Lie Algebras¶
AUTHORS:
- Travis Scrimshaw (07-15-2013): Initial implementation
-
class
sage.categories.lie_algebras.
LieAlgebras
(base, name=None)¶ Bases:
sage.categories.category_types.Category_over_base_ring
The category of Lie algebras.
EXAMPLES:
sage: C = LieAlgebras(QQ); C Category of Lie algebras over Rational Field sage: sorted(C.super_categories(), key=str) [Category of vector spaces over Rational Field]
We construct a typical parent in this category, and do some computations with it:
sage: A = C.example(); A An example of a Lie algebra: the Lie algebra from the associative algebra Symmetric group algebra of order 3 over Rational Field generated by ([2, 1, 3], [2, 3, 1]) sage: A.category() Category of Lie algebras over Rational Field sage: A.base_ring() Rational Field sage: a,b = A.lie_algebra_generators() sage: a.bracket(b) -[1, 3, 2] + [3, 2, 1] sage: b.bracket(2*a + b) 2*[1, 3, 2] - 2*[3, 2, 1] sage: A.bracket(a, b) -[1, 3, 2] + [3, 2, 1]
Please see the source code of \(A\) (with
A??
) for how to implement other Lie algebras.Todo
Many of these tests should use Lie algebras that are not the minimal example and need to be added after trac ticket #16820 (and trac ticket #16823).
-
class
ElementMethods
¶ -
bracket
(rhs)¶ Return the Lie bracket
[self, rhs]
.EXAMPLES:
sage: L = LieAlgebras(QQ).example() sage: x,y = L.lie_algebra_generators() sage: x.bracket(y) -[1, 3, 2] + [3, 2, 1] sage: x.bracket(0) 0
-
exp
(lie_group=None)¶ Return the exponential of
self
inlie_group
.INPUT:
lie_group
– (optional) the Lie group to map into; Iflie_group
is not given, the Lie group associated to the parent Lie algebra ofself
is used.
EXAMPLES:
sage: L.<X,Y,Z> = LieAlgebra(QQ, 2, step=2) sage: g = (X + Y + Z).exp(); g exp(X + Y + Z) sage: h = X.exp(); h exp(X) sage: g.parent() Lie group G of Free Nilpotent Lie algebra on 3 generators (X, Y, Z) over Rational Field sage: g.parent() is h.parent() True
The Lie group can be specified explicitly:
sage: H = L.lie_group('H') sage: k = Z.exp(lie_group=H); k exp(Z) sage: k.parent() Lie group H of Free Nilpotent Lie algebra on 3 generators (X, Y, Z) over Rational Field sage: g.parent() == k.parent() False
-
killing_form
(x)¶ Return the Killing form of
self
andx
.EXAMPLES:
sage: L = LieAlgebras(QQ).FiniteDimensional().WithBasis().example() sage: a, b, c = L.lie_algebra_generators() sage: a.killing_form(b) 0
-
lift
()¶ Return the image of
self
under the canonical lift from the Lie algebra to its universal enveloping algebra.EXAMPLES:
sage: L = LieAlgebras(QQ).FiniteDimensional().WithBasis().example() sage: a, b, c = L.lie_algebra_generators() sage: elt = 3*a + b - c sage: elt.lift() 3*b0 + b1 - b2
sage: L.<x,y> = LieAlgebra(QQ, abelian=True) sage: x.lift() x
-
to_vector
()¶ Return the vector in
g.module()
corresponding to the elementself
ofg
(whereg
is the parent ofself
).Implement this if you implement
g.module()
. SeeLieAlgebras.module()
for how this is to be done.EXAMPLES:
sage: L = LieAlgebras(QQ).FiniteDimensional().WithBasis().example() sage: u = L((1, 0, 0)).to_vector(); u (1, 0, 0) sage: parent(u) Vector space of dimension 3 over Rational Field
-
-
class
FiniteDimensional
(base_category)¶ Bases:
sage.categories.category_with_axiom.CategoryWithAxiom_over_base_ring
-
WithBasis
¶ alias of
sage.categories.finite_dimensional_lie_algebras_with_basis.FiniteDimensionalLieAlgebrasWithBasis
-
extra_super_categories
()¶ Implements the fact that a finite dimensional Lie algebra over a finite ring is finite.
EXAMPLES:
sage: LieAlgebras(IntegerModRing(4)).FiniteDimensional().extra_super_categories() [Category of finite sets] sage: LieAlgebras(ZZ).FiniteDimensional().extra_super_categories() [] sage: LieAlgebras(GF(5)).FiniteDimensional().is_subcategory(Sets().Finite()) True sage: LieAlgebras(ZZ).FiniteDimensional().is_subcategory(Sets().Finite()) False sage: LieAlgebras(GF(5)).WithBasis().FiniteDimensional().is_subcategory(Sets().Finite()) True
-
-
Graded
¶ alias of
sage.categories.graded_lie_algebras.GradedLieAlgebras
-
class
Nilpotent
(base_category)¶ Bases:
sage.categories.category_with_axiom.CategoryWithAxiom_over_base_ring
Category of nilpotent Lie algebras.
-
class
ParentMethods
¶ -
baker_campbell_hausdorff
(X, Y, prec=None)¶ Return the element \(\log(\exp(X)\exp(Y))\).
The BCH formula is an expression for \(\log(\exp(X)\exp(Y))\) as a sum of Lie brackets of
X ` and ``Y
with rational coefficients. It is only defined if the base ring ofself
has a coercion from the rationals.INPUT:
X
– an element ofself
Y
– an element ofself
prec
– an integer; the maximum length of Lie brackets to be considered in the formula
EXAMPLES:
The BCH formula for the generators of a free nilpotent Lie algebra of step 4:
sage: L = LieAlgebra(QQ, 2, step=4) sage: L.inject_variables() Defining X_1, X_2, X_12, X_112, X_122, X_1112, X_1122, X_1222 sage: L.bch(X_1, X_2) X_1 + X_2 + 1/2*X_12 + 1/12*X_112 + 1/12*X_122 + 1/24*X_1122
An example of the BCH formula in a quotient:
sage: Q = L.quotient(X_112 + X_122) sage: x, y = Q.basis().list()[:2] sage: Q.bch(x, y) X_1 + X_2 + 1/2*X_12 - 1/24*X_1112
The BCH formula for a non-nilpotent Lie algebra requires the precision to be explicitly stated:
sage: L.<X,Y> = LieAlgebra(QQ) sage: L.bch(X, Y) Traceback (most recent call last): ... ValueError: the Lie algebra is not known to be nilpotent, so you must specify the precision sage: L.bch(X, Y, 4) X + 1/12*[X, [X, Y]] + 1/24*[X, [[X, Y], Y]] + 1/2*[X, Y] + 1/12*[[X, Y], Y] + Y
The BCH formula requires a coercion from the rationals:
sage: L.<X,Y,Z> = LieAlgebra(ZZ, 2, step=2) sage: L.bch(X, Y) Traceback (most recent call last): ... TypeError: the BCH formula is not well defined since Integer Ring has no coercion from Rational Field
-
bch
(X, Y, prec=None)¶ Return the element \(\log(\exp(X)\exp(Y))\).
The BCH formula is an expression for \(\log(\exp(X)\exp(Y))\) as a sum of Lie brackets of
X ` and ``Y
with rational coefficients. It is only defined if the base ring ofself
has a coercion from the rationals.INPUT:
X
– an element ofself
Y
– an element ofself
prec
– an integer; the maximum length of Lie brackets to be considered in the formula
EXAMPLES:
The BCH formula for the generators of a free nilpotent Lie algebra of step 4:
sage: L = LieAlgebra(QQ, 2, step=4) sage: L.inject_variables() Defining X_1, X_2, X_12, X_112, X_122, X_1112, X_1122, X_1222 sage: L.bch(X_1, X_2) X_1 + X_2 + 1/2*X_12 + 1/12*X_112 + 1/12*X_122 + 1/24*X_1122
An example of the BCH formula in a quotient:
sage: Q = L.quotient(X_112 + X_122) sage: x, y = Q.basis().list()[:2] sage: Q.bch(x, y) X_1 + X_2 + 1/2*X_12 - 1/24*X_1112
The BCH formula for a non-nilpotent Lie algebra requires the precision to be explicitly stated:
sage: L.<X,Y> = LieAlgebra(QQ) sage: L.bch(X, Y) Traceback (most recent call last): ... ValueError: the Lie algebra is not known to be nilpotent, so you must specify the precision sage: L.bch(X, Y, 4) X + 1/12*[X, [X, Y]] + 1/24*[X, [[X, Y], Y]] + 1/2*[X, Y] + 1/12*[[X, Y], Y] + Y
The BCH formula requires a coercion from the rationals:
sage: L.<X,Y,Z> = LieAlgebra(ZZ, 2, step=2) sage: L.bch(X, Y) Traceback (most recent call last): ... TypeError: the BCH formula is not well defined since Integer Ring has no coercion from Rational Field
-
bracket
(lhs, rhs)¶ Return the Lie bracket
[lhs, rhs]
after coercinglhs
andrhs
into elements ofself
.If
lhs
andrhs
are Lie algebras, then this constructs the product space, and if only one of them is a Lie algebra, then it constructs the corresponding ideal.EXAMPLES:
sage: L = LieAlgebras(QQ).example() sage: x,y = L.lie_algebra_generators() sage: L.bracket(x, x + y) -[1, 3, 2] + [3, 2, 1] sage: L.bracket(x, 0) 0 sage: L.bracket(0, x) 0
Constructing the product space:
sage: L = lie_algebras.Heisenberg(QQ, 1) sage: Z = L.bracket(L, L); Z Ideal (z) of Heisenberg algebra of rank 1 over Rational Field sage: L.bracket(L, Z) Ideal () of Heisenberg algebra of rank 1 over Rational Field
Constructing ideals:
sage: p,q,z = L.basis(); (p,q,z) (p1, q1, z) sage: L.bracket(3*p, L) Ideal (3*p1) of Heisenberg algebra of rank 1 over Rational Field sage: L.bracket(L, q+p) Ideal (p1 + q1) of Heisenberg algebra of rank 1 over Rational Field
-
from_vector
(v)¶ Return the element of
self
corresponding to the vectorv
inself.module()
.Implement this if you implement
module()
; see the documentation of the latter for how this is to be done.EXAMPLES:
sage: L = LieAlgebras(QQ).FiniteDimensional().WithBasis().example() sage: u = L.from_vector(vector(QQ, (1, 0, 0))); u (1, 0, 0) sage: parent(u) is L True
-
ideal
(*gens, **kwds)¶ Return the ideal of
self
generated bygens
.EXAMPLES:
sage: L = LieAlgebras(QQ).FiniteDimensional().WithBasis().example() sage: a, b, c = L.lie_algebra_generators() sage: L.ideal([2*a - c, b + c]) An example of a finite dimensional Lie algebra with basis: the 2-dimensional abelian Lie algebra over Rational Field with basis matrix: [ 1 0 -1/2] [ 0 1 1]
sage: L = LieAlgebras(QQ).example() sage: x,y = L.lie_algebra_generators() sage: L.ideal([x + y]) Traceback (most recent call last): ... NotImplementedError: ideals not yet implemented: see #16824
-
is_abelian
()¶ Return
True
if this Lie algebra is abelian.A Lie algebra \(\mathfrak{g}\) is abelian if \([x, y] = 0\) for all \(x, y \in \mathfrak{g}\).
EXAMPLES:
sage: L = LieAlgebras(QQ).example() sage: L.is_abelian() False sage: R = QQ['x,y'] sage: L = LieAlgebras(QQ).example(R.gens()) sage: L.is_abelian() True
sage: L.<x> = LieAlgebra(QQ,1) # todo: not implemented - #16823 sage: L.is_abelian() # todo: not implemented - #16823 True sage: L.<x,y> = LieAlgebra(QQ,2) # todo: not implemented - #16823 sage: L.is_abelian() # todo: not implemented - #16823 False
-
is_commutative
()¶ Return if
self
is commutative. This is equivalent toself
being abelian.EXAMPLES:
sage: L = LieAlgebras(QQ).example() sage: L.is_commutative() False
sage: L.<x> = LieAlgebra(QQ, 1) # todo: not implemented - #16823 sage: L.is_commutative() # todo: not implemented - #16823 True
-
is_ideal
(A)¶ Return if
self
is an ideal ofA
.EXAMPLES:
sage: L = LieAlgebras(QQ).example() sage: L.is_ideal(L) True
-
is_nilpotent
()¶ Return if
self
is a nilpotent Lie algebra.EXAMPLES:
sage: L = LieAlgebras(QQ).FiniteDimensional().WithBasis().example() sage: L.is_nilpotent() True
-
is_solvable
()¶ Return if
self
is a solvable Lie algebra.EXAMPLES:
sage: L = LieAlgebras(QQ).FiniteDimensional().WithBasis().example() sage: L.is_solvable() True
-
killing_form
(x, y)¶ Return the Killing form of
x
andy
.EXAMPLES:
sage: L = LieAlgebras(QQ).FiniteDimensional().WithBasis().example() sage: a, b, c = L.lie_algebra_generators() sage: L.killing_form(a, b+c) 0
-
lie_group
(name='G', **kwds)¶ Return the simply connected Lie group related to
self
.INPUT:
name
– string (default:'G'
); the name (symbol) given to the Lie group
EXAMPLES:
sage: L = lie_algebras.Heisenberg(QQ, 1) sage: G = L.lie_group('G'); G Lie group G of Heisenberg algebra of rank 1 over Rational Field
-
lift
()¶ Construct the lift morphism from
self
to the universal enveloping algebra ofself
(the latter is implemented asuniversal_enveloping_algebra()
).This is a Lie algebra homomorphism. It is injective if
self
is a free module over its base ring, or if the base ring is a \(\QQ\)-algebra.EXAMPLES:
sage: L = LieAlgebras(QQ).FiniteDimensional().WithBasis().example() sage: a, b, c = L.lie_algebra_generators() sage: lifted = L.lift(2*a + b - c); lifted 2*b0 + b1 - b2 sage: lifted.parent() is L.universal_enveloping_algebra() True
-
module
()¶ Return an \(R\)-module which is isomorphic to the underlying \(R\)-module of
self
.The rationale behind this method is to enable linear algebraic functionality on
self
(such as computing the span of a list of vectors inself
) via an isomorphism fromself
to an \(R\)-module (typically, although not always, an \(R\)-module of the form \(R^n\) for an \(n \in \NN\)) on which such functionality already exists. For this method to be of any use, it should return an \(R\)-module which has linear algebraic functionality thatself
does not have.For instance, if
self
has ordered basis \((e, f, h)\), thenself.module()
will be the \(R\)-module \(R^3\), and the elements \(e\), \(f\) and \(h\) ofself
will correspond to the basis vectors \((1, 0, 0)\), \((0, 1, 0)\) and \((0, 0, 1)\) ofself.module()
.This method
module()
needs to be set whenever a finite-dimensional Lie algebra with basis is intended to support linear algebra (which is, e.g., used in the computation of centralizers and lower central series). One then needs to also implement the \(R\)-module isomorphism fromself
toself.module()
in both directions; that is, implement:- a
to_vector
ElementMethod which sends every element ofself
to the corresponding element ofself.module()
; - a
from_vector
ParentMethod which sends every element ofself.module()
to an element ofself
.
The
from_vector
method will automatically serve as an element constructor ofself
(that is,self(v)
for anyv
inself.module()
will returnself.from_vector(v)
).Todo
Ensure that this is actually so.
EXAMPLES:
sage: L = LieAlgebras(QQ).FiniteDimensional().WithBasis().example() sage: L.module() Vector space of dimension 3 over Rational Field
- a
-
subalgebra
(gens, names=None, index_set=None, category=None)¶ Return the subalgebra of
self
generated bygens
.EXAMPLES:
sage: L = LieAlgebras(QQ).FiniteDimensional().WithBasis().example() sage: a, b, c = L.lie_algebra_generators() sage: L.subalgebra([2*a - c, b + c]) An example of a finite dimensional Lie algebra with basis: the 2-dimensional abelian Lie algebra over Rational Field with basis matrix: [ 1 0 -1/2] [ 0 1 1]
sage: L = LieAlgebras(QQ).example() sage: x,y = L.lie_algebra_generators() sage: L.subalgebra([x + y]) Traceback (most recent call last): ... NotImplementedError: subalgebras not yet implemented: see #17416
-
universal_enveloping_algebra
()¶ Return the universal enveloping algebra of
self
.EXAMPLES:
sage: L = LieAlgebras(QQ).FiniteDimensional().WithBasis().example() sage: L.universal_enveloping_algebra() Noncommutative Multivariate Polynomial Ring in b0, b1, b2 over Rational Field, nc-relations: {}
sage: L = LieAlgebra(QQ, 3, 'x', abelian=True) sage: L.universal_enveloping_algebra() Multivariate Polynomial Ring in x0, x1, x2 over Rational Field
See also
-
-
class
SubcategoryMethods
¶ -
Nilpotent
()¶ Return the full subcategory of nilpotent objects of
self
.A Lie algebra \(L\) is nilpotent if there exist an integer \(s\) such that all iterated brackets of \(L\) of length more than \(s\) vanish. The integer \(s\) is called the nilpotency step. For instance any abelian Lie algebra is nilpotent of step 1.
EXAMPLES:
sage: LieAlgebras(QQ).Nilpotent() Category of nilpotent Lie algebras over Rational Field sage: LieAlgebras(QQ).WithBasis().Nilpotent() Category of nilpotent lie algebras with basis over Rational Field
-
-
WithBasis
¶ alias of
sage.categories.lie_algebras_with_basis.LieAlgebrasWithBasis
-
example
(gens=None)¶ Return an example of a Lie algebra as per
Category.example
.EXAMPLES:
sage: LieAlgebras(QQ).example() An example of a Lie algebra: the Lie algebra from the associative algebra Symmetric group algebra of order 3 over Rational Field generated by ([2, 1, 3], [2, 3, 1])
Another set of generators can be specified as an optional argument:
sage: F.<x,y,z> = FreeAlgebra(QQ) sage: LieAlgebras(QQ).example(F.gens()) An example of a Lie algebra: the Lie algebra from the associative algebra Free Algebra on 3 generators (x, y, z) over Rational Field generated by (x, y, z)
-
super_categories
()¶ EXAMPLES:
sage: LieAlgebras(QQ).super_categories() [Category of vector spaces over Rational Field]
-
class
-
class
sage.categories.lie_algebras.
LiftMorphism
(domain, codomain)¶ Bases:
sage.categories.morphism.Morphism
The natural lifting morphism from a Lie algebra to its enveloping algebra.