Subobjects Functorial Construction¶
AUTHORS:
- Nicolas M. Thiery (2010): initial revision
-
class
sage.categories.subobjects.
SubobjectsCategory
(category, *args)¶ Bases:
sage.categories.covariant_functorial_construction.RegressiveCovariantConstructionCategory
-
classmethod
default_super_categories
(category)¶ Returns the default super categories of
category.Subobjects()
Mathematical meaning: if A is a subobject of B in the category C, then A is also a subquotient of B in the category C.
INPUT:
cls
– the classSubobjectsCategory
category
– a category Cat
OUTPUT: a (join) category
In practice, this returns
category.Subquotients()
, joined together with the result of the methodRegressiveCovariantConstructionCategory.default_super_categories()
(that is the join ofcategory
andcat.Subobjects()
for eachcat
in the super categories ofcategory
).EXAMPLES:
Consider
category=Groups()
, which hascat=Monoids()
as super category. Then, a subgroup of a group G is simultaneously a subquotient of G, a group by itself, and a submonoid of G:sage: Groups().Subobjects().super_categories() [Category of groups, Category of subquotients of monoids, Category of subobjects of sets]
Mind the last item above: there is indeed currently nothing implemented about submonoids.
This resulted from the following call:
sage: sage.categories.subobjects.SubobjectsCategory.default_super_categories(Groups()) Join of Category of groups and Category of subquotients of monoids and Category of subobjects of sets
-
classmethod