The constant \(e\)¶
-
class
sage.symbolic.constants_c.
E
¶ Bases:
sage.symbolic.expression.Expression
Dummy class to represent base of the natural logarithm.
The base of the natural logarithm
e
is not a constant in GiNaC/Sage. It is represented byexp(1)
.This class provides a dummy object that behaves well under addition, multiplication, etc. and on exponentiation calls the function
exp
.EXAMPLES:
The constant defined at the top level is just
exp(1)
:sage: e.operator() exp sage: e.operands() [1]
Arithmetic works:
sage: e + 2 e + 2 sage: 2 + e e + 2 sage: 2*e 2*e sage: e*2 2*e sage: x*e x*e sage: var('a,b') (a, b) sage: t = e^(a+b); t e^(a + b) sage: t.operands() [a + b]
Numeric evaluation, conversion to other systems, and pickling works as expected. Note that these are properties of the
exp()
function, not this class:sage: RR(e) 2.71828182845905 sage: R = RealField(200); R Real Field with 200 bits of precision sage: R(e) 2.7182818284590452353602874713526624977572470936999595749670 sage: em = 1 + e^(1-e); em e^(-e + 1) + 1 sage: R(em) 1.1793740787340171819619895873183164984596816017589156131574 sage: maxima(e).float() 2.718281828459045 sage: t = mathematica(e) # optional - mathematica sage: t # optional - mathematica E sage: float(t) # optional - mathematica 2.718281828459045... sage: loads(dumps(e)) e sage: float(e) 2.718281828459045... sage: e.__float__() 2.718281828459045... sage: e._mpfr_(RealField(100)) 2.7182818284590452353602874714 sage: e._real_double_(RDF) # abs tol 5e-16 2.718281828459045 sage: import sympy sage: sympy.E == e # indirect doctest True