Factory for symbolic functions¶
-
sage.symbolic.function_factory.
deprecated_custom_evalf_wrapper
(func)¶ This is used while pickling old symbolic functions that define a custom evalf method.
The protocol for numeric evaluation functions was changed to include a
parent
argument instead ofprec
. This function creates a wrapper around the old custom method, which extracts the precision information from the givenparent
, and passes it on to the old function.EXAMPLES:
sage: from sage.symbolic.function_factory import deprecated_custom_evalf_wrapper as dcew sage: def old_func(x, prec=0): print("x: %s, prec: %s" % (x, prec)) sage: new_func = dcew(old_func) sage: new_func(5, parent=RR) x: 5, prec: 53 sage: new_func(0r, parent=ComplexField(100)) x: 0, prec: 100
-
sage.symbolic.function_factory.
function
(s, *args, **kwds)¶ Create a formal symbolic function with the name s.
INPUT:
args
- arguments to the function, if specified returns the new function evaluated at the given arguments (deprecated as of trac ticket #17447)nargs=0
- number of arguments the function accepts, defaults to variable number of arguments, or 0latex_name
- name used when printing in latex modeconversions
- a dictionary specifying names of this function in other systems, this is used by the interfaces internally during conversioneval_func
- method used for automatic evaluationevalf_func
- method used for numeric evaluationevalf_params_first
- bool to indicate if parameters should be evaluated numerically before calling the custom evalf functionconjugate_func
- method used for complex conjugationreal_part_func
- method used when taking real partsimag_part_func
- method used when taking imaginary partsderivative_func
- method to be used for (partial) derivation This method should take a keyword argument deriv_param specifying the index of the argument to differentiate w.r.ttderivative_func
- method to be used for derivativespower_func
- method used when taking powers This method should take a keyword argument power_param specifying the exponentseries_func
- method used for series expansion This method should expect keyword arguments -order
- order for the expansion to be computed -var
- variable to expand w.r.t. -at
- expand at this valueprint_func
- method for custom printingprint_latex_func
- method for custom printing in latex mode
Note that custom methods must be instance methods, i.e., expect the instance of the symbolic function as the first argument.
EXAMPLES:
sage: from sage.symbolic.function_factory import function sage: var('a, b') (a, b) sage: cr = function('cr') sage: f = cr(a) sage: g = f.diff(a).integral(b) sage: g b*diff(cr(a), a) sage: foo = function("foo", nargs=2) sage: x,y,z = var("x y z") sage: foo(x, y) + foo(y, z)^2 foo(y, z)^2 + foo(x, y)
In Sage 4.0, you need to use
substitute_function()
to replace all occurrences of a function with another:sage: g.substitute_function(cr, cos) -b*sin(a) sage: g.substitute_function(cr, (sin(x) + cos(x)).function(x)) b*(cos(a) - sin(a))
In Sage 4.0, basic arithmetic with unevaluated functions is no longer supported:
sage: x = var('x') sage: f = function('f') sage: 2*f Traceback (most recent call last): ... TypeError: unsupported operand parent(s) for *: 'Integer Ring' and '<class 'sage.symbolic.function_factory...NewSymbolicFunction'>'
You now need to evaluate the function in order to do the arithmetic:
sage: 2*f(x) 2*f(x)
We create a formal function of one variable, write down an expression that involves first and second derivatives, and extract off coefficients.
sage: r, kappa = var('r,kappa') sage: psi = function('psi', nargs=1)(r); psi psi(r) sage: g = 1/r^2*(2*r*psi.derivative(r,1) + r^2*psi.derivative(r,2)); g (r^2*diff(psi(r), r, r) + 2*r*diff(psi(r), r))/r^2 sage: g.expand() 2*diff(psi(r), r)/r + diff(psi(r), r, r) sage: g.coefficient(psi.derivative(r,2)) 1 sage: g.coefficient(psi.derivative(r,1)) 2/r
Defining custom methods for automatic or numeric evaluation, derivation, conjugation, etc. is supported:
sage: def ev(self, x): return 2*x sage: foo = function("foo", nargs=1, eval_func=ev) sage: foo(x) 2*x sage: foo = function("foo", nargs=1, eval_func=lambda self, x: 5) sage: foo(x) 5 sage: def ef(self, x): pass sage: bar = function("bar", nargs=1, eval_func=ef) sage: bar(x) bar(x) sage: def evalf_f(self, x, parent=None, algorithm=None): return 6 sage: foo = function("foo", nargs=1, evalf_func=evalf_f) sage: foo(x) foo(x) sage: foo(x).n() 6 sage: foo = function("foo", nargs=1, conjugate_func=ev) sage: foo(x).conjugate() 2*x sage: def deriv(self, *args,**kwds): ....: print("{} {}".format(args, kwds)) ....: return args[kwds['diff_param']]^2 sage: foo = function("foo", nargs=2, derivative_func=deriv) sage: foo(x,y).derivative(y) (x, y) {'diff_param': 1} y^2 sage: def pow(self, x, power_param=None): ....: print("{} {}".format(x, power_param)) ....: return x*power_param sage: foo = function("foo", nargs=1, power_func=pow) sage: foo(y)^(x+y) y x + y (x + y)*y sage: def expand(self, *args, **kwds): ....: print("{} {}".format(args, sorted(kwds.items()))) ....: return sum(args[0]^i for i in range(kwds['order'])) sage: foo = function("foo", nargs=1, series_func=expand) sage: foo(y).series(y, 5) (y,) [('at', 0), ('options', 0), ('order', 5), ('var', y)] y^4 + y^3 + y^2 + y + 1 sage: def my_print(self, *args): return "my args are: " + ', '.join(map(repr, args)) sage: foo = function('t', nargs=2, print_func=my_print) sage: foo(x,y^z) my args are: x, y^z sage: latex(foo(x,y^z)) t\left(x, y^{z}\right) sage: foo = function('t', nargs=2, print_latex_func=my_print) sage: foo(x,y^z) t(x, y^z) sage: latex(foo(x,y^z)) my args are: x, y^z sage: foo = function('t', nargs=2, latex_name='foo') sage: latex(foo(x,y^z)) foo\left(x, y^{z}\right)
Chain rule:
sage: def print_args(self, *args, **kwds): print("args: {}".format(args)); print("kwds: {}".format(kwds)); return args[0] sage: foo = function('t', nargs=2, tderivative_func=print_args) sage: foo(x,x).derivative(x) args: (x, x) kwds: {'diff_param': x} x sage: foo = function('t', nargs=2, derivative_func=print_args) sage: foo(x,x).derivative(x) args: (x, x) kwds: {'diff_param': 0} args: (x, x) kwds: {'diff_param': 1} 2*x
-
sage.symbolic.function_factory.
function_factory
(name, nargs=0, latex_name=None, conversions=None, evalf_params_first=True, eval_func=None, evalf_func=None, conjugate_func=None, real_part_func=None, imag_part_func=None, derivative_func=None, tderivative_func=None, power_func=None, series_func=None, print_func=None, print_latex_func=None)¶ Create a formal symbolic function. For an explanation of the arguments see the documentation for the method
function()
.EXAMPLES:
sage: from sage.symbolic.function_factory import function_factory sage: f = function_factory('f', 2, '\\foo', {'mathematica':'Foo'}) sage: f(2,4) f(2, 4) sage: latex(f(1,2)) \foo\left(1, 2\right) sage: f._mathematica_init_() 'Foo' sage: def evalf_f(self, x, parent=None, algorithm=None): return x*.5r sage: g = function_factory('g',1,evalf_func=evalf_f) sage: g(2) g(2) sage: g(2).n() 1.00000000000000
-
sage.symbolic.function_factory.
unpickle_function
(name, nargs, latex_name, conversions, evalf_params_first, pickled_funcs)¶ This is returned by the
__reduce__
method of symbolic functions to be called during unpickling to recreate the given function.It calls
function_factory()
with the supplied arguments.EXAMPLES:
sage: from sage.symbolic.function_factory import unpickle_function sage: nf = unpickle_function('f', 2, '\\foo', {'mathematica':'Foo'}, True, []) sage: nf f sage: nf(1,2) f(1, 2) sage: latex(nf(x,x)) \foo\left(x, x\right) sage: nf._mathematica_init_() 'Foo' sage: from sage.symbolic.function import pickle_wrapper sage: def evalf_f(self, x, parent=None, algorithm=None): return 2r*x + 5r sage: def conjugate_f(self, x): return x/2r sage: nf = unpickle_function('g', 1, None, None, True, [None, pickle_wrapper(evalf_f), pickle_wrapper(conjugate_f)] + [None]*8) sage: nf g sage: nf(2) g(2) sage: nf(2).n() 9.00000000000000 sage: nf(2).conjugate() 1