin{tabular}{cc|cc} \hline Input & Output & Input & Output \\\hline 0000 & 01 & 1000 & 00 \\ 0001 & 00 & 1001 & 10 \\ 0010 & 11 & 1010 & 01 \\ 0011 & 10 & 1011 & 11 \\ 0100 & 11 & 1100 & 11 \\ 0101 & 10 & 1101 & 01 \\ 0110 & 01 & 1110 & 11 \\ 0111 & 00 & 1111 & 10 \\\hline \end{tabular}\end{split}\]Next read the second row as the 4-bit string \(p_{1,0} p_{1,3} p_{1,1} p_{1,2}\) and input this 4-bit string through S-box \(S_1\) to get another 2-bit output.
\[\begin{split}S_1 = \begin{tabular}{cc|cc} \hline Input & Output & Input & Output \\\hline 0000 & 00 & 1000 & 11 \\ 0001 & 01 & 1001 & 00 \\ 0010 & 10 & 1010 & 01 \\ 0011 & 11 & 1011 & 00 \\ 0100 & 10 & 1100 & 10 \\ 0101 & 00 & 1101 & 01 \\ 0110 & 01 & 1110 & 00 \\ 0111 & 11 & 1111 & 11 \\\hline \end{tabular}\end{split}\]Denote the 4 bits produced by \(S_0\) and \(S_1\) as \(b_0 b_1 b_2 b_3\). This 4-bit string undergoes another permutation called \(P_4\) as follows:
\[P_4(b_0, b_1, b_2, b_3) = (b_1, b_3, b_2, b_0)\]The output of \(P_4\) is the output of the function \(F\).
INPUT:
B
– a list of 8 bitskey
– an 8-bit subkey
OUTPUT:
The result of applying the function \(\Pi_F\) to
B
.EXAMPLES:
Applying the function \(\Pi_F\) to an 8-bit block and an 8-bit subkey:
sage: from sage.crypto.block_cipher.sdes import SimplifiedDES sage: sdes = SimplifiedDES() sage: B = [1, 0, 1, 1, 1, 1, 0, 1] sage: K = [1, 1, 0, 1, 0, 1, 0, 1] sage: sdes.permute_substitute(B, K) [1, 0, 1, 0, 1, 1, 0, 1]
We can also work with strings of bits:
sage: B = "10111101" sage: K = "11010101" sage: B = sdes.string_to_list(B); K = sdes.string_to_list(K) sage: sdes.permute_substitute(B, K) [1, 0, 1, 0, 1, 1, 0, 1]
-
random_key
()¶ Return a random 10-bit key.
EXAMPLES:
The size of each key is the same as the block size:
sage: from sage.crypto.block_cipher.sdes import SimplifiedDES sage: sdes = SimplifiedDES() sage: key = sdes.random_key() sage: len(key) == sdes.block_length() True
-
sbox
()¶ Return the S-boxes of simplified DES.
EXAMPLES:
sage: from sage.crypto.block_cipher.sdes import SimplifiedDES sage: sdes = SimplifiedDES() sage: sbox = sdes.sbox() sage: sbox[0]; sbox[1] (1, 0, 3, 2, 3, 2, 1, 0, 0, 2, 1, 3, 3, 1, 3, 2) (0, 1, 2, 3, 2, 0, 1, 3, 3, 0, 1, 0, 2, 1, 0, 3)
-
string_to_list
(S)¶ Return a list representation of the binary string
S
.INPUT:
S
– a string of bits
OUTPUT:
A list representation of the string
S
.EXAMPLES:
A list representation of a string of bits:
sage: from sage.crypto.block_cipher.sdes import SimplifiedDES sage: sdes = SimplifiedDES() sage: S = "0101010110" sage: sdes.string_to_list(S) [0, 1, 0, 1, 0, 1, 0, 1, 1, 0]
-
subkey
(K, n=1)¶ Return the
n
-th subkey based on the keyK
.INPUT:
K
– a 10-bit secret key of this Simplified DESn
– (default: 1) ifn=1
then return the first subkey based onK
; ifn=2
then return the second subkey. The valid values forn
are 1 and 2, since only two subkeys are defined for each secret key in Schaefer’s S-DES.
OUTPUT:
The
n
-th subkey based on the secret keyK
.EXAMPLES:
Obtain the first subkey from a secret key:
sage: from sage.crypto.block_cipher.sdes import SimplifiedDES sage: sdes = SimplifiedDES() sage: key = [1, 0, 1, 0, 0, 0, 0, 0, 1, 0] sage: sdes.subkey(key, n=1) [1, 0, 1, 0, 0, 1, 0, 0]
Obtain the second subkey from a secret key:
sage: key = [1, 0, 1, 0, 0, 0, 0, 0, 1, 0] sage: sdes.subkey(key, n=2) [0, 1, 0, 0, 0, 0, 1, 1]
We can also work with strings of bits:
sage: K = "1010010010" sage: L = sdes.string_to_list(K) sage: sdes.subkey(L, n=1) [1, 0, 1, 0, 0, 1, 0, 1] sage: sdes.subkey(sdes.string_to_list("0010010011"), n=2) [0, 1, 1, 0, 1, 0, 1, 0]
-
switch
(B)¶ Interchange the first 4 bits with the last 4 bits in the list
B
of 8 bits. Let \((b_0, b_1, b_2, b_3, b_4, b_5, b_6, b_7)\) be a vector of 8 bits, where each \(b_i \in \{ 0, 1 \}\). Then the switch function \(\sigma\) is given by\[\sigma(b_0, b_1, b_2, b_3, b_4, b_5, b_6, b_7) = (b_4, b_5, b_6, b_7, b_0, b_1, b_2, b_3)\]INPUT:
B
– list; a block of 8 bits
OUTPUT:
A block of the same dimension, but in which the first 4 bits from
B
has been switched for the last 4 bits inB
.EXAMPLES:
Interchange the first 4 bits with the last 4 bits:
sage: from sage.crypto.block_cipher.sdes import SimplifiedDES sage: sdes = SimplifiedDES() sage: B = [1, 1, 1, 0, 1, 0, 0, 0] sage: sdes.switch(B) [1, 0, 0, 0, 1, 1, 1, 0] sage: sdes.switch([1, 1, 1, 1, 0, 0, 0, 0]) [0, 0, 0, 0, 1, 1, 1, 1]
We can also work with a string of bits:
sage: S = "11101000" sage: L = sdes.string_to_list(S) sage: sdes.switch(L) [1, 0, 0, 0, 1, 1, 1, 0] sage: sdes.switch(sdes.string_to_list("11110000")) [0, 0, 0, 0, 1, 1, 1, 1]
-