Common combinatorial tools¶
REFERENCES:
[NCSF] | (1, 2, 3, 4) Gelfand, Krob, Lascoux, Leclerc, Retakh, Thibon, Noncommutative Symmetric Functions, Adv. Math. 112 (1995), no. 2, 218-348. |
[QSCHUR] | Haglund, Luoto, Mason, van Willigenburg, Quasisymmetric Schur functions, J. Comb. Theory Ser. A 118 (2011), 463-490. http://www.sciencedirect.com/science/article/pii/S0097316509001745 , arXiv 0810.2489v2. |
[Tev2007] | Lenny Tevlin, Noncommutative Analogs of Monomial Symmetric Functions, Cauchy Identity, and Hall Scalar Product, arXiv 0712.2201v1. |
-
sage.combinat.ncsf_qsym.combinatorics.
coeff_dab
(I, J)¶ Return the number of standard composition tableaux of shape I with descent composition J.
INPUT:
I, J
– compositions
OUTPUT:
- An integer
EXAMPLES:
sage: from sage.combinat.ncsf_qsym.combinatorics import coeff_dab sage: coeff_dab(Composition([2,1]),Composition([2,1])) 1 sage: coeff_dab(Composition([1,1,2]),Composition([1,2,1])) 0
-
sage.combinat.ncsf_qsym.combinatorics.
coeff_ell
(J, I)¶ Returns the coefficient ℓJ,I as defined in [NCSF].
INPUT:
J
– a compositionI
– a composition refiningJ
OUTPUT:
- integer
EXAMPLES:
sage: from sage.combinat.ncsf_qsym.combinatorics import coeff_ell sage: coeff_ell(Composition([1,1,1]), Composition([2,1])) 2 sage: coeff_ell(Composition([2,1]), Composition([3])) 2
-
sage.combinat.ncsf_qsym.combinatorics.
coeff_lp
(J, I)¶ Returns the coefficient lpJ,I as defined in [NCSF].
INPUT:
J
– a compositionI
– a composition refiningJ
OUTPUT:
- integer
EXAMPLES:
sage: from sage.combinat.ncsf_qsym.combinatorics import coeff_lp sage: coeff_lp(Composition([1,1,1]), Composition([2,1])) 1 sage: coeff_lp(Composition([2,1]), Composition([3])) 1
-
sage.combinat.ncsf_qsym.combinatorics.
coeff_pi
(J, I)¶ Returns the coefficient πJ,I as defined in [NCSF].
INPUT:
J
– a compositionI
– a composition refiningJ
OUTPUT:
- integer
EXAMPLES:
sage: from sage.combinat.ncsf_qsym.combinatorics import coeff_pi sage: coeff_pi(Composition([1,1,1]), Composition([2,1])) 2 sage: coeff_pi(Composition([2,1]), Composition([3])) 6
-
sage.combinat.ncsf_qsym.combinatorics.
coeff_sp
(J, I)¶ Returns the coefficient spJ,I as defined in [NCSF].
INPUT:
J
– a compositionI
– a composition refiningJ
OUTPUT:
- integer
EXAMPLES:
sage: from sage.combinat.ncsf_qsym.combinatorics import coeff_sp sage: coeff_sp(Composition([1,1,1]), Composition([2,1])) 2 sage: coeff_sp(Composition([2,1]), Composition([3])) 4
-
sage.combinat.ncsf_qsym.combinatorics.
compositions_order
(n)¶ Return the compositions of n ordered as defined in [QSCHUR].
Let S(γ) return the composition γ after sorting. For compositions α and β, we order α⊳β if
- S(α)>S(β) lexicographically, or
- S(α)=S(β) and α>β lexicographically.
INPUT:
n
– a positive integer
OUTPUT:
- A list of the compositions of
n
sorted into decreasing order by ⊳
EXAMPLES:
sage: from sage.combinat.ncsf_qsym.combinatorics import compositions_order sage: compositions_order(3) [[3], [2, 1], [1, 2], [1, 1, 1]] sage: compositions_order(4) [[4], [3, 1], [1, 3], [2, 2], [2, 1, 1], [1, 2, 1], [1, 1, 2], [1, 1, 1, 1]]
-
sage.combinat.ncsf_qsym.combinatorics.
m_to_s_stat
(R, I, K)¶ Return the coefficient of the complete non-commutative symmetric function SK in the expansion of the monomial non-commutative symmetric function MI with respect to the complete basis over the ring R. This is the coefficient in formula (36) of Tevlin’s paper [Tev2007].
INPUT:
R
– A ring, supposed to be a Q-algebraI
,K
– compositions
OUTPUT:
- The coefficient of SK in the expansion of MI in the
complete basis of the non-commutative symmetric functions
over
R
.
EXAMPLES:
sage: from sage.combinat.ncsf_qsym.combinatorics import m_to_s_stat sage: m_to_s_stat(QQ, Composition([2,1]), Composition([1,1,1])) -1 sage: m_to_s_stat(QQ, Composition([3]), Composition([1,2])) -2 sage: m_to_s_stat(QQ, Composition([2,1,2]), Composition([2,1,2])) 8/3
-
sage.combinat.ncsf_qsym.combinatorics.
number_of_SSRCT
(content_comp, shape_comp)¶ The number of semi-standard reverse composition tableaux.
The dual quasisymmetric-Schur functions satisfy a left Pieri rule where SndQSγ is a sum over dual quasisymmetric-Schur functions indexed by compositions which contain the composition γ. The definition of an SSRCT comes from this rule. The number of SSRCT of content β and shape α is equal to the number of SSRCT of content (β2,…,βℓ) and shape γ where dQSα appears in the expansion of Sβ1dQSγ.
In sage the recording tableau for these objects are called
CompositionTableaux
.INPUT:
content_comp
,shape_comp
– compositions
OUTPUT:
- An integer
EXAMPLES:
sage: from sage.combinat.ncsf_qsym.combinatorics import number_of_SSRCT sage: number_of_SSRCT(Composition([3,1]), Composition([1,3])) 0 sage: number_of_SSRCT(Composition([1,2,1]), Composition([1,3])) 1 sage: number_of_SSRCT(Composition([1,1,2,2]), Composition([3,3])) 2 sage: all(CompositionTableaux(be).cardinality() ....: == sum(number_of_SSRCT(al,be)*binomial(4,len(al)) ....: for al in Compositions(4)) ....: for be in Compositions(4)) True
-
sage.combinat.ncsf_qsym.combinatorics.
number_of_fCT
(content_comp, shape_comp)¶ Return the number of Immaculate tableaux of shape
shape_comp
and contentcontent_comp
.See [BBSSZ2012], Definition 3.9, for the notion of an immaculate tableau.
INPUT:
content_comp
,shape_comp
– compositions
OUTPUT:
- An integer
EXAMPLES:
sage: from sage.combinat.ncsf_qsym.combinatorics import number_of_fCT sage: number_of_fCT(Composition([3,1]), Composition([1,3])) 0 sage: number_of_fCT(Composition([1,2,1]), Composition([1,3])) 1 sage: number_of_fCT(Composition([1,1,3,1]), Composition([2,1,3])) 2