Free algebra quotient elements¶
- AUTHORS:
- William Stein (2011-11-19): improved doctest coverage to 100%
- David Kohel (2005-09): initial version
-
class
sage.algebras.free_algebra_quotient_element.
FreeAlgebraQuotientElement
(A, x)¶ Bases:
sage.structure.element.AlgebraElement
Create the element x of the FreeAlgebraQuotient A.
EXAMPLES:
sage: H, (i,j,k) = sage.algebras.free_algebra_quotient.hamilton_quatalg(ZZ) sage: sage.algebras.free_algebra_quotient.FreeAlgebraQuotientElement(H, i) i sage: a = sage.algebras.free_algebra_quotient.FreeAlgebraQuotientElement(H, 1); a 1 sage: a in H True
-
vector
()¶ Return underlying vector representation of this element.
EXAMPLES:
sage: H, (i,j,k) = sage.algebras.free_algebra_quotient.hamilton_quatalg(QQ) sage: ((2/3)*i - j).vector() (0, 2/3, -1, 0)
-
-
sage.algebras.free_algebra_quotient_element.
is_FreeAlgebraQuotientElement
(x)¶ EXAMPLES:
sage: H, (i,j,k) = sage.algebras.free_algebra_quotient.hamilton_quatalg(QQ) sage: sage.algebras.free_algebra_quotient_element.is_FreeAlgebraQuotientElement(i) True
Of course this is testing the data type:
sage: sage.algebras.free_algebra_quotient_element.is_FreeAlgebraQuotientElement(1) False sage: sage.algebras.free_algebra_quotient_element.is_FreeAlgebraQuotientElement(H(1)) True