Root Systems¶
Quickref¶
T = CartanType(["A", 3]), T.is_finite()
– Cartan typesT.dynkin_diagram(), DynkinDiagram(["G",2])
– Dynkin diagramsT.cartan_matrix(), CartanMatrix(["F",4])
– Cartan matricesRootSystem(T).weight_lattice()
– Root systemsWeylGroup(["B", 6, 1]).simple_reflections()
– Affine Weyl groupsWeylCharacterRing(["D", 4])
– Weyl character rings
Introductory material¶
- Root Systems – This overview
CartanType
– An introduction to Cartan typesRootSystem
– An introduction to root systems- Tutorial: visualizing root systems – A root system visualization tutorial
- The Lie Methods and Related Combinatorics thematic tutorial
Root systems¶
Coxeter groups¶
- Coxeter Groups
- Weyl Groups
- Extended Affine Weyl Groups
- Fundamental Group of an Extended Affine Weyl Group
- Braid Move Calculator
- Braid Orbit
See also
The categories CoxeterGroups
and WeylGroups
Finite reflection groups¶
See also
The category ComplexReflectionGroups
Representation theory¶
Root system data and code for specific families of Cartan types¶
Root system data and code for specific Cartan types¶
- Root system data for type A
- Root system data for type B
- Root system data for type C
- Root system data for type D
- Root system data for type E
- Root system data for type F
- Root system data for type G
- Root system data for type H
- Root system data for type I
- Root system data for (untwisted) type A affine
- Root system data for (untwisted) type B affine
- Root system data for (untwisted) type C affine
- Root system data for (untwisted) type D affine
- Root system data for (untwisted) type E affine
- Root system data for (untwisted) type F affine
- Root system data for (untwisted) type G affine
- Root system data for type BC affine
- Root system data for super type A
- Root system data for type A infinity