Möbius Algebras

class sage.combinat.posets.moebius_algebra.BasisAbstract(R, basis_keys=None, element_class=None, category=None, prefix=None, names=None, **kwds)

Bases: sage.combinat.free_module.CombinatorialFreeModule, sage.misc.bindable_class.BindableClass

Abstract base class for a basis.

class sage.combinat.posets.moebius_algebra.MoebiusAlgebra(R, L)

Bases: sage.structure.parent.Parent, sage.structure.unique_representation.UniqueRepresentation

The Möbius algebra of a lattice.

Let L be a lattice. The Möbius algebra ML was originally constructed by Solomon [Solomon67] and has a natural basis {ExxL} with multiplication given by ExEy=Exy. Moreover this has a basis given by orthogonal idempotents {IxxL} (so IxIy=δxyIx where δ is the Kronecker delta) related to the natural basis by

Ix=xyμL(x,y)Ey,

where μL is the Möbius function of L.

Note

We use the join for our multiplication, whereas [Greene73] and [Etienne98] define the Möbius algebra using the meet . This is done for compatibility with QuantumMoebiusAlgebra.

REFERENCES:

[Solomon67]Louis Solomon. The Burnside Algebra of a Finite Group. Journal of Combinatorial Theory, 2, 1967. doi:10.1016/S0021-9800(67)80064-4.
[Greene73]Curtis Greene. On the Möbius algebra of a partially ordered set. Advances in Mathematics, 10, 1973. doi:10.1016/0001-8708(73)90106-0.
[Etienne98]Gwihen Etienne. On the Möbius algebra of geometric lattices. European Journal of Combinatorics, 19, 1998. doi:10.1006/eujc.1998.0227.
class E(M, prefix='E')

Bases: sage.combinat.posets.moebius_algebra.BasisAbstract

The natural basis of a Möbius algebra.

Let Ex and Ey be basis elements of ML for some lattice L. Multiplication is given by ExEy=Exy.

one()

Return the element 1 of self.

EXAMPLES:

sage: L = posets.BooleanLattice(4)
sage: E = L.moebius_algebra(QQ).E()
sage: E.one()
E[0]
product_on_basis(x, y)

Return the product of basis elements indexed by x and y.

EXAMPLES:

sage: L = posets.BooleanLattice(4)
sage: E = L.moebius_algebra(QQ).E()
sage: E.product_on_basis(5, 14)
E[15]
sage: E.product_on_basis(2, 8)
E[10]
class I(M, prefix='I')

Bases: sage.combinat.posets.moebius_algebra.BasisAbstract

The (orthogonal) idempotent basis of a Möbius algebra.

Let Ix and Iy be basis elements of ML for some lattice L. Multiplication is given by IxIy=δxyIx where δxy is the Kronecker delta.

one()

Return the element 1 of self.

EXAMPLES:

sage: L = posets.BooleanLattice(4)
sage: I = L.moebius_algebra(QQ).I()
sage: I.one()
I[0] + I[1] + I[2] + I[3] + I[4] + I[5] + I[6] + I[7] + I[8]
 + I[9] + I[10] + I[11] + I[12] + I[13] + I[14] + I[15]
product_on_basis(x, y)

Return the product of basis elements indexed by x and y.

EXAMPLES:

sage: L = posets.BooleanLattice(4)
sage: I = L.moebius_algebra(QQ).I()
sage: I.product_on_basis(5, 14)
0
sage: I.product_on_basis(2, 2)
I[2]
a_realization()

Return a particular realization of self (the B-basis).

EXAMPLES:

sage: L = posets.BooleanLattice(4)
sage: M = L.moebius_algebra(QQ)
sage: M.a_realization()
Moebius algebra of Finite lattice containing 16 elements
 over Rational Field in the natural basis
idempotent

alias of MoebiusAlgebra.I

lattice()

Return the defining lattice of self.

EXAMPLES:

sage: L = posets.BooleanLattice(4)
sage: M = L.moebius_algebra(QQ)
sage: M.lattice()
Finite lattice containing 16 elements
sage: M.lattice() == L
True
natural

alias of MoebiusAlgebra.E

class sage.combinat.posets.moebius_algebra.MoebiusAlgebraBases(parent_with_realization)

Bases: sage.categories.realizations.Category_realization_of_parent

The category of bases of a Möbius algebra.

INPUT:

  • base – a Möbius algebra
class ElementMethods
class ParentMethods
one()

Return the element 1 of self.

EXAMPLES:

sage: L = posets.BooleanLattice(4)
sage: C = L.quantum_moebius_algebra().C()
sage: all(C.one() * b == b for b in C.basis())
True
product_on_basis(x, y)

Return the product of basis elements indexed by x and y.

EXAMPLES:

sage: L = posets.BooleanLattice(4)
sage: C = L.quantum_moebius_algebra().C()
sage: C.product_on_basis(5, 14)
q^3*C[15]
sage: C.product_on_basis(2, 8)
q^4*C[10]
super_categories()

The super categories of self.

EXAMPLES:

sage: from sage.combinat.posets.moebius_algebra import MoebiusAlgebraBases
sage: M = posets.BooleanLattice(4).moebius_algebra(QQ)
sage: bases = MoebiusAlgebraBases(M)
sage: bases.super_categories()
[Category of finite dimensional commutative algebras with basis over Rational Field,
 Category of realizations of Moebius algebra of Finite lattice
    containing 16 elements over Rational Field]
class sage.combinat.posets.moebius_algebra.QuantumMoebiusAlgebra(L, q=None)

Bases: sage.structure.parent.Parent, sage.structure.unique_representation.UniqueRepresentation

The quantum Möbius algebra of a lattice.

Let L be a lattice, and we define the quantum Möbius algebra ML(q) as the algebra with basis {ExxL} with multiplication given by

ExEy=zaxyμL(a,z)qcrkaEz,

where μL is the Möbius function of L and crk is the corank function (i.e., crka=rankLrank a). At q=1, this reduces to the multiplication formula originally given by Solomon.

class C(M, prefix='C')

Bases: sage.combinat.posets.moebius_algebra.BasisAbstract

The characteristic basis of a quantum Möbius algebra.

The characteristic basis {CxxL} of ML for some lattice L is defined by

Cx=axP(Fx;q)Ea,

where Fx={yLyx} is the principal order filter of x and P(Fx;q) is the characteristic polynomial of the (sub)poset Fx.

class E(M, prefix='E')

Bases: sage.combinat.posets.moebius_algebra.BasisAbstract

The natural basis of a quantum Möbius algebra.

Let Ex and Ey be basis elements of ML for some lattice L. Multiplication is given by

ExEy=zaxyμL(a,z)qcrkaEz,

where μL is the Möbius function of L and crk is the corank function (i.e., crka=rankLrank a).

one()

Return the element 1 of self.

EXAMPLES:

sage: L = posets.BooleanLattice(4)
sage: E = L.quantum_moebius_algebra().E()
sage: all(E.one() * b == b for b in E.basis())
True
product_on_basis(x, y)

Return the product of basis elements indexed by x and y.

EXAMPLES:

sage: L = posets.BooleanLattice(4)
sage: E = L.quantum_moebius_algebra().E()
sage: E.product_on_basis(5, 14)
E[15]
sage: E.product_on_basis(2, 8)
q^2*E[10] + (q-q^2)*E[11] + (q-q^2)*E[14] + (1-2*q+q^2)*E[15]
class KL(M, prefix='KL')

Bases: sage.combinat.posets.moebius_algebra.BasisAbstract

The Kazhdan-Lusztig basis of a quantum Möbius algebra.

The Kazhdan-Lusztig basis {BxxL} of ML for some lattice L is defined by

Bx=yxPx,y(q)Ea,

where Px,y(q) is the Kazhdan-Lusztig polynomial of L, following the definition given in [EPW14].

EXAMPLES:

We construct some examples of Proposition 4.5 of [EPW14]:

sage: M = posets.BooleanLattice(4).quantum_moebius_algebra()
sage: KL = M.KL()
sage: KL[4] * KL[5]
(q^2+q^3)*KL[5] + (q+2*q^2+q^3)*KL[7] + (q+2*q^2+q^3)*KL[13]
 + (1+3*q+3*q^2+q^3)*KL[15]
sage: KL[4] * KL[15]
(1+3*q+3*q^2+q^3)*KL[15]
sage: KL[4] * KL[10]
(q+3*q^2+3*q^3+q^4)*KL[14] + (1+4*q+6*q^2+4*q^3+q^4)*KL[15]
a_realization()

Return a particular realization of self (the B-basis).

EXAMPLES:

sage: L = posets.BooleanLattice(4)
sage: M = L.quantum_moebius_algebra()
sage: M.a_realization()
Quantum Moebius algebra of Finite lattice containing 16 elements
 with q=q over Univariate Laurent Polynomial Ring in q
 over Integer Ring in the natural basis
characteristic_basis

alias of QuantumMoebiusAlgebra.C

kazhdan_lusztig

alias of QuantumMoebiusAlgebra.KL

lattice()

Return the defining lattice of self.

EXAMPLES:

sage: L = posets.BooleanLattice(4)
sage: M = L.quantum_moebius_algebra()
sage: M.lattice()
Finite lattice containing 16 elements
sage: M.lattice() == L
True
natural

alias of QuantumMoebiusAlgebra.E