Onsager Algebra¶
AUTHORS:
- Travis Scrimshaw (2017-07): Initial version
-
class
sage.algebras.lie_algebras.onsager.
OnsagerAlgebra
(R)¶ Bases:
sage.algebras.lie_algebras.lie_algebra.LieAlgebraWithGenerators
,sage.structure.indexed_generators.IndexedGenerators
The Onsager (Lie) algebra.
The Onsager (Lie) algebra \(\mathcal{O}\) is a Lie algebra with generators \(A_0, A_1\) that satisfy
\[[A_0, [A_0, [A_0, A_1]]] = -4 [A_0, A_1], \qquad [A_1, [A_1, [A_1, A_0]]] = -4 [A_1, A_0].\]Note
We are using a rescaled version of the usual defining generators.
There exist a basis \(\{A_m, G_n \mid m \in \ZZ, n \in \ZZ_{>0}\}\) for \(\mathcal{O}\) with structure coefficients
\[[A_m, A_{m'}] = G_{m-m'}, \qquad [G_n, G_{n'}] = 0, \qquad [G_n, A_m] = 2A_{m-n} - 2A_{m+n},\]where \(m > m'\).
The Onsager algebra is isomorphic to the subalgebra of the affine Lie algebra \(\widehat{\mathfrak{sl}}_2 = \mathfrak{sl}_2 \otimes \CC[t,t^{-1}] \oplus \CC K \oplus \CC d\) that is invariant under the Chevalley involution. In particular, we have
\[A_i \mapsto f \otimes t^i - e \otimes t^{-i}, \qquad G_i \mapsto h \otimes t^{-i} - h \otimes t^i.\]where \(e,f,h\) are the Chevalley generators of \(\mathfrak{sl}_2\).
EXAMPLES:
We construct the Onsager algebra and do some basic computations:
sage: O = lie_algebras.OnsagerAlgebra(QQ) sage: O.inject_variables() Defining A0, A1
We verify the defining relations:
sage: O([A0, [A0, [A0, A1]]]) == -4 * O([A0, A1]) True sage: O([A1, [A1, [A1, A0]]]) == -4 * O([A1, A0]) True
We check the embedding into \(\widehat{\mathfrak{sl}}_2\):
sage: L = LieAlgebra(QQ, cartan_type=['A',1,1]) sage: B = L.basis() sage: al = RootSystem(['A',1]).root_lattice().simple_root(1) sage: ac = al.associated_coroot() sage: def emb_A(i): return B[-al,i] - B[al,-i] sage: def emb_G(i): return B[ac,i] - B[ac,-i] sage: a0 = emb_A(0) sage: a1 = emb_A(1) sage: L([a0, [a0, [a0, a1]]]) == -4 * L([a0, a1]) True sage: L([a1, [a1, [a1, a0]]]) == -4 * L([a1, a0]) True sage: all(emb_G(n).bracket(emb_A(m)) == 2*emb_A(m-n) - 2*emb_A(m+n) ....: for m in range(-10, 10) for n in range(1,10)) True sage: all(emb_A(m).bracket(emb_A(mp)) == emb_G(m-mp) ....: for m in range(-10,10) for mp in range(m-10, m)) True
REFERENCES:
-
Element
¶ alias of
sage.algebras.lie_algebras.lie_algebra_element.LieAlgebraElement
-
basis
()¶ Return the basis of
self
.EXAMPLES:
sage: O = lie_algebras.OnsagerAlgebra(QQ) sage: O.basis() Lazy family (Onsager monomial(i))_{i in Disjoint union of Family (Integer Ring, Positive integers)}
-
bracket_on_basis
(x, y)¶ Return the bracket of basis elements indexed by
x
andy
wherex < y
.EXAMPLES:
sage: O = lie_algebras.OnsagerAlgebra(QQ) sage: O.bracket_on_basis((1,3), (1,9)) # [G, G] 0 sage: O.bracket_on_basis((0,8), (1,13)) # [A, G] -2*A[-5] + 2*A[21] sage: O.bracket_on_basis((0,-9), (0, 7)) # [A, A] -G[16]
-
lie_algebra_generators
()¶ Return the generators of
self
as a Lie algebra.EXAMPLES:
sage: O = lie_algebras.OnsagerAlgebra(QQ) sage: O.lie_algebra_generators() Finite family {'A0': A[0], 'A1': A[1]}
-
quantum_group
(q=None, c=None)¶ Return the quantum group of
self
.The corresponding quantum group is the
QuantumOnsagerAlgebra
. The parameter \(c\) must be such that \(c(1) = 1\)INPUT:
q
– (optional) the quantum parameter; the default is \(q \in R(q)\), where \(R\) is the base ring ofself
c
– (optional) the parameter \(c\); the default isq
EXAMPLES:
sage: O = lie_algebras.OnsagerAlgebra(QQ) sage: Q = O.quantum_group() sage: Q q-Onsager algebra with c=q over Fraction Field of Univariate Polynomial Ring in q over Rational Field
-
some_elements
()¶ Return some elements of
self
.EXAMPLES:
sage: O = lie_algebras.OnsagerAlgebra(QQ) sage: O.some_elements() [A[0], A[2], A[-1], G[4], -2*A[-3] + A[2] + 3*G[2]]
-
-
class
sage.algebras.lie_algebras.onsager.
QuantumOnsagerAlgebra
(g, q, c)¶ Bases:
sage.combinat.free_module.CombinatorialFreeModule
The quantum Onsager algebra.
The quantum Onsager algebra, or \(q\)-Onsager algebra, is a quantum group analog of the Onsager algebra. It is the left (or right) coideal subalgebra of the quantum group \(U_q(\widehat{\mathfrak{sl}}_2)\) and is the simplest example of a quantum symmetric pair coideal subalgebra of affine type.
The \(q\)-Onsager algebra depends on a parameter \(c\) such that \(c(1) = 1\). The \(q\)-Onsager algebra with parameter \(c\) is denoted \(U_q(\mathcal{O}_R)_c\), where \(R\) is the base ring of the defining Onsager algebra.
EXAMPLES:
We create the \(q\)-Onsager algebra and its generators:
sage: O = lie_algebras.OnsagerAlgebra(QQ) sage: Q = O.quantum_group() sage: G = Q.algebra_generators()
The generators are given as pairs, where \(G[0,n]\) is the generator \(B_{n\delta+\alpha_1}\) and \(G[1,n]\) is the generator \(B_{n\delta}\). We use the convention that \(n\delta + \alpha_1 \equiv (-n-1)\delta + \alpha_0\).
sage: G[0,5] B[5d+a1] sage: G[0,-5] B[4d+a0] sage: G[1,5] B[5d] sage: (G[0,5] + G[0,-3]) * (G[1,2] - G[0,3]) B[2d+a0]*B[2d] - B[2d+a0]*B[3d+a1] + ((-q^4+1)/q^2)*B[1d]*B[6d+a1] + ((q^4-1)/q^2)*B[1d]*B[4d+a1] + B[2d]*B[5d+a1] - B[5d+a1]*B[3d+a1] + ((q^2+1)/q^2)*B[7d+a1] + ((q^6+q^4-q^2-1)/q^2)*B[5d+a1] + (-q^4-q^2)*B[3d+a1] sage: (G[0,5] + G[0,-3] + G[1,4]) * (G[0,2] - G[1,3]) -B[2d+a0]*B[3d] + B[2d+a0]*B[2d+a1] + ((q^4-1)/q^4)*B[1d]*B[7d+a1] + ((q^8-2*q^4+1)/q^4)*B[1d]*B[5d+a1] + (-q^4+1)*B[1d]*B[3d+a1] + ((q^4-1)/q^2)*B[2d]*B[6d+a1] + ((-q^4+1)/q^2)*B[2d]*B[4d+a1] - B[3d]*B[4d] - B[3d]*B[5d+a1] + B[4d]*B[2d+a1] + B[5d+a1]*B[2d+a1] + ((-q^2-1)/q^4)*B[8d+a1] + ((-q^6-q^4+q^2+1)/q^4)*B[6d+a1] + (-q^6-q^4+q^2+1)*B[4d+a1] + (q^6+q^4)*B[2d+a1]
We check the \(q\)-Dolan-Grady relations:
sage: def q_dolan_grady(a, b, q): ....: x = q*a*b - ~q*b*a ....: y = ~q*a*x - q*x*a ....: return a*y - y*a sage: A0, A1 = G[0,-1], G[0,0] sage: q = Q.q() sage: q_dolan_grady(A1, A0, q) == (q^4 + 2*q^2 + 1) * (A0*A1 - A1*A0) True sage: q_dolan_grady(A0, A1, q) == (q^4 + 2*q^2 + 1) * (A1*A0 - A0*A1) True
REFERENCES:
-
algebra_generators
()¶ Return the algebra generators of
self
.EXAMPLES:
sage: O = lie_algebras.OnsagerAlgebra(QQ) sage: Q = O.quantum_group() sage: Q.algebra_generators() Lazy family (generator map(i))_{i in Disjoint union of Family (Integer Ring, Positive integers)}
-
c
()¶ Return the parameter \(c\) of
self
.EXAMPLES:
sage: O = lie_algebras.OnsagerAlgebra(QQ) sage: Q = O.quantum_group(c=-3) sage: Q.c() -3
-
degree_on_basis
(m)¶ Return the degree of the basis element indexed by
m
.EXAMPLES:
sage: O = lie_algebras.OnsagerAlgebra(QQ) sage: Q = O.quantum_group() sage: G = Q.algebra_generators() sage: B0 = G[0,0] sage: B1 = G[0,-1] sage: Q.degree_on_basis(B0.leading_support()) 1 sage: Q.degree_on_basis((B1^10 * B0^10).leading_support()) 20 sage: ((B0 * B1)^3).maximal_degree() 6
-
gens
()¶ Return the algebra generators of
self
.EXAMPLES:
sage: O = lie_algebras.OnsagerAlgebra(QQ) sage: Q = O.quantum_group() sage: Q.algebra_generators() Lazy family (generator map(i))_{i in Disjoint union of Family (Integer Ring, Positive integers)}
-
lie_algebra
()¶ Return the underlying Lie algebra of
self
.EXAMPLES:
sage: O = lie_algebras.OnsagerAlgebra(QQ) sage: Q = O.quantum_group() sage: Q.lie_algebra() Onsager algebra over Rational Field sage: Q.lie_algebra() is O True
-
one_basis
()¶ Return the basis element indexing \(1\).
EXAMPLES:
sage: O = lie_algebras.OnsagerAlgebra(QQ) sage: Q = O.quantum_group() sage: ob = Q.one_basis(); ob 1 sage: ob.parent() Free abelian monoid indexed by Disjoint union of Family (Integer Ring, Positive integers)
-
product_on_basis
(lhs, rhs)¶ Return the product of the two basis elements
lhs
andrhs
.EXAMPLES:
sage: O = lie_algebras.OnsagerAlgebra(QQ) sage: Q = O.quantum_group() sage: I = Q._indices.gens() sage: Q.product_on_basis(I[1,21]^2, I[1,31]^3) B[21d]^2*B[31d]^3 sage: Q.product_on_basis(I[1,31]^3, I[1,21]^2) B[21d]^2*B[31d]^3 sage: Q.product_on_basis(I[0,8], I[0,6]) B[8d+a1]*B[6d+a1] sage: Q.product_on_basis(I[0,-8], I[0,6]) B[7d+a0]*B[6d+a1] sage: Q.product_on_basis(I[0,-6], I[0,-8]) B[5d+a0]*B[7d+a0] sage: Q.product_on_basis(I[0,-6], I[1,2]) B[5d+a0]*B[2d] sage: Q.product_on_basis(I[1,6], I[0,2]) B[6d]*B[2d+a1] sage: Q.product_on_basis(I[0,1], I[0,2]) 1/q^2*B[2d+a1]*B[1d+a1] - B[1d] sage: Q.product_on_basis(I[0,-3], I[0,-1]) 1/q^2*B[a0]*B[2d+a0] + ((-q^2+1)/q^2)*B[1d+a0]^2 - B[2d] sage: Q.product_on_basis(I[0,2], I[0,-1]) q^2*B[a0]*B[2d+a1] + ((q^4-1)/q^2)*B[1d+a1]*B[a1] + (-q^2+1)*B[1d] + q^2*B[3d] sage: Q.product_on_basis(I[0,2], I[1,1]) B[1d]*B[2d+a1] + (q^2+1)*B[3d+a1] + (-q^2-1)*B[1d+a1] sage: Q.product_on_basis(I[0,1], I[1,2]) ((-q^4+1)/q^2)*B[1d]*B[2d+a1] + ((q^4-1)/q^2)*B[1d]*B[a1] + B[2d]*B[1d+a1] + (-q^4-q^2)*B[a0] + ((q^2+1)/q^2)*B[3d+a1] + ((q^6+q^4-q^2-1)/q^2)*B[1d+a1] sage: Q.product_on_basis(I[1,2], I[0,-1]) B[a0]*B[2d] + ((-q^4+1)/q^2)*B[1d+a0]*B[1d] + ((q^4-1)/q^2)*B[1d]*B[a1] + ((q^2+1)/q^2)*B[2d+a0] + ((-q^2-1)/q^2)*B[1d+a1] sage: Q.product_on_basis(I[1,2], I[0,-4]) ((q^4-1)/q^2)*B[2d+a0]*B[1d] + B[3d+a0]*B[2d] + ((-q^4+1)/q^2)*B[4d+a0]*B[1d] + (-q^4-q^2)*B[1d+a0] + ((q^6+q^4-q^2-1)/q^2)*B[3d+a0] + ((q^2+1)/q^2)*B[5d+a0]
-
q
()¶ Return the parameter \(q\) of
self
.EXAMPLES:
sage: O = lie_algebras.OnsagerAlgebra(QQ) sage: Q = O.quantum_group() sage: Q.q() q
-
some_elements
()¶ Return some elements of
self
.EXAMPLES:
sage: O = lie_algebras.OnsagerAlgebra(QQ) sage: Q = O.quantum_group() sage: Q.some_elements() [B[a1], B[3d+a1], B[a0], B[1d], B[4d]]
-