Descent Algebras¶
AUTHORS:
- Travis Scrimshaw (2013-07-28): Initial version
-
class
sage.combinat.descent_algebra.
DescentAlgebra
(R, n)¶ Bases:
sage.structure.unique_representation.UniqueRepresentation
,sage.structure.parent.Parent
Solomon’s descent algebra.
The descent algebra \(\Sigma_n\) over a ring \(R\) is a subalgebra of the symmetric group algebra \(R S_n\). (The product in the latter algebra is defined by \((pq)(i) = q(p(i))\) for any two permutations \(p\) and \(q\) in \(S_n\) and every \(i \in \{ 1, 2, \ldots, n \}\). The algebra \(\Sigma_n\) inherits this product.)
There are three bases currently implemented for \(\Sigma_n\):
- the standard basis \(D_S\) of (sums of) descent classes, indexed by subsets \(S\) of \(\{1, 2, \ldots, n-1\}\),
- the subset basis \(B_p\), indexed by compositions \(p\) of \(n\),
- the idempotent basis \(I_p\), indexed by compositions \(p\) of \(n\), which is used to construct the mutually orthogonal idempotents of the symmetric group algebra.
The idempotent basis is only defined when \(R\) is a \(\QQ\)-algebra.
We follow the notations and conventions in [GR1989], apart from the order of multiplication being different from the one used in that article. Schocker’s exposition [Sch2004], in turn, uses the same order of multiplication as we are, but has different notations for the bases.
INPUT:
R
– the base ringn
– a nonnegative integer
REFERENCES:
EXAMPLES:
sage: DA = DescentAlgebra(QQ, 4) sage: D = DA.D(); D Descent algebra of 4 over Rational Field in the standard basis sage: B = DA.B(); B Descent algebra of 4 over Rational Field in the subset basis sage: I = DA.I(); I Descent algebra of 4 over Rational Field in the idempotent basis sage: basis_B = B.basis() sage: elt = basis_B[Composition([1,2,1])] + 4*basis_B[Composition([1,3])]; elt B[1, 2, 1] + 4*B[1, 3] sage: D(elt) 5*D{} + 5*D{1} + D{1, 3} + D{3} sage: I(elt) 7/6*I[1, 1, 1, 1] + 2*I[1, 1, 2] + 3*I[1, 2, 1] + 4*I[1, 3]
As syntactic sugar, one can use the notation
D[i,...,l]
to construct elements of the basis; note that for the empty set one must useD[[]]
due to Python’s syntax:sage: D[[]] + D[2] + 2*D[1,2] D{} + 2*D{1, 2} + D{2}
The same syntax works for the other bases:
sage: I[1,2,1] + 3*I[4] + 2*I[3,1] I[1, 2, 1] + 2*I[3, 1] + 3*I[4]
-
class
B
(alg, prefix='B')¶ Bases:
sage.combinat.free_module.CombinatorialFreeModule
,sage.misc.bindable_class.BindableClass
The subset basis of a descent algebra (indexed by compositions).
The subset basis \((B_S)_{S \subseteq \{1, 2, \ldots, n-1\}}\) of \(\Sigma_n\) is formed by
\[B_S = \sum_{T \subseteq S} D_T,\]where \((D_S)_{S \subseteq \{1, 2, \ldots, n-1\}}\) is the
standard basis
. However it is more natural to index the subset basis by compositions of \(n\) under the bijection \(\{i_1, i_2, \ldots, i_k\} \mapsto (i_1, i_2 - i_1, i_3 - i_2, \ldots, i_k - i_{k-1}, n - i_k)\) (where \(i_1 < i_2 < \cdots < i_k\)), which is what Sage uses to index the basis.The basis element \(B_p\) is denoted \(\Xi^p\) in [Sch2004].
By using compositions of \(n\), the product \(B_p B_q\) becomes a sum over the non-negative-integer matrices \(M\) with row sum \(p\) and column sum \(q\). The summand corresponding to \(M\) is \(B_c\), where \(c\) is the composition obtained by reading \(M\) row-by-row from left-to-right and top-to-bottom and removing all zeroes. This multiplication rule is commonly called “Solomon’s Mackey formula”.
EXAMPLES:
sage: DA = DescentAlgebra(QQ, 4) sage: B = DA.B() sage: list(B.basis()) [B[1, 1, 1, 1], B[1, 1, 2], B[1, 2, 1], B[1, 3], B[2, 1, 1], B[2, 2], B[3, 1], B[4]]
-
one_basis
()¶ Return the identity element which is the composition \([n]\), as per
AlgebrasWithBasis.ParentMethods.one_basis
.EXAMPLES:
sage: DescentAlgebra(QQ, 4).B().one_basis() [4] sage: DescentAlgebra(QQ, 0).B().one_basis() [] sage: all( U * DescentAlgebra(QQ, 3).B().one() == U ....: for U in DescentAlgebra(QQ, 3).B().basis() ) True
-
product_on_basis
(p, q)¶ Return \(B_p B_q\), where \(p\) and \(q\) are compositions of \(n\).
EXAMPLES:
sage: DA = DescentAlgebra(QQ, 4) sage: B = DA.B() sage: p = Composition([1,2,1]) sage: q = Composition([3,1]) sage: B.product_on_basis(p, q) B[1, 1, 1, 1] + 2*B[1, 2, 1]
-
to_D_basis
(p)¶ Return \(B_p\) as a linear combination of \(D\)-basis elements.
EXAMPLES:
sage: DA = DescentAlgebra(QQ, 4) sage: B = DA.B() sage: D = DA.D() sage: list(map(D, B.basis())) # indirect doctest [D{} + D{1} + D{1, 2} + D{1, 2, 3} + D{1, 3} + D{2} + D{2, 3} + D{3}, D{} + D{1} + D{1, 2} + D{2}, D{} + D{1} + D{1, 3} + D{3}, D{} + D{1}, D{} + D{2} + D{2, 3} + D{3}, D{} + D{2}, D{} + D{3}, D{}]
-
to_I_basis
(p)¶ Return \(B_p\) as a linear combination of \(I\)-basis elements.
This is done using the formula
\[B_p = \sum_{q \leq p} \frac{1}{\mathbf{k}!(q,p)} I_q,\]where \(\leq\) is the refinement order and \(\mathbf{k}!(q,p)\) is defined as follows: When \(q \leq p\), we can write \(q\) as a concatenation \(q_{(1)} q_{(2)} \cdots q_{(k)}\) with each \(q_{(i)}\) being a composition of the \(i\)-th entry of \(p\), and then we set \(\mathbf{k}!(q,p)\) to be \(l(q_{(1)})! l(q_{(2)})! \cdots l(q_{(k)})!\), where \(l(r)\) denotes the number of parts of any composition \(r\).
EXAMPLES:
sage: DA = DescentAlgebra(QQ, 4) sage: B = DA.B() sage: I = DA.I() sage: list(map(I, B.basis())) # indirect doctest [I[1, 1, 1, 1], 1/2*I[1, 1, 1, 1] + I[1, 1, 2], 1/2*I[1, 1, 1, 1] + I[1, 2, 1], 1/6*I[1, 1, 1, 1] + 1/2*I[1, 1, 2] + 1/2*I[1, 2, 1] + I[1, 3], 1/2*I[1, 1, 1, 1] + I[2, 1, 1], 1/4*I[1, 1, 1, 1] + 1/2*I[1, 1, 2] + 1/2*I[2, 1, 1] + I[2, 2], 1/6*I[1, 1, 1, 1] + 1/2*I[1, 2, 1] + 1/2*I[2, 1, 1] + I[3, 1], 1/24*I[1, 1, 1, 1] + 1/6*I[1, 1, 2] + 1/6*I[1, 2, 1] + 1/2*I[1, 3] + 1/6*I[2, 1, 1] + 1/2*I[2, 2] + 1/2*I[3, 1] + I[4]]
-
to_nsym
(p)¶ Return \(B_p\) as an element in \(NSym\), the non-commutative symmetric functions.
This maps \(B_p\) to \(S_p\) where \(S\) denotes the Complete basis of \(NSym\).
EXAMPLES:
sage: B = DescentAlgebra(QQ, 4).B() sage: S = NonCommutativeSymmetricFunctions(QQ).Complete() sage: list(map(S, B.basis())) # indirect doctest [S[1, 1, 1, 1], S[1, 1, 2], S[1, 2, 1], S[1, 3], S[2, 1, 1], S[2, 2], S[3, 1], S[4]]
-
-
class
D
(alg, prefix='D')¶ Bases:
sage.combinat.free_module.CombinatorialFreeModule
,sage.misc.bindable_class.BindableClass
The standard basis of a descent algebra.
This basis is indexed by \(S \subseteq \{1, 2, \ldots, n-1\}\), and the basis vector indexed by \(S\) is the sum of all permutations, taken in the symmetric group algebra \(R S_n\), whose descent set is \(S\). We denote this basis vector by \(D_S\).
Occasionally this basis appears in literature but indexed by compositions of \(n\) rather than subsets of \(\{1, 2, \ldots, n-1\}\). The equivalence between these two indexings is owed to the bijection from the power set of \(\{1, 2, \ldots, n-1\}\) to the set of all compositions of \(n\) which sends every subset \(\{i_1, i_2, \ldots, i_k\}\) of \(\{1, 2, \ldots, n-1\}\) (with \(i_1 < i_2 < \cdots < i_k\)) to the composition \((i_1, i_2-i_1, \ldots, i_k-i_{k-1}, n-i_k)\).
The basis element corresponding to a composition \(p\) (or to the subset of \(\{1, 2, \ldots, n-1\}\)) is denoted \(\Delta^p\) in [Sch2004].
EXAMPLES:
sage: DA = DescentAlgebra(QQ, 4) sage: D = DA.D() sage: list(D.basis()) [D{}, D{1}, D{2}, D{3}, D{1, 2}, D{1, 3}, D{2, 3}, D{1, 2, 3}] sage: DA = DescentAlgebra(QQ, 0) sage: D = DA.D() sage: list(D.basis()) [D{}]
-
one_basis
()¶ Return the identity element, as per
AlgebrasWithBasis.ParentMethods.one_basis
.EXAMPLES:
sage: DescentAlgebra(QQ, 4).D().one_basis() () sage: DescentAlgebra(QQ, 0).D().one_basis() () sage: all( U * DescentAlgebra(QQ, 3).D().one() == U ....: for U in DescentAlgebra(QQ, 3).D().basis() ) True
-
product_on_basis
(S, T)¶ Return \(D_S D_T\), where \(S\) and \(T\) are subsets of \([n-1]\).
EXAMPLES:
sage: DA = DescentAlgebra(QQ, 4) sage: D = DA.D() sage: D.product_on_basis((1, 3), (2,)) D{} + D{1} + D{1, 2} + 2*D{1, 2, 3} + D{1, 3} + D{2} + D{2, 3} + D{3}
-
to_B_basis
(S)¶ Return \(D_S\) as a linear combination of \(B_p\)-basis elements.
EXAMPLES:
sage: DA = DescentAlgebra(QQ, 4) sage: D = DA.D() sage: B = DA.B() sage: list(map(B, D.basis())) # indirect doctest [B[4], B[1, 3] - B[4], B[2, 2] - B[4], B[3, 1] - B[4], B[1, 1, 2] - B[1, 3] - B[2, 2] + B[4], B[1, 2, 1] - B[1, 3] - B[3, 1] + B[4], B[2, 1, 1] - B[2, 2] - B[3, 1] + B[4], B[1, 1, 1, 1] - B[1, 1, 2] - B[1, 2, 1] + B[1, 3] - B[2, 1, 1] + B[2, 2] + B[3, 1] - B[4]]
-
to_symmetric_group_algebra_on_basis
(S)¶ Return \(D_S\) as a linear combination of basis elements in the symmetric group algebra.
EXAMPLES:
sage: D = DescentAlgebra(QQ, 4).D() sage: [D.to_symmetric_group_algebra_on_basis(tuple(b)) ....: for b in Subsets(3)] [[1, 2, 3, 4], [2, 1, 3, 4] + [3, 1, 2, 4] + [4, 1, 2, 3], [1, 3, 2, 4] + [1, 4, 2, 3] + [2, 3, 1, 4] + [2, 4, 1, 3] + [3, 4, 1, 2], [1, 2, 4, 3] + [1, 3, 4, 2] + [2, 3, 4, 1], [3, 2, 1, 4] + [4, 2, 1, 3] + [4, 3, 1, 2], [2, 1, 4, 3] + [3, 1, 4, 2] + [3, 2, 4, 1] + [4, 1, 3, 2] + [4, 2, 3, 1], [1, 4, 3, 2] + [2, 4, 3, 1] + [3, 4, 2, 1], [4, 3, 2, 1]]
-
-
class
I
(alg, prefix='I')¶ Bases:
sage.combinat.free_module.CombinatorialFreeModule
,sage.misc.bindable_class.BindableClass
The idempotent basis of a descent algebra.
The idempotent basis \((I_p)_{p \models n}\) is a basis for \(\Sigma_n\) whenever the ground ring is a \(\QQ\)-algebra. One way to compute it is using the formula (Theorem 3.3 in [GR1989])
\[I_p = \sum_{q \leq p} \frac{(-1)^{l(q)-l(p)}}{\mathbf{k}(q,p)} B_q,\]where \(\leq\) is the refinement order and \(l(r)\) denotes the number of parts of any composition \(r\), and where \(\mathbf{k}(q,p)\) is defined as follows: When \(q \leq p\), we can write \(q\) as a concatenation \(q_{(1)} q_{(2)} \cdots q_{(k)}\) with each \(q_{(i)}\) being a composition of the \(i\)-th entry of \(p\), and then we set \(\mathbf{k}(q,p)\) to be the product \(l(q_{(1)}) l(q_{(2)}) \cdots l(q_{(k)})\).
Let \(\lambda(p)\) denote the partition obtained from a composition \(p\) by sorting. This basis is called the idempotent basis since for any \(q\) such that \(\lambda(p) = \lambda(q)\), we have:
\[I_p I_q = s(\lambda) I_p\]where \(\lambda\) denotes \(\lambda(p) = \lambda(q)\), and where \(s(\lambda)\) is the stabilizer of \(\lambda\) in \(S_n\). (This is part of Theorem 4.2 in [GR1989].)
It is also straightforward to compute the idempotents \(E_{\lambda}\) for the symmetric group algebra by the formula (Theorem 3.2 in [GR1989]):
\[E_{\lambda} = \frac{1}{k!} \sum_{\lambda(p) = \lambda} I_p.\]Note
The basis elements are not orthogonal idempotents.
EXAMPLES:
sage: DA = DescentAlgebra(QQ, 4) sage: I = DA.I() sage: list(I.basis()) [I[1, 1, 1, 1], I[1, 1, 2], I[1, 2, 1], I[1, 3], I[2, 1, 1], I[2, 2], I[3, 1], I[4]]
-
idempotent
(la)¶ Return the idempotent corresponding to the partition
la
of \(n\).EXAMPLES:
sage: I = DescentAlgebra(QQ, 4).I() sage: E = I.idempotent([3,1]); E 1/2*I[1, 3] + 1/2*I[3, 1] sage: E*E == E True sage: E2 = I.idempotent([2,1,1]); E2 1/6*I[1, 1, 2] + 1/6*I[1, 2, 1] + 1/6*I[2, 1, 1] sage: E2*E2 == E2 True sage: E*E2 == I.zero() True
-
one
()¶ Return the identity element, which is \(B_{[n]}\), in the \(I\) basis.
EXAMPLES:
sage: DescentAlgebra(QQ, 4).I().one() 1/24*I[1, 1, 1, 1] + 1/6*I[1, 1, 2] + 1/6*I[1, 2, 1] + 1/2*I[1, 3] + 1/6*I[2, 1, 1] + 1/2*I[2, 2] + 1/2*I[3, 1] + I[4] sage: DescentAlgebra(QQ, 0).I().one() I[]
-
one_basis
()¶ The element \(1\) is not (generally) a basis vector in the \(I\) basis, thus this returns a
TypeError
.EXAMPLES:
sage: DescentAlgebra(QQ, 4).I().one_basis() Traceback (most recent call last): ... TypeError: 1 is not a basis element in the I basis.
-
product_on_basis
(p, q)¶ Return \(I_p I_q\), where \(p\) and \(q\) are compositions of \(n\).
EXAMPLES:
sage: DA = DescentAlgebra(QQ, 4) sage: I = DA.I() sage: p = Composition([1,2,1]) sage: q = Composition([3,1]) sage: I.product_on_basis(p, q) 0 sage: I.product_on_basis(p, p) 2*I[1, 2, 1]
-
to_B_basis
(p)¶ Return \(I_p\) as a linear combination of \(B\)-basis elements.
This is computed using the formula (Theorem 3.3 in [GR1989])
\[I_p = \sum_{q \leq p} \frac{(-1)^{l(q)-l(p)}}{\mathbf{k}(q,p)} B_q,\]where \(\leq\) is the refinement order and \(l(r)\) denotes the number of parts of any composition \(r\), and where \(\mathbf{k}(q,p)\) is defined as follows: When \(q \leq p\), we can write \(q\) as a concatenation \(q_{(1)} q_{(2)} \cdots q_{(k)}\) with each \(q_{(i)}\) being a composition of the \(i\)-th entry of \(p\), and then we set \(\mathbf{k}(q,p)\) to be \(l(q_{(1)}) l(q_{(2)}) \cdots l(q_{(k)})\).
EXAMPLES:
sage: DA = DescentAlgebra(QQ, 4) sage: B = DA.B() sage: I = DA.I() sage: list(map(B, I.basis())) # indirect doctest [B[1, 1, 1, 1], -1/2*B[1, 1, 1, 1] + B[1, 1, 2], -1/2*B[1, 1, 1, 1] + B[1, 2, 1], 1/3*B[1, 1, 1, 1] - 1/2*B[1, 1, 2] - 1/2*B[1, 2, 1] + B[1, 3], -1/2*B[1, 1, 1, 1] + B[2, 1, 1], 1/4*B[1, 1, 1, 1] - 1/2*B[1, 1, 2] - 1/2*B[2, 1, 1] + B[2, 2], 1/3*B[1, 1, 1, 1] - 1/2*B[1, 2, 1] - 1/2*B[2, 1, 1] + B[3, 1], -1/4*B[1, 1, 1, 1] + 1/3*B[1, 1, 2] + 1/3*B[1, 2, 1] - 1/2*B[1, 3] + 1/3*B[2, 1, 1] - 1/2*B[2, 2] - 1/2*B[3, 1] + B[4]]
-
-
a_realization
()¶ Return a particular realization of
self
(the \(B\)-basis).EXAMPLES:
sage: DA = DescentAlgebra(QQ, 4) sage: DA.a_realization() Descent algebra of 4 over Rational Field in the subset basis
-
idempotent
¶ alias of
DescentAlgebra.I
-
standard
¶ alias of
DescentAlgebra.D
-
subset
¶ alias of
DescentAlgebra.B
-
class
sage.combinat.descent_algebra.
DescentAlgebraBases
(base)¶ Bases:
sage.categories.realizations.Category_realization_of_parent
The category of bases of a descent algebra.
-
class
ElementMethods
¶ -
to_symmetric_group_algebra
()¶ Return
self
in the symmetric group algebra.EXAMPLES:
sage: B = DescentAlgebra(QQ, 4).B() sage: B[1,3].to_symmetric_group_algebra() [1, 2, 3, 4] + [2, 1, 3, 4] + [3, 1, 2, 4] + [4, 1, 2, 3] sage: I = DescentAlgebra(QQ, 4).I() sage: elt = I(B[1,3]) sage: elt.to_symmetric_group_algebra() [1, 2, 3, 4] + [2, 1, 3, 4] + [3, 1, 2, 4] + [4, 1, 2, 3]
-
-
class
ParentMethods
¶ -
is_commutative
()¶ Return whether this descent algebra is commutative.
EXAMPLES:
sage: B = DescentAlgebra(QQ, 4).B() sage: B.is_commutative() False sage: B = DescentAlgebra(QQ, 1).B() sage: B.is_commutative() True
-
is_field
(proof=True)¶ Return whether this descent algebra is a field.
EXAMPLES:
sage: B = DescentAlgebra(QQ, 4).B() sage: B.is_field() False sage: B = DescentAlgebra(QQ, 1).B() sage: B.is_field() True
-
to_symmetric_group_algebra
()¶ Morphism from
self
to the symmetric group algebra.EXAMPLES:
sage: D = DescentAlgebra(QQ, 4).D() sage: D.to_symmetric_group_algebra(D[1,3]) [2, 1, 4, 3] + [3, 1, 4, 2] + [3, 2, 4, 1] + [4, 1, 3, 2] + [4, 2, 3, 1] sage: B = DescentAlgebra(QQ, 4).B() sage: B.to_symmetric_group_algebra(B[1,2,1]) [1, 2, 3, 4] + [1, 2, 4, 3] + [1, 3, 4, 2] + [2, 1, 3, 4] + [2, 1, 4, 3] + [2, 3, 4, 1] + [3, 1, 2, 4] + [3, 1, 4, 2] + [3, 2, 4, 1] + [4, 1, 2, 3] + [4, 1, 3, 2] + [4, 2, 3, 1]
-
to_symmetric_group_algebra_on_basis
(S)¶ Return the basis element index by
S
as a linear combination of basis elements in the symmetric group algebra.EXAMPLES:
sage: B = DescentAlgebra(QQ, 3).B() sage: [B.to_symmetric_group_algebra_on_basis(c) ....: for c in Compositions(3)] [[1, 2, 3] + [1, 3, 2] + [2, 1, 3] + [2, 3, 1] + [3, 1, 2] + [3, 2, 1], [1, 2, 3] + [2, 1, 3] + [3, 1, 2], [1, 2, 3] + [1, 3, 2] + [2, 3, 1], [1, 2, 3]] sage: I = DescentAlgebra(QQ, 3).I() sage: [I.to_symmetric_group_algebra_on_basis(c) ....: for c in Compositions(3)] [[1, 2, 3] + [1, 3, 2] + [2, 1, 3] + [2, 3, 1] + [3, 1, 2] + [3, 2, 1], 1/2*[1, 2, 3] - 1/2*[1, 3, 2] + 1/2*[2, 1, 3] - 1/2*[2, 3, 1] + 1/2*[3, 1, 2] - 1/2*[3, 2, 1], 1/2*[1, 2, 3] + 1/2*[1, 3, 2] - 1/2*[2, 1, 3] + 1/2*[2, 3, 1] - 1/2*[3, 1, 2] - 1/2*[3, 2, 1], 1/3*[1, 2, 3] - 1/6*[1, 3, 2] - 1/6*[2, 1, 3] - 1/6*[2, 3, 1] - 1/6*[3, 1, 2] + 1/3*[3, 2, 1]]
-
-
super_categories
()¶ The super categories of
self
.EXAMPLES:
sage: from sage.combinat.descent_algebra import DescentAlgebraBases sage: DA = DescentAlgebra(QQ, 4) sage: bases = DescentAlgebraBases(DA) sage: bases.super_categories() [Category of finite dimensional algebras with basis over Rational Field, Category of realizations of Descent algebra of 4 over Rational Field]
-
class